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Existence of Extremal Solutions and Comparison Results
for Delay Differential Equations in Abstract Cones.

A. S. VATSALA and R. L. VAUGHN (*)

1. - Introduction.

The study of Cauchy problem for ordinary differential equations
in a Banach space has been extensive [2, 4, 10]. It is of interest to
look at the corresponding problem for delay differential equations since
such equations occur in many physical problems. Existence of solu-
tions of such equations are considered in [8, 9, 6] using monotonicity
conditions and dissipative conditions.

In this paper our objective is to prove the existence of extremal
solutuions for the delay differential equation

relative to a cone k of the Banach space E. For this purpose, we begin
by proving an existence result under a simple set of conditions without
assuming uniform continuity on f , we then develop needed theory of
differential inequalities and utilize this to show the existence of ex-
tremal solutions for (1.1). Several useful comparison theorems are
then proved including a flow invariance result. Our results generalize
some of the recent results for equations without delay [5, 7].

(*) Indirizzo degli AA.: A. S. Vatsala, Department of Mathematics, Uni-
versity of Texas at Arlington, Arlington, Texas 76019; R. L. Vaughn, Depart-
ment of Mathematics, Texas Christian University, Forth Worth, Texas 76129.

Research partially supported by U.S. Army Research Grant No. DAAG29-
77-G0062.
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2. - Preliminaries and definitions.

Let z &#x3E; 0 be a given real number and let E be a Banach space
with norm 11.11. Let C = C [[- T, 0], E] denote the Banach space of
continuous functions with the norm of 99 e C given by

If and then for any t E [to, 00), we let
be defined by

Also let

Similarly if and for oo) we will let

To establish existence criteria for the Cauchy problem (1.1) we require
that f satisfies a compactness condition. The compactness condition
for this paper will be given in terms of Kurtowski measure of non-
compactness 0152. The measure of noncompactness a( s) is defined by

ce(s) = inf ~d &#x3E; 0 : s can be covered by a finite number of sets of

diameter d~

for each bounded subset of E. We denote OCE, OCB, ae to denote the

Kurtowski measure of noncompactness defined relative to the Banach
spaces E, B and C respectively.

A cone k is a proper subset of .E such that if v, co E R+ then

v + w, Âv E k. Throughout this paper we will consider a closed cone k
and its interior These cones induce orderings on E defined by
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For some of the fundamental properties of oc and the cone k

see [2, 3, 4, 10].
Let k* be the set of all continuous linear functionals c on E such

that c(x) ~ 0 for all x and let k* be the set of all continuous linear
functionals c on E such that c(x) &#x3E; 0 for x E kO.
A function f E C[J X E X C, E] is said to be quasimonotone non-

decreasing in x for figed t, cp if and c(x) = c( y ) for then

x, 99)) ~ c(~(t~ y, 
A function f E C[J X E X C, E] is said to be monotone nondecreas-

ing in 99 for fixed t, x, if for then 

0153, CP2)).
A function f E C[J X E X C, E] is said to satisfy one sided Lipschitz’s

condition if there exists an L &#x3E; 0 such that

whenever and CP2 .
The function f (t, x, cp) is said to be quasinonnegative if 2

c(x) = 0 for implies c(/(~~~))&#x3E;0. If in the above definition
if the inequalities are reversed then f is said to be quasinonpositive.

In what follows when we say we mean 

- t  s  0.
A closed set F c E is said to be flow invariant relative to the

system (1.1) if for every solution x(t) of (1.1), we have

We state below the Darbo fixed point theorem [1] and Mazur’s
theorem [5] which are needed in our existence theorem and on the
results on differential inequalities respectively.

THEOREM 2.1 (Darbo). Let E be a Banach space and A be a closed,
bounded convex, nonvoid subset of .E. If T E C[A, A] is such that

a(T(B)) c ka(B) where k  1 for each bounded subset B of A, then T
has a fixed point.

THEOREM 2.2 (Mazur’s). Let k be a cone with nonempty interior 1~~.
Then

(i) is equivalent to c(x):&#x3E;O for all 

(ii) x E 8k implies that there exists a c E ko such that c(x) = 0.
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3. - Existence.

In this section we prove the existence of a solution of the Cauchy
problem ( 1.1 )

THEOREM 3.1. Let f E C[J X E X Ce, .E] where J = [to, to + a], a &#x3E; 0
and suppose the following conditions are satisfied.

where (3 &#x3E; 0 and Ai and Å2 are any bounded subsets of E and C respect-
ively. Then given an initial function Cp at t = to&#x3E; 0 there exists
a y &#x3E; 0 such that there is a solution x(t, to, CPo) of (1.1 ) existing on
[t0 - t, t0 + y).

PROOF. Define y E 0 [[to - z~, to + a], B] as follows:

Then f (t, y, yt) is a continuous function of t on [to, to + a] and hence
y, yt) by (ai). We can show [11] that there exists a constant

such that

whenever and 
If now follows that 11 f (t, x, 1J’) + 1 whenever t E [to , to -~- a],

and Choose 
Let B denote the space of continuous functions from [to - 7:, to -~- y]

into E. For an element x E B define the norm

Then B is a Banach space with respect to this norm. Let S c B be
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defined as follows

clearly S is closed, bounded, convex and equicontinuous.
We now define a mapping on ~’ as follows. For an element x let

Consequently TS 9 S and T is bounded.
To show T is continuous let C S be a sequence converging

to x. By the continuity of f we have

Further By applying the bounded convergence
theorem Tx.

Now let 27 c ~’. Then using the properties of a for t &#x3E; to,

Since ~S is equicontinuous and 1: c S, then 1: is also equicontinuous.
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Furthermore is an equicontinuous subset of C. Hence we have

We may then write

Consequently,

By the Darbo fixed point Theorem there exists a fixed point x of T.
Such a fixed point is a solution of (1.1).

4. - Differential inequalities.

In this section we develop the theory of differential inequalities
which is used as a tool to prove the existence of extremal solutions

and a comparison result. All the inequalities are relative to a cone k
of the Banach space E.

THEOREM 4.1. Let (where J = ( to , oo) ) and f
is quasimonotone nondecreasing in x for fixed (t, cp) and monotone
nondecreasing in 99 for fixed (t, x). Let x, y E O[[to - 7:, oo), E] and

Assume further that
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for t E (to, oo). Then

provided one of the above inequalities is taken strict.

PEOOF: Suppose that the assertion of the Theorem is false. Then

there exists a such that y(t1) - x(t1) E ak and y(t) - x(t) E leo,
Thus by Mazur’s Theorem, there exists a c E k*0 with

c(y(t1) - x(t, )) - 0. Setting m(t) = c[y(t) - x(t)], we see that m(t) &#x3E; 0

for and n1( ti ) = 0. Consequently D-.m(~)~0.
Also

by (4.1 ), (4.2). Using the quasimonotonicity of f in x and monotonicity
of f in cp it follows that

Now (4.3), (4.4) together imply

Hence a contradiction and the theorem is proved.

REMARK 4.1. The above result is valid if in the inequalities (4.1 ),
(4.2) D_ is replaced by any other diniderivative. See [11] for details.

REMARK 4.2. The conclusion of the above theorem is not valid if
one of the inequalities in (4.1), (4.2) is not taken strict. However the
conclusion is valid if further f satisfies a onesided Lipschitz condition.

THEOREM 4.2. Let satisfy the assumptions of
Theorem 4.1. Further let f satisfy the onesided Lipshitz’s condition.
Then together with (4.1) (4.2) imply x(t) c y(t), t E J.

PROOF. Consider where E E k0, cer-

tainly t for t&#x3E;to.
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Also consider

by (4.1). Using the onesided Lipschitz’s condition it follows that

Now we can conclude that

and

Now applying Theorem 4.1 to (4.5) and (4.2), it follows that

Taking the limit as E --~ 0 in (4.6) we get the required result.

5. - Existence of extremal solution.

In this section we prove the existence of maximal solution of 1.1

only. The existence of minimal solutions can be proved on similar lines.

THEOREM 5.1. Let and suppose the assump-
tions (at) and (a2) of Theorem 3.1 are satisfied and also further f (t, x, q)
is quasimonotone nondecreasing in x for fixed (t, cp) and monotone
nondecreasing in cp for fixed (t, x) then given an initial function ee
at t = to &#x3E; 0 there exists a y &#x3E; 0 such that there is a maximal solution
r(t, to, qo) of (1.1) existing on [to - + y).

PROOF. Consider the delay differential equation

where and 11 - 1 for n = 1, 2, 3, ....
The solutions of (5.1) for n = 1, 2, 3, ... exists on some interval

[to-7:, to + y), y &#x3E; 0 from Theorem 3.1.
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Let be any sequence of solutions for (5.1) for n = 1, 2, 3, ...
respectively. That is Xn is a solution of

and is a solution of

Using Theorem 4.1 we can conclude xn &#x3E; xn+1 i.e. is a mono-
tone decreasing sequence bounded by x(t) the solution of (1.1). It
can be easily shown that is equicontinuous, uniformly bounded
and also a ( ~xn~ ) = 0. That is is compact. Hence by Asoli’s
lemma there exists a subsequence of which converges. Sup-
pose converges to r(t). By assumption (a1), lit(t, xn(t), II 
and thus the bounded convergence theorem implies

This proves that r(t) is a solution of (1.1).
If x(t) is any solution of (1.1) then by theorem 4.1 it follows that

This implies that

Thus r(t) is the maximal solution of (1.1) on y].

6. - Comparison results.

In this section we give some comparison theorems related to the
system 1.1.
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THEOREM 6.1. Assume that be quasinonnega-
tive and that _f satisfies the onesided Lipschitz’s condition. Then

the closed set Q is flow invariant relative to the system (1.1 ) where
Q = [xEE, x&#x3E; 0].

PROOF. Set wi(t) - x(t) + sex where x(t) is any solution
of (1.1) such that xto E Q, yo E 1~° and s &#x3E; 0 is arbitrarily small number.

Suppose the conclusion is false, then there exists a least t1 and
c E kci such that m(t~) ~ 0 and c(m(t1)) - 0 and m(t) for [to - r, ti) .
This implies  0 for small h &#x3E; 0 and therefore

c(m’(t)) c 0.
Also

using the Lipschitz’s condition. Further using the quasimonotonicity
of f we can conclude ,

which proves that

This leads to a contradiction. Thus m ( t ) &#x3E; 0 for 
Taking the limit as 8 ~ 0 the conclusion follows.

REMARK 6.1. Theorem 4.2 can be obtained as a consequence of

Theorem 6.1.
For this purpose set d = y - x so that

where P(t) = y’ - f (t, y, yt) - x’ + f (t, x, xt).
Clearly dt0 &#x3E; 0 and F satisfies the onesided Lipschitz’s condition.

Furthermore if d (t ) ~ 0 c (d (t ) ) = 0, for then
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Using the form of P(t) and also using the quasimonotoicity property
of f in x and monotonicity of f in 99 we can conclude

whenever c (d ( t ) ) - 0.
This proves that .F’ is quasinonpositive. The claim now follows

from Theorem 6.1.

COROLLARY 6.1. Assume that f is quasinonpositive and that f
satisfies the onesided Lipschitz’s condition. Then the closed set Q
is flow invariant relative to the system 1.1 where Q = [x E E, x C 0].

COROLLARY 6.2. Assume satisfies the onesided

Lipschitz condition. Assume also that the following condition holds:
If

and if

Then the closed set W, where W = [x E E, a ~ is

flow invariant relative to the system 1.1.
We shall next give a comparison result which yields upper and

lower bounds for the solutions of 1.1.

THEOREM 6.2. Assume that

(i) are quasimonotone nondecreasing in
x and monotone nondecreasing in 99 relative to k and for t, X2 99
E J x E x C,

(ii) r(t), e(t) are solutions of

respectively existing on [to , ool .
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(iii) f satisfies the onesided Lipschitz’s condition, then if x(t)
is any solution of 1.1 existing on [to, 00) we have

whenever ·

PROOF. Setting m(t) = x(t) - e(t), we see m(t) satisfies the dif-

ferential equation

where

It is enough to verify that F_ satisfies the assumptions of Theo-
rem 6.1. so that the closed set Q is flow invariant relative to sys-

tem (6.1). = 0 for some cEkci. Then

Since g, is quasimonotone nondecreasing in e and monotone non-
decreasing in x, we have

and this implies together with assumption (i) that

proving that F is quasinonnegative. Clearly ~’ satisfies the onesided
Lipschitz’s condition and hence by Theorem 6.1 we get or

t ~ to .
A similar argument with n1(t) = x(t) - r(t) would yield x(t)  r(t),

t ~ to completing the proof.

COROLLARY 6.3. If W is flow invariant relative to system 1.1 then
there exist functions which are quasimonotone nondecreasing
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in x for x e E and monotone decreasing in cp for cp E C provided
y k---1~+.

PROOF. We construct gl, g2 as follows : for each i, 

Then clearly the functions gl, g2 are quasimonotone nondecreasing
in x and monotone decreasing in 99 and satisfy (i) of Theorem 6.2.

Finally we give a comparison theorem which is a consequence of
the results in sect. 4 and 5.

THEOREM 6.3. Let f E C[J x-E7 X C, E] satisfy assumptions (a1), (a2)
and f be quasimonotone nondecreasing in x for fixed (t, cp) and mono-
tone decreasing in 99 for fixed (t, x). Let r(t) be the maximal solution
of (1.1) on [to , to -[- y ) . Then if is such that

Then u (t) for t E [to, to -’- y).

PROOF. Consider

If xn(t) is any solution of (6.3) for n = 1, 2, 3, .... Then using
Theorem 4.1 we can conclude

Then taking the limit as n - oo we get

But by Theorem 5.1 we know lim xn(t) = r(t) the maximal solution
n-oo

of (1.1) and hence the conclusion follows.



14

REFERENCES

[1] DARBO, Punti uniti in trasformazioni a codominio noncompatto, Rend.
Sem. Mat. Univ. Padova, 24 (1955), pp. 84-92.

[2] K. DEIMLING, Ordinary Differential Equations in Banach Spaces, Lect.
Notes, Vol. 596, Springer-Verlag (1977).

[3] K. KURTOWSKI, Topology, Vol. II, Academic Press, New York (1966).
[4] V. LAKSHMIKANTHAM - S. LEELA, An introduction to nonlinear differen-

tial equations in abstract spaces, Pergamon Press (1980).
[5] V. LAKSHMIKANTHAM, Comparison results for reaction-diffusion equations

in Banach space, Lecture notes of talks delivered at the conference on
« A survey of theoretical and numerical trends in nonlinear analysis »
at Bari, Italy.

[6] V. LAKSHMIKANTHAM - A. R. MITCHELL - R. W. MITCHELL, On the exist-
ence of solutions of differential equations of retarded type in a Banach
space, Annals Polonic Mathematics, 35 (1978), pp. 253-260.

[7] V. LAKSHMIKANTHAM - A. R. MITCHELL - R. W. MITCHELL, Maximal
and minimal solutions and comparison results for differential equations in
abstract cones, Annals Polonic Mathematics, 38 (1977), pp. 317-324.

[8] V. LAKSHMIKANTHAM - V. LEELA - V. MOURO, Existence and uniqueness
of solutions of delay differential equations on a closed subset of a Banach
space, Nonlinear Analysis, Vol. 2, No. 3, 311-327.

[9] S. LEELA - V. MOURO, Existence of solutions in a closed set for delay
differential equations in Banach spaces, Nonlinear Analysis, Vol. 2 (1978),
pp. 47-85.

[10] R. H. MARTIN, Non linear operators and differential equations in a Banach
space, John Wiley and Sons, New York (1976).

[11] V. LAKSHMIKANTHAM - S. LEELA, Differential and integral inequalities,
Vol. I and II, Academic Press (1968).

Manoscritto pervenuto in redazione il 13 novembre 1979.


