
RENDICONTI
del

SEMINARIO MATEMATICO
della

UNIVERSITÀ DI PADOVA

GIULIANO ARTICO

UMBERTO MARCONI

ROBERTO MORESCO
A subspace of Spec(A) and its connexions with
the maximal ring of quotients
Rendiconti del Seminario Matematico della Università di Padova,
tome 64 (1981), p. 93-107
<http://www.numdam.org/item?id=RSMUP_1981__64__93_0>

© Rendiconti del Seminario Matematico della Università di Padova, 1981, tous
droits réservés.

L’accès aux archives de la revue « Rendiconti del Seminario Matematico
della Università di Padova » (http://rendiconti.math.unipd.it/) implique l’accord
avec les conditions générales d’utilisation (http://www.numdam.org/conditions).
Toute utilisation commerciale ou impression systématique est constitutive
d’une infraction pénale. Toute copie ou impression de ce fichier doit conte-
nir la présente mention de copyright.

Article numérisé dans le cadre du programme
Numérisation de documents anciens mathématiques

http://www.numdam.org/

http://www.numdam.org/item?id=RSMUP_1981__64__93_0
http://rendiconti.math.unipd.it/
http://www.numdam.org/conditions
http://www.numdam.org/
http://www.numdam.org/


A Subspace of Spec (A) and Its Connexions
with the Maximal Ring of Quotients.

GIULIANO ARTICO - UMBERTO MARCONI - ROBERTO MORESCO (*)

Introduction.

The results exposed in this paper have originated from a notion
which arises in a natural way in the study of the rings of real-valued
continuous functions and which can be generalized to arbitrary rings:
we mean to refer to C-ideals, which we define in 2.1 (see also 4.1);
we use a notation which clearly recalls the familiar one of z-ideal [GJ],
because of the likeness of the two concepts.

The second section and part of the fourth one are devoted to the
description of the properties of C-ideals and to their relations with
z-ideals : for instance we show that there exist some analogies (2.4),
that in the semisimple rings the notion of C-ideal is finer (2.3) and
we discuss some conditions under which the two concepts coincide.

Furthermore we prove that there is a connection between the

C-ideals of a ring A. and the prime spectrum of the maximal ring of
quotients Q (A. ) : in fact if we consider the map 
- Spec (A) so = M n A, it turns out (3.3 ) that the
subspace of the C-ideals coincides with the image of the map ?7; the
same theorem provides other conditions equivalent to being a C-ideal.
The third section ends with a study of the injectivity of the map ?7.

Finally, y in the theorems 4.5, 4.5 bis we give some necessary and
sufficient conditions in order that the universal regular ring is a ring
of quotients: one of them is that every prime ideal is a C-ideal;

(*) Indirizzo degli A.A.: Istituto di Matematica Applicata - Via Bel-
zoni 7 - 35100 Padova.



94

moreover we show that this situation takes place in C(X) if and only
if X is a P-space.

We wish to thank G. De Marco and A. Orsatti for the helpful
hints they gave discussing with us some problems connected with
the matter of this paper.

1. Preliminary results.

1.0. Throughout the present paper the word  ring &#x3E;&#x3E; will always
mean commutative semiprime (i.e. without non-zero nilpotents) ring
with 1. Let A be a ring, Q(A) the maximal ring of quotients of A,
K(A) the total ring of fractions, Spec (A), Max (A) and Min (A) re-
spectively the prime, y maximal and minimal spectra of A equipped
with the Zariski topology. For every a belonging to A, we put:
V(a) = D(a) = Spec V(a) = f1

and analogously for D(a) and
00(a). If we replace a with any subset S of A, the previous symbols
get the obvious significance; if Y is a subspace of Spec (A ), we denote

the space f1 Y, analogously for Dy(S). Then we put
S-L = {a E A : sa = 0, Vs E ,S~ the annihilator of S in A.

For a E A we say that a -t is the quasi-inverse of a if it is the

(unique) element of A which satisfies the system:

if every element of ~. has a quasi-inverse we say that the ring A is
regular: this is equivalent to say Max (A) = Spec (A ) .

We call singular an ideal whose elements are all zero-divisors.
We recall a characterization of the minimal prime ideals ([HJ])

which we shall need in the following: a prime ideal P is minimal if
and only if the annihilator of every element of P is not contained in P.

1.1 PROPOSITION. Let Y a sub8pace of Spec (A) containing
Min (A). Then inty = 

PROOF. Clearly Vy(S) J which is open. For the converse

inclusion take there exists such that 
C We claim that a belongs to otherwise there would exist
8 E 8 such that is a multiplicatively closed set which
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does not contain zero, hence there would be a minimal prime Q not
containing s ~ a, therefore Q E against the assumption.
Then P belongs to 

It is now easy to prove the following proposition, stated in [HJ]
for Y = Min (A ) .

1.2 PROPOSITION. Consider the 

i) Y is extremally disconnected;
ii) for every ideal I of A, is open;

iii) for every ideal I of A, ’BYy(I1.) and ’BYy(I1.J..) are complement-
tary in Y;

iv) for every ideal I of A, ’BYy(I1. + I11) is empty;
v) for every ideal I of A, I1 is a direct summand, that is .I1=
- e. A for an idempotent e of A.

Conditions i)-iv ) are equivalent and are implied by v), for every Y
containing (A ) ; all the condi tions are equivalent if Y = Spec (A).

PROOF. i) « ii) iii): take the complements in proposition 1.1.

iii) « iv) : obvious since ’1Jy(I J.. + 11.J..) == n and

(0), A being a semiprime ring.
v) =&#x3E; iv): trivial.

iv) ~ v): + = 0 implies IL + == A. ·

1.3 THEOREM. ([HJ] 2.3) For every 5),,(a) = ’l1o(a1.); hence
Min (A) is Hausdorff and has a bacsis o f clopen sets..

One can equip the set of prime ideals of A with the patch-
topology ([H], [G]) which has as a basis the clopen subsets of the
form 9)(a) r’1 n ... n ac, ai E A. We denote this

topological space; is Hausdorff, compact, totally disconnected
and Min (A ) is a subspace Furthermore if A, B are rings
and 99: A - B is a ring homomorphism, then the adjoint map aq : -~

T(A) given by acp(p) = is continuous.
We indicate by j : A - h the canonical embedding of A into the

universal regular ring associated to A ([W], [G]). It is known that

every morphism of A into a regular ring .R extends uniquely to a
morphism into R. Moreover the adjoint map aj: Max - S(A )
is a homeomorphism. For every P e we shall denote by P the
maximal ideal such that = P A.
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We recall that if A is rationally complete (i.e. A = Q(A)) then A
is self-injective and regular.

1.4 THEOREM. If A is a self-injective ring, then Max (A) = Spec (A)
is extremally disconnected.

PROOF. Let I be an ideal of A. Since A is semiprime, I J..(1 (0).
Let xi , Jr be the projections of onto respectively;
as A is self-injective, Jt2, extend to endomorphisms Jt:, ~2,

of the A-module A. Since is dense in A

(i.e. its annihilator is (0)) and Jt2 is the identity of M, then
(yri + Jt2)* is the identity of A. On the other hand (Jt1 + 7~2)* =
- Jt; + ~2 because the equality holds in .11. At last Jt:, ~c2 are or-
thogonal idempotents because they are such in M). Hence
A = Im (n§J) 0 Im (~2 ) ; since 1m (n;) :2 11. and Im we get
that Im (~2 ) = Ill and Im = that is A = The

conclusion follows from 1.2..

The proof of theorem 1.4 implies :

1.5 COROLLARY. For any subset S o f A : f or e

idempotent o f Q(A); hence 

2. ’-ideals.

2 .1. Let ~: JL 2013~(JL) be the canonical embedding, r¡: Max (Q (A ) ) -
- the adjoint map ; our purpose is to investigate the properties
of q. The notion of z-ideal used in the study of C(X ) has been ex-
tended to arbitrary rings by Mason [M] ; for our aim it will be helpful
to introduce the concept of (-ideal which arises quite naturally in
C(X) (see section 4) and extends to arbitrary rings.

. DEFINITIONS. Let I be an ideal of A.

a) I is a z-ideal bEl, yea) = V(b) implies a E I ;

b) I is a C-ideal if a E A, b1, ..., bnE I, ’lJ(a):2 D((b1, ... , bn)1) im-

plies ac e I.

Notice that by 1.1 ~((b1, ..., - int (’lJ(b1, ..., bn)).
2.2 LEMMA. Every minimal prime ideal P is a 
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PROOF. Let b1, ..., P, a E A, Ð((b1, ..., bn)1). By the char-
acterization of the minimal prime ideals cited in 1.0, P belongs to
~(b1, ..., bn)1), hence a belongs to P. a

2.3 THEOREM. Let A be a ring, J(A) its Jacobson radical. The

following are 

i) J(A) + 01
ii) ~(b1, ... , if and only if Y(a) ~ D ((bI, ... , bn)1)

for a, biE A;
iii) is a z-ideal.

PROOF. i) ~ ii) : ~((b1, ... , implies trivially 
D D(b1, ..., b~,)1) ; conversely if there exists P E Ð((b1, ..., 
there is s E (b1, ..., bn)J.. such that s a 0 P. By i) there exists a maximal
ideal M which does not contain s.a, hence MED(b1, ..., 

ii) ~ iii) : trivial.

iii) ~ i) : ab absurdo, suppose a =1= 0 belongs to J(A) and take a
minimal prime ideal P E ~(a). Then P is a ~-ideal and it is not a

z-ideal for V(a) = V(O) = Max (A) and a does not belong to P. a

If J(A ) = 0, theorem 2.3 allows us to state definition 2.1 b ) looking
only at the maximal spectrum, that is replacing by V, .D
respectively.

Clearly by the definition every proper ’-ideal is singular; and
if an ideal I is intersection or (set theoretic) union of ’-ideals, it is a
’-ideal.

We indicate by 3°(A) the open sets of the form 0((a,, ..., 
ai E A. The proof of next proposition is routine.

2.4 PROPOSITION. i) I f I is an ideal then C(l) == ..., 

ai E I} is a basis for a filter (possibly non-proper) in 3°(.A); if I is a
proper’ -ideal, ~(I ) is a proper filter.

ii) If Y is a filter basis in 3°(A) then ~~(,~ ) = f a E A : 3F E ,~ ,
F} is a C-ideal, proper if Y is proper.

iii) The assignation I -+ C(l) is a 1 -1 correspondence between
’-ideals and filters on 3°(A), whose inverse is 

As an easy consequence we obtain that ’+-(’(1)) is the smallest

’-ideal containing I, not necessarily proper even if I is a singular
ideal, as the following theorem shows :
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2.5 THEOREM. The following are equivalent:

i) every singular ideal 1~ is contained in a proper’ -ideal;
ii) every finitely generated singular ideal I is contained in a min-

imal prime;

iii) every ideal maximal among the singular ones is a (prime)
C-ideal.

PROOF. i) « ii) : observe that ’+-(~(1)) is proper if and only if

~(~) ~ ~ if and only if for every b1, ..., bnE I, Ð((b1, ..., bn)..L) 7’:= 0 if and
only if ..., bn) = Ðo((b1, ..., 7’:= ø; the conclusion follows.

i ) « iii ) : trivial.

It is easy to see that the condition ii) in the previous theorem is
equivalent to the condition « 0» of Quentel [Q]:

C Every finitely generated ideal such that its annihilator is (0)
contains a non-zero-divisor.

In the general case a singular prime z-ideal is not necessarily a
’-ideal even if J(A) = 0 and A satisfies the condition « C » as we

shall show in 4.3.

3. Relations between Spec (A) and Max (Q(A)).

We are now ready to begin the study of the map q introduced
in the previous section.

3.1 LEMMA. Let A be a subring of the regular ring Rand .R be a
ring of quotients of A. For every f inite subset a1, ... , an of A, one has

n

PROOF. We for an idempotent e of R. Ob-
2=1

serve that A C ..., since R ~ (~. - e) ~ (aI, ..., Now

let x belong to ABR ~ e. So x ~ (1 - e) ~ 0 and as 1~ is a ring of quo-
tients of A, there exists t belonging to A such that 

Hence x ~ xt(1 - e) ~ 0 otherwise (~(l2013e))~==0. It

follows that x E (a1, .", since xt(1- e) E (a,, ..., A r)

n R.(1 - e). D
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3.2 LEMMA. Let .R and A be as above. An ideal I o f A is o f the
f orm J n A for an ideal J of R if and only if for every a1,...,anEI
we have (a1, ..., an)11c I.

PROOF. Necessity : let I = J 0 A, at, ... , an E I. The ideal .g spanned
by aI, ..., an in .R is contained in J; furthermore .~ r) A = (aI, ..., an)11
by lemma 3.1.

Sufficiency: consider the ideal J spanned by I in 1~. Clearly
n

J n I. Now take x belonging to J n A ; then x riai for
;=i

certain ai E A, ri E R. By lemma 3.1 x belongs to (aI, ..., an)11 which
is contained in I by hypothesis.

3.3 THEOREM. Let P belong to Spec (A ) . The following are equi-
valent :

i) P is a C-ideal;

ii) P belongs to 

iii) for every b,, bn E P, a E ABP, there exists s E ... , bn)1
such that s ~ a ~ 0 ;

iv) for every bx, ... , bn E P, (bl, ... , bn)11 S P;
v) P belongs to 

vi) P belongs to ai (Mag (R)) if R is a regular ring of quotients
of A.

PROOF. i) ~ iv) : take bl, ..., bn E P, s E (bl, ..., bn)11; then 
..., 7 bn))7 hence s belongs to P.

iv) ~ iii) : trivial.

iii) + ii) : a neighborhood of P contains a set of the form r)

n ‘lr(b1) n ... n bi, ... , If s is given as in iii), 7
take a minimal prime Q which does not contain s.a; hence Q E ~(a) n
n n ... n 

ii) ~ i) : let b.,, bn belong to P, a belong to A, 
:¿ ..., If a does not belong to n 4Y(b,) n ... n
n is a neighborhood of P, and therefore it contains a minimal
prime ideal Q. By lemma 2.2 Q is a C-ideal, so it needs to contain a.

iv) ~ vi) : by lemma 3.2 there exists an ideal I of R such that
I n A = P; then there exists a prime one which contains I and does
not meet ABP.
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vi) =&#x3E; v): trivial.

v) =&#x3E;iv): by lemma 3.2.

3.4 COROLLARY ([Me]). Min (A) is compact if and only i f Min (A ) =
= n(Max(Q(A))). D

Consider the following commutative diagram:

where A is the universal regular ring associated to A, i and j are the
canonical embeddings.

Put 1 = i (A ) . Plainly J is the smallest regular subring of Q(A)
containing A, and it coincides with ~4.[{~: ~ c .A}] ([G]). Put C(A ) _
= clP(A)(Min (A)). 

3.5 COROLLARY ([Me]). Max (zi) is homeomorphic to C(A).
PROOF. In the above diagram replace Q(A) with Ã. Consider

is onto by 3.3 Vi), ai is 1-1 and aj
is 1-1 onto; hence ai, being I - I, onto and continuous between
Hausdorff compact spaces, is a homeomorphism.

The following theorem will be useful later on:

3.6 THEOREM. Using the above notations, we have:

PROOF. i): ker (i) = = r1 E Max (Q(A)~ ~. The com-
mutativity of the previous diagram ensures that I’ [M] == 

ii): follows from i) since Min (A) is dense in C(A).

iii): if i is 1-1 we have Max (1) ~ Max (A ) ; on the other hand
Max (A) -- C(A) by 3.5 and S(A) (section 1). Conversely:
ker(i) = n c J (A)~ = n ~P: P E Max (h)) = 0.
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For every idempotent e of Q (A ) put Ie= A n eQ(A). We recall
that the ideals I e are exactly the annihilator ideals in A (1.5).

3.7 LEMMA. For every ideal P belonging to Min (A) the following
are 

i) there exist M, N c Max (Q(A)), such that P = M n

n A = N n A ;

ii) there exists an idempotent e E Q (A) such that Ie + I1-ek P;
iii) there exist two idempotents e, f E Q(A) such that Ie + Ilk P

and eQ(A) + f Q(A) = Q(A).

PROOF. i) =&#x3E; ii): let e be an idempotent of Q(A) belonging to
.MBN; then 1 - e belongs to N, hence Ie + I1-e k P.

ii) ~ iii): trivial.

iii) =&#x3E;i): let S = AUP; S is a multiplicatively closed subset
of Q(A) which does not meet the ideals eQ (A ), f Q (A ) . Let .lVl, N be
prime ideals of Q (A ) containing respectively e and f , which do not
meet S..M~ and N do not coincide since eQ (A ) + fQ(A) = Q (A ), and

since P is minimal. -

Let B be a ring containing A, i the inclusion map of A in B ; put
Y = ai~{Min (A. ) ~ = E Spec (B) : if n A E Min (A )~. Observe that

= Min (A ) and if B is a ring of quotients of A, Y is a dense sub-
space of Spec (B) . Using the notations introduced in 1.0:

3.8 LEMMA. Let I be an ideal of B. We have:

PROOF. Clearly CU’o(I r1 A) contains for the converse
take P belonging to There exists a prime P’ E Spec (B)
which contains I and does not meet ABP : then A = P since P

is minimal.

Remark that lemma 3.8 says that is a closed map. This fact
becomes rather interesting in the case B = Q(A) (hence ai = ~ ) since
it is used to get some conditions equivalent to the injectivity of 271,.

3.9 THEOREM. Let A be a ring, Y = (A)). The following
are equivalent:
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i) Min (A) is extremally disconnected;

ii) for every idempotent e E Q(A), ’lJo(Ie) is open;

iii) if e, t are idempotents of Q(A) such that
eQ(A) + fQ(A) = Q(A) , then + If) = 0; 1

iv) 1-1;

v) q)y is a homeomorphism of Y onto Min (A ) ;
vi) compacti f ication of Min (A);

vii) Max (Q(A)) is the Stone-Cech compactification of Min (A).

PROOF. i) «it): by 1.2.

ii) « iii) : by lemma 3.7, condition iii) is true if and only if it is
verified with f = 1- e ; the conclusion follows by 1.2.

iii) ~ iv) : by 3.7.

iv ) ~ v) : by 3.8.

v) ~ vi ) : trivial since Y is dense in Max (Q(A)).
vi) ~ vii) : Max (Q(A)) is compact and extremally disconnected,

hence it is the Stone-Cech compactification of any
dense subset ([GJ] 6M).

vii) ~ i) : [GJ] 6M.

We conclude with a theorem which gives a condition equivalent
to the injectivity of q.

3.10 LEMMA. Let B7 8 be regular C S, E(R) and B(S) the
sets of the idempotents of R and S respectively. Then E(R) = E(S) if
and only if the natural map ai : Max (S) -~ Max is a homeomorphism.

PROOF. Necessity: it is enough to show that ai is 1-1. Let N

belong to Max (S), if ~ N. There exists an idempotent e E 

hence e belongs to (M r1 R)B(N r1 R).

Sufficiency: Let e be an idempotent of S. Ys(e) is a clopen set
in Max (S), hence ai[Ys(e)] is a clopen in Max (R) ; therefore ai[Ys(e)] =
- VB(f), so that V,(e) = which implies e = f .

3.11 PROPOSITION. The following are equivalent:

1-1;
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ii) ~ : Max (Q (A ) ) ~ C(A) is a homeomorphism ;
iii) zi contains E(Q(A)).

PROOF. i) -4:&#x3E; ii): trivial.

ii) « iii) : use 3.5 and 3.10.m

4. Applications to C(X).

Let X be a Tychonoff space, C(X) its ring of real-valued con-
tinuous functions. The notion of C-ideal applied to C(X) may be
formulated by means of the topology of X. Hence this notion turns
out to be similar to the one of z-ideal ([GJ]).

For f belonging to C(X), call Z(f) the zero-set of f , Coz (f) its

complement; then putting C(X ) : f (x) = 0} we have that

X} is a dense subspace of Max (C(X)). Observe that
for /i,...,/. belonging to C(X), ( f 1, ..., t~,)1= ( f i -~- ... + f2)-L; n further-
more J(C(X)) = 0, hence by proposition 2.3 1 is a C-ideal if (and
only if) for any g belonging to I and f belonging to C(X) such that

we have that f belongs to I ; moreover every ~-ideal is a
z-ideal.

4.1 PROPOSITION. For ideal I of C(X) the are 

valent :

i) I is a ’-ideal;

ii) if Z( f ) D int (Z(g)) and g E I then f c I.

PROOF. For every f, g E O(X) we have: V(f) D D(g1) if and only
if V(f) r1 r1 then observe that Z(f) = ~x E X : 
E V(f) n and int (Z(g)) = {x E X : D(g1) r1 The con-

clusion follows.

We notice that, in view of the previous proposition, 2.4 may be
expressed in a more significant way replacing 30(C(X)) with the family
of open sets of X : {int (Z( f ) ) : f E C(X ) ~.

It is easily seen that C(X ) satisfies the condition « C)) of Quentel
(2.5); so that every singular ideal is contained in a proper (prime)
C-ideal. Moreover if P is a prime ideal of C(X), the smallest ~-ideal
containing P is prime (see [GJ] 2.9).
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One may wonder when C-ideals and z-ideals coincide; furthermore,
since we have already remarked that a proper C-ideal must be singular,
it is reasonable to ask when singular z-ideals and C-ideals coincide;
we have:

4.2 THEOREM. T he following are equivalent:

i) every z-ideal is a 

ii) every singular z-ideal is a 

iii) every non-empty zero-set has non-empty interior;

iv) C(X) = K(C(X)).

PROOF. i) ~ ii) : trivial. ii) ~ iii) : suppose there exists f E C(X)
such that 0, int (Z(f)) = 0 and take x Consider the

singular z-ideal I of the functions which vanish on Z(f) and on a
neighborhood of x : I is not a C-ideal since there exists a function g
such that g[Z(f)] = {1} and Z(g) is a neighborhood of x: while
int (Z(g)) = int (Z(f.g)) and f.g belongs to I.

iii) ~ i) : let f belong to the z-ideal I and Z(g) D int (Z(f)). We
claim that Z(g) contains Z( f ) : otherwise there would exist a point

and a function h such that h[Z(g)] = (1), h(x) = 0;
hence the interior of Z(f2 + h2) (non-empty by hypothesis) is con-

’ 

tained in Z(g); but Z(f2 + h2) n Z(g) = 0. Since I is a z-ideal, I con-
tains g. 

°

4.3. Theorem 4.2 does not explain the situation among the prime
ideals: one may still think that the singular prime z-ideals are always
C-ideals. The following example provides a negative answer.

EXAMPLE. Let W* _ w1 denoting the first uncountable
ordinal, I = [0, 1] C R; define X = {N X I yJ W* where N X I has the
product topology, y has its order topology and the filter Y
of neighborhoods of the point mi is defined as follows: let A be a free
ultrafilter on N; ZT belongs to Y if ~* contains a tail of W* and

{n: ZJ r1 (N XI) is a neighborhood of (n, 0)} belongs to A. X is a
6-compact space.

Take P = ~ f E C (X ) : {n: f ( n, 0) = 0} c ~~ ; we observe that any f
belonging to P vanishes on a tail of ~V*; hence, using the fact that
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an ultrafilter is prime, we can say that P is a prime ideal. Clearly P
is a singular z-ideal but it is not a ~-ideal: in fact if f, g vanish on w~*
and f takes the value z and g takes the value at the point (n, x),
we have that f , g belong to C(X), int (Z(f)) = int (Z(g)) = 
and P contains f but it does not contain g. Finally we may remark
that ~~(~(P)) is the maximal ideal which is therefore the unique
C-ideal containing P.

4.4 REMARK. A positive answer to the previous question may be
given in a certain class of spaces (larger than the class of perfectly
normal spaces). In view of [HJ] 5.5, using corollary 3.4 and the
characterization of minimal prime ideals, we may observe that the
following are equivalent:

i) Min (C(X)) is compact;

ii) for every f E C(X ) there exists f ’ E C(X) such that Z(~f ) U
U Z( f’) _ .X and int (Z(f) r1 Z(~’)) _ 0;

iii) every singular prime ideal is minimal.

In particular, singular prime z-ideals, prime ~-ideals and singular
prime ideals coincide if Min (C(X)) is compact: e.g. if the support of
each function of is a zero-set (hence if .g is basically dis-

connected) or if the closure of each open set in .X is the support of a
continuous function (see [HJ]); observe also that X is basically dis-
connected if and only if C(X) is a Baer ring [AM]; on the other hand
every Baer ring .A satisfies condition iii), hence if J(A) = 0 singular
prime z-ideals and prime C-ideals coincide.

In [W] R. Wiegand has provided necessary and sufficient condi-
tions in order that A is a ring of quotients of A. We can enrich his
theorem with some more conditions and we shall show that this situa-
tion is never verified in C(X) unless C(X) is regular itself.

4.5 THEOREM. The following are equivalent:

i) A is a ring of quotients of ..A ;
ii) there exists a homomorphism A -~ A which is the identity

on A. ;

iii) A is isomorphic to A ;
iv) C(A ) = S(A ) ;
v) every prime ideal is a 
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vi) for every finitely generated ideal I, the radical of I is the inter-
section of the minimal prime ideals containing I.

PROOF. i) ~ ii) : we have 

ii) ~ iii): let y be a homomorphism from A into a regular
ring its extension to A ; ’Øocp extends 1p to Ã, therefore Ã satisfies
the universal property, hence it is isomorphic to A.

iii) ~ i): trivial.

iii) « iv) : by theorem 3.6.

iv) « v) : by theorem 3.3.

v) ~ vi): take I = (bl, ..., bn), a there exists a prime P
containing I and not containing a. Since P is a ~-ideal, given s as
in 3.3 iii), there exists a minimal prime which does not contain s ~ a.

vi) ~ v): let P be a prime, a E A, ...,

Since the minimal prime ideals are C-ideals, a belongs to every
minimal prime ideal containing bl, ... , bn hence to the radical of the
ideal generated by bl, .... 7 bn. o

4.5 bis THEOREM. Let X be a Tychono f f space. If A = C(X) the
following conditions are equivalent to the conditions i)-vi) of theorem 4.5 :

vii) every prime is a z-ideal;

viii) X is a P-space.

PROOF. v) ~ vii ) : by theorem 2.3.

vii) ~ viii): let f belong to C(X), Z(f) 0. Define

Clearly g belongs to C(X). Since every prime is a z-ideal, there exist
n E h E C(X) such that fn = It. g. If Z(f) is not open, there exists a
net of points of Coz (f), say Cj4y convergent to a point z E Z( f ).
But

viii) =&#x3E; i) : C(X ) is regular.
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The condition vii) is not equivalent to the ones of theorem 4.5
in the general case, as one may easily verify by looking at the ring Z.
At last we notice that R. Wiegand has provided an example of a
ring which satisfies the conditions of theorem 4.5 without being regular.
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