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Notes on the Topologies
and Uniformities of Hyperspaces.

GIULIANO ARTICO - ROBERTO MORESCO (*)

0. - Introduction.

Throughout the present paper X will denote a completely regular
Hausdorff space, which we shall call simply « space »; pX will denote
a uniform space and p its uniformity: in the latter case X will indicate
the (completely regular Hausdorff) space equipped with the topology
induced by p.

For axioms, terminology and notations about uniform spaces we
refer to [I]. Furthermore we shall indicate with the uniform

space whose points are the closed sets of X and whose entourages
are the sets of the type ’1t = f(A, B) : St(A, B, St(B, A}
where 91 is a uniform covering belonging to fl: if (A, B) we say
that A and B are near of order ’11; dealing with topological properties
we shall go on writing simply meaning the induced topology,
which we shall call T,. Finally denotes the subspace of 
whose points are the compact sets of X.

It is well known that if p and v are admissible uniformities on X,
Tp, and zy may differ, while their restrictions to K(pX) are identical.
For this reason we shall denote by K(X) the topological space asso-
ciated to In this connection we may remark that K and H

have functorial properties: given a function f : X - Y and a closed
subset A of X, define f#(A) = if f is a continuous map,

f ~ : K(X) -+K(Y) turns out to be a continuous map; if f : IzX -vY
is uniformly continuous, f # : H(v Y) is uniformly continu-

ous, too.

(*) Indirizzo degli AA.: Istituto di Matematica Applicata, via Belzoni, 7 -
35100 Padova.
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We devote the first section of this work to the stud y of complete-
ness of hyperspaces and related questions. In the second one we deal
with some topological properties: after observing that countably
compactness is not preserved by K we give in theorem 2.1 a necessary
and sufficient condition in order that is countably compact;
moreover a proposition of E. Michael [Mi] on local compactness of

is reviewed and some remarks on discrete uniformity and to-
pology are made. In the third section we provide two counterexamples
of an assertion formulated by J. R. Isbell in [I] and prove the related
question in a particular case.

We wish to thank A. Le Donne and U. Marconi for discussing with
us some problems connected with the matter of this paper.

1. - Following [I], we remind that a filter Y in the space X is said
to be semi-Cauchy if for every ‘lb belonging to p there exists a finite

n

number of elements of 91, 7 say Ui, I U2 , ... , such that U Ui 
i= 1

In [I] 11.49 it is shown that if a semi-Cauchy filter is hyperconvergent
(i.e. the closed sets of the filter form a convergent net in then
it is hyperconvergent to a precompact set.

If ~ is a net in H(pX) we put ,~ _ C: X: F :2 U .Fa for a residual’ 
"cA

set of indexes Al and we say that Y is the filter associated to the net 
1.1 LEMMA. If .F’a is a Cauchy net in the associated filter

is semi-Cauchy.

PROOF. For every 91 e p let ’tj be a star-refinement of the cover-

ing ’B1; there exists an index a such that for every a Fa and F,
are near of order Cl) and then we have:

where VI, ... , Yn are elements of 4Y which cover the compact Fa and
contains i hence 

~3&#x3E;~

This lemma easily provides a result due to K. Morita [Mo] which
we have obtained in an indipendent way:

1.2 THEOREM. ¡.tX is complete if and only if is complete.
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PROOF. The sufficiency is trivial since pX is a closed subspace of
The necessity is a consequence of lemma 1.1 and [I] 11.49:

in fact if we have a Cauchy net .~’a in K(pX), its associated filter ’is
semi-Cauchy and, since pX is complete, the filter is hyperconvergent
to a compact set A. It is easy to verify that A is limit of the net F,,. o

As a corollary one can easily show that the functor K commutes
with completion, since K preserves (uniform) subspaces and density.
It is known that this fact cannot be extended to the functor H,
since H does preserve uniform subspaces and density but it does not
preserve completion. In any case, if we indicate by the com-

pletion of the uniform space pX, we can state the following propo-
sition, whose proof is omitted:

1.3 PROPOSITION. H( (~CX )~ ) = (H(~u.X ) )~ if and only if 
is complete. Hence the equality holds for metric and precompact
uniform spaces. 0

REMARK. If .X is a non compact space and T a compactification
of .X, then ~K(T) is a compactification of X(.X) and the power of

is infinite : this enables us to say that K(.X) always admits
more than one precompact uniformity.

We collect now some observations about the subspace of 
made of the precompact closed subsets of X : we denote it by P(pX);
F(X) will indicate the subspace of finite subsets of X.

1.4 PROPOSITION.

ii) is dense in P(pX);

iii) is dense in H(pX) if and only if p is precompact.

PROOF. i): by lemma 1.1 and the considerations before it, every
cluster point belongs to P(pX); on the other hand every precompact
is limit of a net of finite subsets: let .A be precompact; for every cover-
ing 91 belonging to p, we can take a finite subset A, of A such that

’l1):¿ A. Clearly the net converges to A.

ii) and iii) are proved by the argument above.

We remark that if is not a precompact space, then any pre-
ccmpact unifoimity which induces the topology t03BC on H(pX) cannot
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be of the form H(vX) for any v: in fact v needs to be precompact,
but in this case would be dense in H(vX).

1.5 PROPOSITION. Let f-tX be a metric space. The following are
equivalent:

i) is complete;

ii) K(X) is closed in 

PROOF. i) =&#x3E; ii): by theorem 1.2 is complete, hence closed.
ii) =&#x3E; i): every Cauchy sequence (xn)neN is precompact: then it is

compact and convergent.

Clearly the proposition holds for any space ¡.tX in which every
Cauchy net is precompact, and examples in which K(pX) is closed
in and not complete can be given.

EXAMPLE. Let X be a totally ordered set whose power is uncoun-
table. We equip X with the uniformity It given as follows: for any
x E X, put U., = {{y}, {z: z&#x3E; x}; y c ~~ : the coverings %x form a basis
for a uniformity We have = K(X) = F(X) and clearly the
space is not complete.

2. - In this section we are going to deal with some topological
properties of hyperspaces.

It is known that the functor .K preserves several properties of the
space X such as metrizability, connectedness, y zero-dimensionality,
first and second countability. Our purpose is to investigate if K pre-
serves countably compactness or pseudocompactness: both questions
have negative answers but we have the following result:

2.1 THEOREM. The following are equivalent:

i) is countably compact;

ii) .K(X) is strongly countably compact (i.e. the closure of
’ 

every countable set is compact; see [K2]) ;
iii) in K(X) every countable union of compact subspaces is

contained in a compact;

iv) in X every countable union of compact subspaces is con-

tained in a compact.
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PROOF. iii) =&#x3E; ii) =&#x3E; i): trivial.

i) ~ iv): let be a sequence of compact subspaces of X

which we can suppose to be increasing, and take A = U Kn . By
nEN

the assumption there exists B E K(X) which is an accumulation point
for n hence given ’11 Eft there is no such that for any

we have: St(Kn, ’11) ~ B, St(B, Kn and so St(B, 
A, B, that is to say Clx A and B are near of

order 4l for every ’11, therefore Clx A is B.

iv) ~ iii) : let (en)neN be a sequence of compact subspaces of K(X)
Cn -. A routine argument (see [Mi]) shows that Cn = U A is

yb EN 

a compact subspace of X and by the hypothesis U Cn is contained
in a compact C; 

It has been proved now that if X is countably compact, K(X)
needs not to be countably compact; moreover, following the example
given in [Kl] p. 765, one can exhibit an example of a countable com-
pact space X such that K(X) is not even pseudocompact. This fact
has an interesting consequence for fine uniform spaces: if a denotes
the fine uniformity and X the above space, since

is precompact and K(X) has a continuous unbounded real-
valued function.

We go on with the following lemma whose (routine) proof we omit:

2.2 LEMMA. Let K be a compact of the space X. If U is a neigh-
bourhood of K, the covering ~ U, XB .K~ is uniform for every admis-
sible uniformity. 8

2.3 THEOREM. For a space X the following are equivalent:

i) .X is locally compact;

ii) .K(X) is open in for every admissible uniformity p.

PROOF. i) =&#x3E; ii): let K belong to K(X); since X is locally compact,
there is a compact neighbourhood U of K in X. In view of Lemma 2.2
~ U, and .K’ is near of order ’11 to K if and only if
K’C U hence K(U) is a (compact) neighbourhood of .g in 
which is contained in K(X).
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ii) ~ i): suppose X not locally compact: then there exists x E X
such that no neighbourhood of x is compact. Given flL take V
such that  ’l1: then x E Cl, C flL) and so the neigh-
bourhood of fx} made of the closed sets that are near of order flL
to IX} contains which is not compact.

REMARK. In Proposition 4.4.2 [Mi] E. Michael shows that if X
is locally compact, themK(X) is open in the space of closed sets

equipped with the finite topology: since this last condition is equi-
valent to ii) of the previous theorem, then Proposition 4.4.2 can
be reversed.

Lemma 2.2 and an easy argument are used to prove:

2.4 PROPOSITION. The following are equivalent for the space X:

i) X is discrete;

ii) E X~ is clopen in 
iii) is clopen in for every admissible uni-

formity 03BC of X.

PROOF. i) =&#x3E; iii): by Lemma 2.2 Ux = is uniform for

every admissible ,u, hence the singleton ~x~ is an isolated point in
and ~~x~ : is clopen.

iii) =&#x3E; ii): trivial.

ii) =&#x3E; i): if x were not an isolated point, then for every uniform
covering U belonging to an admissible uniformity of X, there would
be an element UE’lL such that U~ ~x~ ~ ~; let y belong to
UE (z) : the set is near of order %L to ~x~.

To conclude this section, we give the following proposition which
characterizes the isolated points of 

2.5 PROPOSITION..A. E is an isolated point if and only if
the covering ~a~ : belongs to ~u.

PROOF. If A is an isolated point there exists an open covering
’l1 e p such that if B is near of order U to A then B is equal to A.
First St(A, = A; furthermore if A, U E ‘l~ and U is not a
singleton, y for x E U we have that AB U u (s) is a closed set near of
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order ’l1 to A ; then cu, is a refinement of the covering described in the
statement. The converse is trivial.

2.6 COROLLARY. has isolated points if and only if X has
isolated points. 0

2.7 COROLLARY. If X is discrete and p is precompact, y then the
set of isolated points of coincides with the subspace of finite
subsets of .X. t

2.8 COROLLARY. The following are equivalent:

i) T /.l is discrete;

ii) X is an isolated point of H(p,X);

iii) p is the discrete uniformity.

3. The last corollary of the previous section points out that the
discrete topology on the space of closed subsets arises only from a
single uniformity (the discrete one). This question can be generalized:
do different uniformities generate different topologies: In [I] p. 35,
Exercise 17 there is a positive answer to this problem and a hint for
its solution which seems to be not correct; namely the family of the
« arbitrarily large sets » does not seem to determine the uniformity, y
against the assertion at the foot of the same page.

3.1 EXAMPLES.

c~) Let X = (si : an infinite discrete space. Let ,u be the
coarsest precompact (admissible) uniformity: a basis of ,u is given by
the partitions of the form ’l1p = ... , X~.F~ where F =
= 

... , denotes any finite subset of X . Let v be the finest

precompact uniformity: a basis of v consists of all the finite partitions
of X. Plainly z, is finer than furthermore given a partition

... , VJ E v call F a finite subset of X such that F r1 
for every i = 1, ... , n : if a closed is near of order to X, then it
is near of order qY to X, too. This implies that i, and iy coincide at X.

b) (A. Le Donne) Let equipped with the discrete
topology. Denote by flLn the partition whose elements are the single-
tons y)l if x c n or y  n, otherwise the horizontal lines U£ =
= ~(x, y) : x &#x3E; n~. flJn is obtained changing the horizontal lines TIn
with the vertical ones Yri = {(x, y) : y &#x3E; n} n. Since flLn * 91m
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if n &#x3E; M7 the family of the coverings flLn forms a basis for a metric
uniformity which we call /~; similarly the coverings form a basis
for a metric uniformity v. Both a and v are compatible with the di-
screte topology on X and they are not comparable with each other.
However the filters of neighbourhoods of the closed X in tll and zy
coincide since if a closed A is near of order ’11n to X, then it is near
of order Vm to X for m  n.

We point out that the spaces above provide two conuterexamples
of the hint and comment of the cited exercise, but not of its statement.
In fact if in 3.1 a) one takes a subset .A of X such that A and XBA
are both infinite and in 3.1 b) A = ~(2n, 2n) : one can easily
show that and 7:" differ at A. In the solution of the problem the
trouble is that the closed at which the topologies are different has to
be choosen looking at the structure of the uniformities. The next
theorem partially solves this question. Following [I] we denote by Pit
the precompact reflection of the uniformity ,u.

3.2 THEOREM. Let X be a space, p, v two admissible uniformities.

Suppose that one of the following cases occurs:

i) /-l is not finer than pv;
ii) ,u is not finer than v has a linearly ordered basis.

Then 7: J.t is not finer than 7:,,:

PROOF. Case i): since pu has a sub-basis of two-element uniform
open coverings (see [I] Lemma 36, p. 25) there exists such a covering

U2~ belonging to pv and not to Iz. For every uniform cover-
ing ’lJ E /-l there is V c- V such that V is contained neither in U1 nor
in U2 : then take VB U2 , y yqy e VB Ul .

Let A = Clx V E #}, Bw = A V for W e p.
An easy argument shows that and .A are near of order ‘1,U and

are not near of order U, that is the neighbourhood of A made of the
closed near of order ‘l~ does not contain any neighbourhood of A in 

Case ii): The uniformity 03BC has a well ordered basis (Va)aE in-
dexed in a regular cardinal ~ a implies finer than Take
an open covering CU, belonging to v and not to p. For every a  ~
there exist which are near of order ’lJa and are not near
of order 9t. Take flL’ a star-refinement of 9.L; for every put
Qg = {0153: x« E U}, (a : y« E U}. Two cases may present:
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a) there exists U E 9.1’ such that Wu or Tu is cofinal in ~, say Wu ;
put A = Clg a E = A U and argue as in i) replacing ‘l~
with 9.1’.

b) let flL" be a star-refinement of ’l1’. Define: Xl = Xl’ 9 91 = Yi
then by transfinite induction, y for any 2  $: where

where

The regularity of the cardinal $ ensures the existence of just
defined: it is enough to observe that, since 8t(z, U for some
U E ’LL7 the power of the set ~a: z« E St(z, ~")~ is strictly less than $
for any z E X. Put A = Clx ~x~, : ~,  $1, Bi - A U and argue as

before replacing ’l1 with to conclude that r, is not finer than ~v
at the point A.

Looking at the uniformities which verify the assert of Theorem 3.2,
T is a lattice-homomorphism on its image, in the following sense:
T, A I = where the infimum in the second member is taken among
the topologies of the hyperspace originated by a uniformity of X:
if the infimum is taken in the lattice of the topologies of the hyper-
space, clearly the assertion is true no longer: in example 3.1 b) 
is the discrete uniformity on X, hence the closed X is isolated in 
while we have proved that the filters of neighbourhoods of X in Ty
and T, are the same non trivial filter.

We conclude with some open questions.
It is easy to show that the precompact reflection p does not com-

mute with the functor K: take a uniformly discrete space IzX and ob-
serve that the covering flL = ~ Ul, U2~ where Ul is the subset of sin-
gletons and U2 = is a covering of pK(pX) and not of

this implies that K does not commute with the Stone-Cech
compact reflection f3 too. Putting ~A E F(X): A has at most n
elements}, it is known (see [K2] ) that = if and only
if X~ is pseudocompact, so one may ask: is there any hypothesis which
ensures that = 

It would be of certain interest to know whether the following prop-
erties are preserved by K: Lindel6f property; paracompactness; nor-
mality.
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