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The Law of Exponential Decay for Expanding Mappings.

A. LASOTA (*) - JAMES A. YORKE (**)

Introduction.

The law of exponential decay has a long history. From its very
beginning it was related with the theory of probability [1]. It was

recently discovered that the phenomenon of the exponential decay
may also be observed in deterministic dynamical systems working
without any random perturbations. In the simplest case such a sys-
tem may be described by a transformation T : A -~ .~ where A is a
subset of a measure space (X, Suppose that our system « usually »
works on A which simply means that the measure of the set I(A )EA
(or better, A",T-l(A)) is small. Then, of course, «on the average »
starting with x E A we must wait a long time (large n) to observe
Tn(X) 0 A. Now we may ask what is the probability of that event,
in other words, what is the distribution of the random variable of

ejection times,

This distribution can be found when a distribution of the initial points
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is given. We shall show, however, for any smooth initial distribu-
tion that if is small (goes to zero), then the distribu-
tion of ~ is always nearly exponential. The class of transformations T
for which we shall prove this theorem is restricted to so-called ex-

panding mappings [2-5] and related examples but the results of Bowen-
Ruelle [6, 7] and Franco-Sanchez [8] indicate that the same should
be true for a fairly broad class of dynamical systems.

By proving the law of exponential decay for deterministic systems
it is possible to explain many interesting phenomena. To demonstrate
the potential scope of the problem, we shall mention one physical
and one biological esample, both of which appear to satisfy the ex-
potential decay law. These examples do not however satisfy our
conditions on derivatives so their final resolution is indeterminate.
The well known system of Lorenz equations [9] depends upon a para-
meter R having the role of a Rayleigh number. For small values
of R the system has a stable attracting equilibrium but for .R suf-
ficiently large admits chaotic trajectories. The transition value be-
tween chaotic and stable regions is R, - 24.06 (see [10-12]). For values
of .R slightly below Ri the trajectories can appear chaotic for a while
but then are seen to change behavior suddenly; they then damp down
to one of the fixed points. The length of the time interval in which
the trajectory is chaotic depends upon the initial conditions. When
sufficiently many initial conditions are chosen, we can find the cor-
responding distribution of the lifetimes of chaos. Except for the part
of the distribution corresponding to very short life times, it is always
exponential. See [12], Figure 3.1.

Our second example is a highly idealized discrete model of blood
cell renewal given by

in which un denotes the total mass of certain blood cells on day n
and 8 is the coefficient of destruction [13]. In health 0 is small (less
than 0.1 ) ; in disease it is large. The severe disease (0 around 0.8) is

characterized by chaotic behavior of trajectories. For 0 » ()1 ~ 0.869
the system dies (trajectories go quickly to zero) but for values 0

slightly greater than 61 y the trajectories are chaotic for a while and
then suddenly go to zero. Once more it can be found by numerical
computation that the distribution of life times of chaos is exponential.
This fact has an important consequence from the therapeutic point
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of view. It shows that even if the blood renewal system may be
considered as deterministic, in some fatal diseases the life time of a
patient is a random value. The patient appears moderately well for
some time with cell count low because of rapid destruction. Cell

production is high but oscillates irregularly. Then for no special rea-
son, blood production suddenly fails and the patient dies. This sce-

nerio may be of heuristic value in interpreting many medical crises.
The paper is divided into six parts. First we formulate our theo-

rem in a special case for expanding mappings on the unit interval.
This allows us to explain the main idea without going into technical
details. In the next section we formulate assumptions concerning
families of expanding mappings acting on an open subset ~. c Rd.

Sections 4-6 are devoted to the proof. Specifically in Section 4 we
recall some results from [4] concerning conditionally invariant meas-
ures. In Section 5 using a generalization of the Dini Theorem we
prove uniform convergence of the sequence of iterates of the Fro-

benius-Perron operator and, finally, in Section 6 we complete the proof.
This paper was conceived during a visit of the authors to the

Physiology Department, McGill University.

1. Law of exponential decay for R6nyi transformations.

A mapping T of the closed interval [0, 1] into itself will be called a
R6nyi trans f ormation, if there exists a partition 0 = ao  ...  a1J == 1

of the unit interval such that for each integer i (i = 1, ... , ~ ) the
restriction T i of T to the open interval can be extended

as a C2 function to the closed interval [ai-l, ai] and

A function f : [0, 1] --~ I~ (reals) will be called a smooth density if it

is Lipschitzean and satisfies

where m denotes the Lebesgue measure on [o,1].
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THEOREM 1. Let T : [0, 1] - [0, 1] be a Rényi transformation and
let 8 = 0. Let ( 1 + E) T and

Then there exists a constant a &#x3E; 0 such that for each smooth density f
the cumulative distribution

satisfies

This theorem is a consequence of a more general result which
will be stated in Section 3. It is worthwhile to notice that the state-
ment of Theorem 1 is quite elementary and does not require any no-
tions of ergodic theory such as invariant measure, exactness and so
on. The proof is, however, far from simple and is based on some
delicate properties of (conditionally) invariant measures.

REMARK 1. Certain piecewise monotonic transformations with

&#x3E; 1 were studied by A. Rényi [14]. He proved these maps have
an absolutely continuous invariant measure and it is unique. More

general results in this area are given in [15-19].

AN UNSOLVED PROBLEM. Let Te== (1 + 8)4x(1- x) and define $s
and I’E as in Theorem 1. We conjecture that

for some constant 0’ &#x3E; 0.

2. Expanding mappings in JS~.

In what follows we shall consider mappings from an open set
A c .~d into Rd. We shall assume that
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where A i are disjoint open connected sets. Each A i is assumed to
be « arc-wise bounded» which means that there is a number ði such
that any two points in Ai can be joined by a polygonal arc of length
at most 3,.

We say a matrix .lVl is ,1 expanding if 1M-II  ~,-1 where IMI ==
Ixl = 1 ~ and 1.1 I stands for the norm in Rd. A mapping

-¿. Rà will be called expanding if it is twice continuously dif-

ferentiable on A, there is a uniform bound (say fl) on all first and
second derivatives, and if the following conditions are satisfied

.E’1: A c I(A).

.L2 : If Xi -¿. Xo E aA (where aA denotes the boundary of A) and
if Y(xi) - y for some y, then 

.E3: There 1 such that for x E A the Jacobian matrix

DT(x) is @ expanding.

We say that an expanding mapping T : is exact if there
exists an integer N such that for all i.

A simple example of an expanding mapping is Te == (1 -~-- 8) T
where T is a Rényi transformation and E &#x3E; 0. We need only to re-
place [0, 1] by the union of open intervals (ai-1, ai) in which ~’ is
differentiable. The mappings Te are also exact with N = 1.

REMARK 2. The expanding mappings described here were studied
in [4] with a weaker assumption that T is twice differentiable only on
the set A r1 P-l(A). Since we shall consider families of transforma-
tions this assumption is somewhat inconvenient.

REMARK 3. The term « exact» was used by Rochlin [20] to de-
scribe an important and deep property of some measure preserving
transformations (exact endomorphisms). Our definition is much sim-
pler and from the formal point of view is more related to topology
than to measure. These notions are, however, strongly related. For

example a R6nyi transformation becomes an exact endomorphism in
the sense of Rochlin when an invariant measure is properly chosen
(e.g. when absolutely continuous). The same is true for expanding
mappings on manifolds [3].
A family of mapping (8 E [0,,e,]) will be called uni-

f ormty expanding if the following conditions are satisfied.

F-1: For each 8 E [0, ,0] the mapping Te is expanding and the
constant @ in assumption E3 does not depend upon 8.
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~’2 : The functions as well as the first derivatives with respect
to x depend continuously upon x. More precisely we assume that the
functions x) -~ Te(x) and (e, x) -~ DT,(x) are uniformly continuous
(and consequently uniformly bounded) and (8, x) --~ D2Te(x) is uni-

formly bounded. Again we shall denote the upper bound of all first
and second derivatives by ~.

It is in fact easily shown that exactness for just one 8 in [0, so]
implies we must have exactness for all E with the same N because
of property .E2.

3. Law of exponential decay for expanding mappings.

As in Section 1, a function f : A -~ I~ will be called a smooth density
if it is Lipschitzean (and so SUPA f  oo) and

If f is a smooth density then the measure a defined by = f dm
(m = Lebesgue measure) will be called a smooth meacsure. (The restric-
tion « infA f &#x3E; 0 » is necessary to get uniqueness.)

It was proved in [4] that for each expanding exact map 
there exists unique smooth density f such that = f dm is « con-

ditionally invariant ». This means that there is a constant a such that

for all Borel sets E. Notice a is the constant 1l¡(T-l(.A)) c1. A con-
ditionally invariant measure is invariant when oc = 1.

Now we are in a position to state our main result.

THEOREM 2. Let (8 E [0, 80]) be a family of uniformly
expanding, exact mappings and let

Assume, moreover, that there exists a limit
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where BE = and f o dm is the unique smooth measure, (con-
ditionally) invariant with respect to To . Then for each smooth den-

sity f the cumulative distribution

(for ~&#x3E;0) satisfies

The proof of Theorem 2 will be given in Section 6. Sections 4

and 5 are devoted to some auxiliary results. Now we shall make only
two simple remarks. First observe that (3.4) implies

and, consequently, y since DT,(x) is uniformly continuous function of 8,

From this it follows = /lfo(A) which means that 
= fodm is actually invariant.

Comparing the statements of Theorems 1 and 2 we may notice
that in the first case there is no assumption which is analogous to
(3.4). This is simply because in the case of Theorem 1 (3.4) is auto-

matically satisfied. In fact, the set B, = [Oy l]BTj~([0~ 1]) consists of
a finite number of intervals of the form

where cp2E is the inverse function to Is restricted to ai]. Each
of these intervals has the length
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where c, and

Therefore

Thus (3.4) is satisfied with

4. Invariant measures for expanding mappings.

In the proof of Theorem 2 we shall use some results from [4] con-
cerning expanding maps in .Rd. To make our proof readable we shall
not «adapt )&#x3E; those results to our case but we shall recall them in
the original version.

Let T : A - Rd be an expanding mapping. We shall denote by P
the conditional Frobenius-Perron operator corresponding to T. It

will be defined in two steps. First for each integrable f : A. --~ 1~ we set

Now denote by If the norm in the space Ll(A) of integrable func-
tions. If 0, we may pass to the second step setting

Notice From these definitions follows immediately the
A

most important property of Frobenius-Perron operator P, namely

.FJP1: P f = f if and only if f dm is a conditionally invariant
measure.
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Since DT is nonsingular, for each point x E A there is a neigh-
borhoof ZJ of x such that T admits a finite number of local inverse
functions and U cpi( Z7) = T-1( ZT) where CPi(U) and 

’L

are disjoint for i ~ j. Thus on U the operator P has an explicit formula

From this and condition .E2 it follows that P f is continuous if f is
continuous. For each f &#x3E; 0, we have also Pf &#x3E; 0 (as well as Pf &#x3E; 0),
because det Dggi = (det 0. When f is a smooth density much
more can be shown. Define the «regularity of f » to be

Using (4.3) it can be shown (see [4]) that

where J~ = det From the implicit function theorem it follows

So is uniformly bounded by a constant which depends
only upon A and the upper bound f3 of the first and second derivatives
of T. We may rewrite ineq. (4.4) in the form

Iteration of this inequality yields

Thus the regularity of Pn f may be bounded by a constant which
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depends only upon Å, fJ and regularity of f but is independent of n
and the particular choice of the function T. We shall rewrite this
as the second important property of the Frobenius-Perron operator

The convenience in the use of regularity lies in the fact that it
gives an immediate estimate for f and its first derivatives, y namely
if then

and consequently, since f f dm = 1
A

where y = max 6 i and a = max In particular from FP2
it follows that the sequence Pn f is uniformly bounded with the first
derivatives bounded by a constant which depends and

Reg f only.
Denote by (C(A), If .11) the space of bounded continuous functions

f : A - .R with the supremum norm. Using (4.2) it can be easily shown
(see the proof of Prop. 1 in [4]) that for any two smooth densities h
and g

Now using FP2 on Pn 1 and the obvious inequalities

we obtain the third important property of P, namely

where the constant depends only upon £, @, iiafa h and SUPA 9-
We shall close this section recalling the main result from [4] which

will be stated here as the following property.
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If T : A - is expanding and exact, then for any smooth
density f the sequence Pn f converges uniformly to the unique (in the
set of smooth densities) fixed point f * of the operator P. Moreover

5. Generalized Dini theorem and its applications.

Let (8 E [0, 80]) be a family of exact and uniformly
expanding mappings depending continuously on 8. Let Pe 
be the conditional Frobenius-Perron operator for Te. Since the val-

ues A and B are the same for the whole family we may immediately
apply properties and FP4.

Given a smooth density f consider the sequence pn f . Accord-

ing to FP2 we have and consequently by (4.7)

Moreover, according to FP4

(ii) For each s E [0, 8,] there exists lim f, (the unique smooth
n-oo

density, fixed point of for fixed 8 the convergence -~ f (x)
is uniform in x.

From FP4 and (4.7) it follows also

Now we shall show that

(iv) For each fixed n the mapping 8 C(A) is continuous.

In fact according to the definition of fne we have

For the operator P we have the explicit formula
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where cp2E are locally inverse functions to Tt. The mappings (s, x) -~ T,(x)
and are uniformly continuous and det ~ ~, ;
thus from the implicit function theorem it follows that for each x E A

the functions (s, x) -~ and (s, x) - are

defined and continuous in a sufficiently small neighborhood of (g, x).
Since the denominators in (5.1) are always positive, this implies that
for each fixed x and n the mapping s -~ 1~ is continuous. By (i)
all the function x 2013~ are bounded with the first derivatives and
form a precompact set in C(A). Thus the mapping 8 C(A ) is
also continuous. D

Our next step is to show that

(v) The mapping 8 C(A) is continuous.

Suppose not. From (iii) it follows that f E are equibounded and
equicontinuous. Thus there exists a value E and a sequence 
such that the corresponding sequence fen converges uniformly to a
function Since we have g &#x3E; d and since are

e,x

uniformly Lipschitzean, g is also Lipschitzean. Thus g is a smooth
density. Now, according to the definition of fs we have

The operators PE are contractive in L1, therefore

Since converges uniformly to g the first term on the right hand
side of (5.4) converges to zero. To evaluate the second term observe
that, according to formula (5.2) P,.g(x) converges, at least pointwise,
to PEg(x). Moreover, according to (i)

Thus by Lebesgue dominated convergence, Peng converges to Peg in
Ll. Finally, by (5.4) Penfen converges to P-,.f in Ll. Passing to the
limit in (5.3) we obtain
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(The denominator is positive, since &#x3E; 0.) Thus g is a smooth
fixed point of different from f E which contradicts FP4. o

Out next step is to prove that the convergence in (ii) is uniform
with respect to 8. We start with a lemma which is a simple modifica-
tion of the Dini theorem.

LEMMA 1. Let G and Gn (n = 1, 2, ...) be continuous functions
defined in a compact interval S with the range in a Banach space
(B, jj’jj). Assume that

p ointwis e f or t E J

and that for each t E J

where X is a constant independent of n and t. Then

and consequently the functions Gn(t) and G(t) are equicontinuous.

PROOF. Let E &#x3E; 0. Choose 6 and write

The sets K are compact and (n = 1, 2, ...). If for some n
the set ~~ is empty, then for each t E J

and consequently by (5.6)
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which finishes the proof. If all Kn are nonempty, y then also

is a nonempty set. We have

for all n and This contradicts (5.5). 0

REMARK 4. Lemma 1 reduces to the classical Dini Theorem for
lVl = 1.

Now we are in a position to prove that

We know that the mappings e C(A) and E C(A) are
continuous (properties (iv) and (v)) and that for each s E [0, so] the
sequence converges in C(A) to f E (property (ii)). Setting B = C(A),
Gn(e) = fne, G(e) == fe and S = [0, we may apply Lemma 1. It is

necessary only to verify inequality (5.6). Since ~e is a fixed point
of Pe, we have

setting g = Ptf, h = and using FP3 we obtain

or

which is equivalent to (5.6). Observe that in this case ~4 depends
only upon 2, fl, and sup oo but not upon n and s.

’4’8

We may summarize our results in the following.

PROPOSITION 1. If the family TE : A -+ Rd (s E [0, se]) is uniformly
expanding and exact, then for each smooth density f and each s E
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E [0, 80] the sequence is convergent to the unique
(smooth density) fixed point /e of the Frobenius-Perron operator PE
(corresponding to T,). This convergence is uniform in 8, that is

(vi) holds and the function 8 C(A) is continuous.

6. Proof of the Theorem 2.

From the definition of (see (3.3), (3.5)) it follows immediately
that

where n, is the smallest integer &#x3E;z/E. According to the definition
of PE and we have (writing lke for 

and consequently

where =: P’f. We obtain finally

where B~ = ABT~ 1 (A ) . Since f o ~ d, from (3.4) it follows

Now defining
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According to the definition of lim (z - ene) = 0.
s-o

From (6.2) and Proposition 1 it follows that

Thus all the terms on the right hand side of (6.3) converge to zero
except crz, and consequently

From this and (6.1) (taking in account that nE - oo as 8 - 0) we have
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