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On Pocket and Empirical Temperatures.
An Alternative Choice for the Heat Flux Vector

in Eckart’s Relativistic Thermodynamics.

FRANCO CARDIN (*)

SUMMARY - Some results related with pocket temperature are presented within
a certain general version bE of Eckart’s relativistic thermodynamics.
They allow us to propose an (equally acceptable) alternative choice for
the heat flux vector q" that, unlike Eckart’s q", does not involve intrinsic
acceleration. It is shown that [1 + for non-viscous fluids.

By the above results in bE’ the general solution of a fundamental diffe-
rential relation, stated within Alts and Mfller’s theory ’6,,, among
empirical temperature 1), absolute temperature T, and mass density is
found. An- agreement between bAM and the Chernikov’s kinetic rela-
tivistic theory be is shown to hold up to O(c-4). It is shown that bE
and i3,i are supported by be equally well.

1. Introduction.

In [1] Alts and Muller consider a relativistic theory of thermo-
dynamics, say 73Am, in which the usual absolute temperature T is

replaced by the empirical temperature 0; this temperature is given

(*) Indirizzo dell’A. : Seminario Matematico, Università - Via Belzoni 7 -
35100 Padova.

This paper has worked out within the sphere of activity of the research
group N3 (for Mathematical Physics) of C.N.R. (Consiglio Nazionale delle
Ricerche) in the academic year 1978/79.
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an operational meaning only in certain equilibrium processes called
E-equilibria. In these processes d# is shown in b AM to equal a certain
differential form a dT where k is the conventional mass den-

sity2013cf. [3], § 21; and by a natural physical assumption this rela-
tion, dO = a dT dk, can be regarded as a completely determined
differential link among T, and k.

Within the general version 73E of Eckart’s thermodynamics, that
is presented in [3], I define e-equilibrium (N. 3)-a notion stronger
then the analogue of E-equilibrium (used in by requiring
the absence of heat flux 0) and Born rigidity (~c~a~~~ = 0) ; fur-

thermore I show that for a viscous fluid T that is capable of heat
conduction and satisfies the 2nd principle-cf. (2.10)-the scalar field
O = T(1 + C-2Ø)-I, where 0 is (Gibbs’s) free enthalpy, y is constant

on regions of e-equilibrium (0/~=0). Hence Q appears as a gener-
alization of the pocket temperature = T’ vi goo studied by Tolman
and Ehrenfest-cf. [3], § 45. This first results presented in this paper
belongs to 73E and are in a tight agreement with some results obtained
in [8] within a theory of relativistic thermostatics based on a varia-
tional version of the second principle (i).

The relation between the metric tensor (precisely goo) and
or the Newtonian potential U in the case of weak gravitation, is

briefly shown in N. 4.
In N. 5 an alternative to Eckart’s choice q,, + TA~)

for the heat flux vector qa is presented: a vector which I

call pocket flux. It leads to a non equivalent but equally acceptable
relativistic thermodynamics for heat conducting fluids. Indeed it can

be shown (N. 5) that (i) qa = [1 + qa with r = 2 [r = 4] for
viscous [non-viscous] fluids, where c is the speed of light in vacuum
and « o(c-r) » means terms of the order of c-r, and ( ii ) iao la = 0
in e-equilibria. By (i) the alternative l3p to obtained from by
substituting qa for qa is in agreement with experiments and also

complies with the theorical considerations made to support Eckart’s

choice qa for qa, which just required (ii) to hold-cf. [3], § 45.

(1) The above result of mine in bE concerning O and is taken from

my thesis for the degree in physics in July 1978, which thesis was presented
at the national competition for a Grant of the C.N.R. Bando no. 201.1.89
(term: 22th July 1978). After [8] appeared in 1979 the deduction of the

aforementioned result in GE is still interesting because of the difference between
bE and the thermostatic theory used in [8].
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In N. 6 and l3Jg are compared in connection with the fluids
dealt within the non-viscous ones. First this is done in the case
of E-equilibrium; and then in connection with processes near those
equilibrium processes. More in detail, for the above equilibrium dif-
ferential relation d# = a dT obtained in [1] integra-
bility conditions are written. Here (N. 6) the general solution of this
relation is shown to = /(0)y where f is any mapping of R in R
of class 

Lastly in [1], N. 5, the authors assume (in bAY) that along pro-
cesses near E-equilibria the constitutive functions considered there
have the same form as in equilibrium processes2013i.e. do not in-

volve 01,,. This assumption is compatible with axioms up to
fnt (6) in N. 6. Under the above assumption the heat

flux qa in CAM-where non-viscous fluids are treated-is shown to

be a vector qrx parallel with the analogous heat flux qa obtained within
Chernikov’s relativistic kinetic theory be-see [5] to [7]-, and qa can
be identified with On the other hand, by (i) above, qa can be
identified with qa and Thus Alts and Miiller’s assertion on

’GA3r-see [1], N. 7-that the theories bAY and be support each
other, also holds for and in either case the agreement occurs up
to 0(c-~).

2. Some basic notions and theorems of Eckart’s relativistic thermo-

dynamics in its general version bE presented in [3].

A) Preliminaries on space-time.
The notions and notations introduced in [3] are presupposed in 

°

this paper. Let 8 be an event point of the space-time 84 of general
relativity, and let xx (a = 0, ..., 3) be its co-ordinates (2) in a given
(admissible) reference frame-cf. [3], p. 37. For the metric at 8 we
have

Assume that C is a continuous body, P* is any material point
of it, and xa = xa(s) describes the world line ’illp* of P*. Then for

(2) Greek [Latin] letters run from 0 [1] to 3.
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the 4-velocity u~ and intrinsic acceleration A" of P* we have

For any tensor field T:::, T:::/rx denotes its covariant derivatives
based on the metric (2.1) while _

is its material derivative (in R6mer units). Let us set

The index « of is said to be spatial if T:::rx utX = 0.

B) Einstein gravitation and conservation equations for materials capable
of heat conduction.

Let bE be C. Eckart’s theory of relativistic thermodynamics-
-cf. [9]- in the general version presented in [3], but in absence of
electromagnetic phenomena and couple stress. Assume that c is the
speed of light in vacuum, k[e] is conventional mass [gravitational
mass (in energy units)] per unit proper volume-cf. [3], p. 54-, qcx
is the (spatial) heat flux (vector), is Eckart’s thermodynamic
tensor, and is the (completely spatial) Eulerian stress tensor.
Then (3)

furthermore the continuity equation and definition of the (actual)
internal energy w per unit reference mass read-cf. [3]:

Denoting by Aaa (= Ap,) and h Levi Civitals tensor and Caven-
di8h’s constant respectively, in the framework of bE Einstein gravita-
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tion equations read

Of course the consequence (2.7)3 of (2.7)1,2, (2.5)iy and the symmetry
of constitute the relativistic version of the 2nd Cauchy equation
for non polar continuous media. The spatial and temporal part of
conservation equations-which constitute the consequence = 0

of (2.7)1 can be put into the respective forms-cf. [3], p. 62:

Assume that 8 E We , the world tube of C, and that the frame (x)
is natural and proper at 8, i.e.

hold there. Then, up to terms of order c-2, equations (2.8 ) 1,3 equal
the lst Cauchy dynamic equation for continuous media and the first
principle, written within classical physics in a Euclidean frame that
is locally freely gravitating and non-rotating with respect to Galileian
frames. Hence they constitute acceptable relativistic versions of those
laws.

C) Second principle of thermodynamics.
Let T (&#x3E; 0) be the absolute temperature of C at the typical event

point 8e We, measurable by observer locally joined to matter. The
2nd principle of thermodynamics reads in relativity theory substan-
tially in the same way as in classical physics:

For every material point P* of C there is a function q of the local
intrinsie physical state of C at P*-called the entropy function-such
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that along avery possible physical process we have-cf. [3 (25.1)]-

On the other hand, in classical physics, Clausius-Duhem inequality

constitutes a much used version of the 2nd principle. It yields

This local form is relativized into

Thus the classical divergence is relativized into a space-
time divergence (and not e.g. into in harmony with Cat-
taneo’s point of view-cf. [4]-justified by Bressan in [2] by means
of kinematic considerations.

If C is capable of only reversible processes, i.e. processe that render
(2.10) an equality in then by (2 .8 ) 4 and (2.5)i, (2.13) yields

By considerations involving pocket temperature, 0a appears to be
the relativistic analogue of the classical temperature gradient T,i
-cf. [3], §§ 25, 45. Then (2.14) is a natural relativization of the clas-
sical relation assumed to hold for general processes and
materials. Therefore is, besides (2.10), inequality (2.14) postulated (4).

(4) This formulation constitutes substantially a relativistic version of the
classical version of the 2nd principle in [13]: 0, Where Yloc =
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D) Explicit f orm o f the heat vector. On some viscous capable
o f heat conduction.

The following theorem is proved in [3], Theor. 25.1, p. 66:
Let qa be a function of the position gradient T, Tia, and Aa,

that is linear in T/-/;, and A(X. Then inequality (2.14) implies, in rela-
tivity, the version

of Fourier’s law, with xaa spatial and depending at most on at and T.
Since f or fluids Eckart proposed the special version

of the relation ( 2.15 ), this is often called the Fourier-Eckart law of
heat conduction.

A. Bressan proved cf. [3], Theor. 25.3-that = 0 iff qass com-

plies with the principle of material frame indifference-cf. [3], §§ 80-82-
or more simply iff qass is rotationally objective.

In [3] the viscous fluids are considered for which w, q, and Xexp
are functions of k, T, ua~~, and also N unspecified physical para-
meters ~, to ~p; after setting

~o that y is the free energy, the constitutive relations

are proved there with a procedure of the Coleman-Noll type. Set

As is well known by Helmoltz’s postulate and (2.18-19) the expressions
T = T(k, r~) and w = q) can be specified and the classical Gibbs’s
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relation

can be deduced.
In the sequel a (perhaps non-linearly) viscous fluid Y is considered.

Let it be described by the constitutive equations (2.16) and (2.20)
where cf. ( 2 .18 ) 4

3. Generalization of pocket temperature. Expression of this tempera-
ture in thermodynamics terms.

The conditions for classical thermodynamic equilibrium (qi - 0,
- 0 = vi) involve a rigid motion. Therefore it is natural to extend

this notion of equilibrium to general relativity by means of a defini-
tion such as the following

DEFINITION 3.1. The body C is said (in bE) to be in (or to undergo a
process of) e-equilibrium in the region A c We, i f in A we have

Remark that if (a) C has a co-moving frame (x) which is stationary
(gatP,o == 0) or in particular static (gatP,o == 0 « go,.) in 3t, and (b) no heat
conduction takes place there, then (c) e is in e-equilibrium in A.
Indeed ~c~~~ ~ _ (- 

- so that (a) yields (3.1)2. The
converse is usually false in that (c) generally fails to imply (a).

THEOREM 3.1. Let the viscous fluid Y-cf. (2.16), (2.20), and

(2.21)-be in e-equilibrium in tJt (C Then we have there

PROOF. By (2.6)1 and (3.1),, (3.2)1 holds. By (2.8)3,4,5, (2.20),
and (2.21)2, (3.1) yield (3.2)2; and (3.2)3 follows from (3.1) by (2-8),,,,
(2-19), and (2.21)2. q.e.d.
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By (3.2) and (2.20) in a region of e-equilibrium

In particular this holds for Gibbs’s function (or free enthalpy)

As is well known

Let us now consider any process P for C in bE’ for which the
(field of the) intrinsic acceleration Aa is lamellar-cf. [10], p. 824-in
the space time region L1, i.e. for some scalar field

In this case can qa be given a useful expression.

THEOREM 3.2. In the process 5’ for C let (3.6), (2.15), and the
definitions

hold. Then

The proof is obvious. Remark that O is a natural extension to
lamellar fields of Tolman and .Ehrcn f est’s pocket temperature [11],
[12]-which notion was introduced for the first time in 1930, in con-
nection with the equilibrium of a black body with respect to a static
frame:
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Indeed if the co-moving frame (for C) is stationary (or static), y

so that, for (p = In V goo we have

Therefore 19 will be called pocket temperature in the sequel.
Obviously Aa generally fails to be lamellar for a body C (in bE).

In spite of this we can prove the following

THEOREM 3.3. Let Y is a viscous fluids capable of heat conduc-
tion, defined by (2.16), (2.20), and (2.21); furthermore let T be in e-equi-
librium in ~i, (C Then, under de f inition (3.4), in A we have

PROOF. By Theor. 3.1 (3.2)3 holds; furthermore by (3.4) and (2.6),
.~ + p = k(o + T~ -~-- Hence the first of the relations

holds by (3.5)1, while (3.13)2,3 follow from (3.4) and (3.5)2: By (2.16),
0, 0 implies so that (3.13 ) yields

In addition by (3.3) « 0 in JI. Then (3.12 ) 1 holds. This is
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(3.6) for q = -In (1 + C-2 0). Hence by Theor. 3.2 we have (3.7),,
i.e. (3.12)2, and (3.8). Since x’, as well as x, is strictly positive definite,
(3.8) and (3.1 )1 yield 0 in and the above definition of q
together with (3.3) yields = 0 there. Then (3.12)3 holds. q.e.d.

4. Expression of qoo in the stationary case of e-equilibrium. Comparison
with the case of a weak (classical) gravitational field.

Let Y be in e-equilibrium in tJt (C and let any co-moving frame
of it be stationary (in Then, by (3.11), for some constant K,

The thermodynamic expression (4.1 )3 of goo holds also in a strong
gravitational field provided qa has a linear expression in T,* and A",.
Let us now show that if the gravitational field is weak (4.1 )3 becomes
the well known relation

up to an additive constant, where U is the newtonian potential of
the gravitational field. Indeed the classical equations for the thermo-
dynamic equilibrium of a viscous fluid in the above gravitational
field read i and T, i = 0. By (3.5) they yield

Since 1, (1 + c-2 ~ )-2 ~ 1- 2 c-2 ~ = 1- 2 c-2 U + const. Hence
(4.1 )3 becomes (4.2), up to the constant 

Now remark that since (4.1 )3 must be equivalent with (4.2), (4.1 )3
holds for g = 1 and the determination of 0 that fulfils condition
( 4.3 )3 with 0.
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5. An alternative to Eckart’s choice of the heat flux vector that leads

to a nonequivalent but equally acceptable relativistic thermo-

dynamics for heat conducting fluids.

I want to show that in every process for a possibly viscous fluid
(2.16), (2.20) and (2.21 )

is the Fourier-Eckart heat flux vector qx defined in (2.16)), and
that

(a) vanishes in any e-equilibrium process.
Since the magnitude e is the pocket temperature-cf. N. 3-, I

shall call the pocket heat flux.
E

Let be Eckart’s energy-momentum tensor for viscous fluids

p 
E P

and let result from it by replacing q,, with q". By (5.1 )1

(b) For non-viscous fluids one can strengthen (5.1), and (5.2)1 into

p

The use of as the energy-momentum tensor in special or
general relativity is in agreement with experiments by (5.1). By (a)
this use also complies with the considerations made to support Eckart’s
proposal qa. Indeed these considerations substantially say that the
relation Trlx must hold rigorously in thermodynamic equi-
librium-cf. [3], § 45.

In order to prove (5.1) we first write an explicit expression of d0
for any viscous fluid. Now I consider O = O(k, T) _ O[p (k, T), T]
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where-cf. N. T) = 7~2 8§(k, and w(k, T) and T) are
defined by ( 2 .17 ) 1 and (2.18)1. By ( 3.12 ) 2 one easily obtains

On the other hand

whence

E

Now let us eliminate Aa from the expression (2.16) of qa in con-
nection with the above typical viscous fluid. By (2.16) and (2.8)1
we obtain

hence, for

By (5.4), under definitions (~.1)2,3, (5.7) becomes
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Since, in units of ordinary sizes, and 2~~ = = c-1.

the members of ( 2.8 ) 2 are O(c-2) and x (with respect
to ordinary size magnitudes). Hence

Then by (5.8) and (5.9) we have (~.1)1. By (2.5), and (2.7)2 this yields
(5.2)1 and (5.3) when .X~u ) ‘ 0.

Lastly in any e-equilibrium process O~a = 0-cf. N. 3. Hence (5.1)2’
yields (a). q.e.d.

6. Comparison of bE with Alts and Mfller’s theory b AM.

A) Comparison of bE and in equilibrium processes.

In [1] a relativistic thermodynamic theory bAM is presented by
Alts and Muller. In this theory a magnitude 0, called empirical tem-
perature (or heat potential) is introduced. This temperature cannot be
identified with the absolute one-as the deductions in [1] show-and
in the general case it lacks any operative physical interpretation;
furthermore E-equiZibrium is defined in 73Am by means of the condi-
tion 0.

Along E-equilibrium processes for (simple) non viscous fluids ca-
pable of heat conduction the validity of Gibbs’s differential rela-
tion (2.20)3 is proved (5), so that the corresponding well known two-
parameter thermodynamics holds. In this case the deductions made
in [1] to diifferentiate 0 thought of as a function of k and T, lead to a
result which, with the present notations, y reads

-cf. [1 (5.19)] where p and ~O are suitable functions that can ex-

press the pressure and density of gravitational mass (in energy units)
in terms of k and T.

(s ) The analogue for viscous fluids is not done in 73AM.
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By comparing the relation (5.6), deduced in with the result

(6.1) of we see that the condition

which characterizes E-equilibria in also holds in e-equilibria (in
bE); and in them it is equivalent to the only condition on thermo-
dynamic fields present in the definition of e-equilibria.

B) Determination of all choice for the equilibrium empirical temperature
0(k, T) in terms of Gibbs’s function.
Remark that, while in [1] the usual integrability conditions of

(6.1)-cf. [1 (7.8)]-are made explicit, here the analysis of e-equi-
librium and in particular (5.6), where the definition (3.12 ) 2 is presup-
posed, allows us to solve the differential condition (6.1) in the unk-
nown function 0(k, T). It suffices to set

or in particular 0 = O. Hence the empirical temperature 0 can be

identified with the pocket temperature O as far as equilibrium is con-
cerned.

Conservely (5.6) and (6.1) imply fi) = 0, which yields
(6.3) for some differential function f . Thus ( 6.3 ) is the general 
tion of (6.1 ). So the empirical temperature 0 is determined up to a
change of the metric on the possible values of an arbitrarily prefixed
choice of empirical temperature.

C) Comparison of and in the non equilibrium case.

In order to compare bE with in non equilibrium cases remark
that, on the one hand, a choice of constitutive equations in bAM’
that express w, p, q, z, q, and Q in terms of the magnitudes k and 0
(among which does not appear) is compatible with the restric-
tions due to the entropy principle-cf. [1 ], N. 3-up to 0 ( c-4) (6).

(6) To realize this directly, consider the fluids in bAM that are capable of
heat conduction and are defined by a sixtuple of constitutive functions that
express w, p, ~, X, q, and Q in terms of k and 0 (but not of as in general cases) ;
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Hence in this case the heat flux has a linear egpression qa in 

-cf. [1 (5.21)]-and (2, and p are thought of as functions
of k and T.

On the other hand in bE the heat flux for non-viscous fluids has
an expression, I«-cf. (5.1)z and (5.3)1-, which differs from Eqa to
o(C-4).

Lastly Alts and Miiller conclude in [1] that which dealts

only with non-viscous fluids, y is in good agreement with Chernikov’s
relativistic kinetic theory-cf. [5] to [7]-, , say be, in that a certain

expression qa for the heat flux obtained in be is suitably identifiable
with the expression (6.4) for qa (hence with Pqa too). Therefore I can

conclude that, since for same fluids qa complies with 
axioms up to O(C-4), be agrees with bE at the same approximation order
as 
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