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Subnormal Composition Factors of Infinite Groups.

STEWART E. STONEHEWER (*)

The theory of composition factors of finite groups (or more gen-
erally of groups with a composition series) has its origin in the work
of Jordan and Holder and has been developed significantly by Wie-
landt. (We assume throughout that all composition series have finite,
length.) The main aim of the present work is to show that one of Wie-
landt’s major theorems for groups with a composition series ((3) below)
holds quite generally for arbitrary groups.

1. Notation and statement of results.

Let .X be a subnormal subgroup of an arbitrary group G. Thus
there is a series of finite length from .X to G:

If and X / Y is a simple group, then we call a subnormale
composition factor of G. Denote by .E(G) the set (without multiplici-
ties) of all abstract simple groups which occur as subnormal composi-
tion factors of G. (In passing, we mention that it appears to be

unknown whether 1 always implies .E(G) =F It is well-known

that if G has a composition series, then G has only finitely many sub-

(*) Indirizzo dell’A. : Mathematics Institute, University of Warwick,
Coventry, England.
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normal subgroups ([4], p. 219). In this case the join J of any (neces-
sarily finite) collection of subnormal subgroups Hi (Â E A) of G is
also subnormal in G ([4], Satz 7). It follows that J has a composi-
tion series and it is an easy exercise (using the Jordan-H6lder theorem
and induction on composition length) to show that

The generalisation of (1 ) to arbitrary groups is also well-known:

If G is generated by subnormal subgroups (Â E A), then

For a proof one can use a transfinite version of the proof of (1). Thus
a class N of groups closed with respect to forming normal products
is also closed under taking subnormal joins ([7], Theorem 28, p. 246).
Then let 3C be the class of groups all of whose subnormal composition
factors belong to UE(H;.). Since two ascending series of subnormal

A

subgroups have isomorphic refinements, (2) follows without difficulty.
If H is a subgroup of a group G, we denote by E(G: H) the set

(again without multiplicities) of all abstract simple groups which are
isomorphic to some XI Y where X is subnormal in G and

Then we shall obtain (in Theorem A) a much sharper result than (2),
motivated by the following theorem of Wielandt’s ([4], Sätze 6 and 9) :

If G has a composition series and H, K are subnormal subgroups
of G, then

Indeed we shall show that the hypothesis that G has a composition
series is redundant. The inclusion C in (3) is quite straightforward
and was generalized in another theorem of Wielandt’s ([6], 8.~) :

Let H,, ... , Hn be finitely macny subnormal subgroups o f an
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arbitrary group G. Then for each i

where D = .gl n ... n Hn.

As an obvious corollary we have

Wielandt pointed out that (4) does not extend to infinitely many
subnormal subgroups. For example, let G = ~g~ be an infinite cyclic
group and let H = ‘g2n~, for all Then D = 1 and

(4) clearly fails. 1

In order to obtain the reflation 2 in (3) Wielandt needed a more
complicated argument. For ease of comparison with our methods in
section 2, we recall the details briefly. Thus suppose that G has a

composition series and that H, .K are subnormal subgroups of G.
Since H, .K~ is subnormal in G, we may assume that G = H, I~~.
We proceed by induction on the composition length 1 from .H to G
to show that

We may assume that t ~ 1. Choose a maximal normal subgroup Gl
of G containing H and put Gl r1 .K = K, .

Case (i). Suppose Xl = H ~1 K. Then H n K-t3 K. If 

(6) follows without difficulty. Therefore suppose that .g. Then

there is an element k in .K such that

We note that and L is subnormal in G. L, iT)
and so, by induction on 1,

Again by induction, Z(L : H) c n X) _ r) K) and there-
fore we have (6).
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Case (ii). Suppose that Xl &#x3E; .,g r1 K. Then M = ~, &#x3E; H,
and M is subnormal in G. Now G = ~, K) and so induc-

tion gives

Also n l~) n -K), by induction applied to
~ _ ~.g, Then again we have (6).

It is difficult to see how the above argument can be made to
apply to arbitrary groups, y first because composition lengths do not
exist in general (and cannot be replaced in any obvious way by sub-
normal defects) and secondly because a join of subnormal subgroups
is not always subnormal ([7], p. 23~, exercise 23; [1], Theorems 6.1
and 6.2; [3], Theorem E). Nevertheless we shall prove

THEOREM A. Let G be generated by a (possibly infinite) set of sub-
normal subgroups ga, Then, for each A,

In conjunction with (4) this gives

THEOREM B. If G is generated by finitely many subnormal sub-
group. Hi (Â E ~l.), then

where D = 
i

The special case of Theorem B when |A| = 2 shows that (3) holds
in arbitrary groups, i.e.

if H, K are subnormal subgroups of any group, then

We also obtain (2) as a corollary of Theorem A. For, if G is generated
by subnormal subgroups Hi 7 then for any 

The reverse inclusion is trivial.
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2. Proof of Theorem A.

We shall need some well-known results. First (see [1], Corollary 2.4)
LEMMA 1. Let H, K be subnormal subgroups of G. I f H, K) =
HK (i.e. HK = KH), then HK is in G.

A special case of Theorem A of [3] says that if .g, ..K are sub-
normal subgroups of a group G, then every finitely generated sub-
group .I’ of J = H, K) is contained in some subnormal subgroup L
of G with FLJ. A simple induction argument then yields

THEOREM 1. Let HI, .g2, ... , Hn be f in2tely many subnormal sub-
groups of a group G. Then every finitely generated subgroup F of
J = .~2, ... , Hn) lies in some subnormal subgroup L o f G with
F  L  J.

If H and I~ are arbitrary subgroups of any group, then, according
to [3], the permutizer PK(H) of in K is defined to be the unique
largest subgroup of .~ whose product with .H~ is a subgroup. The fol-
lowing result is proved in [3], Lemma 3:

LEMMA 2. If H and K are subnormal subgroups of G, then 
is also subnormal in G.

Also concerning the permutizer we shall need

LEMMA 3 ([2], Corollary B1) . If K are subnormal subgroups
of a group, then there is an integer d (&#x3E;0) such that contains
the d-th term K(d) of the deriz,ed series of K.

Finally, from the same paper of Roseblade’s we require part of.
the main Theorem, viz.

THEORE3I 2. If G is a group gener¡1ated by subnormal subgroups
82 , ... , if d1, d2 , ..., d n are integers (&#x3E;0), then there is an

integer d ~ 0 such that

PROOF OF THEOREM A. We have a group G generated by sub-
normal subgroups Hg (2 c A). Let XfY be a subnormal composition
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factor of G with

for some A. We have to prove that XfY E :Hi r1 g~), for some
p # A. First we show that

(7) we may assume that A is a set .

Thus choose an element x from XB Y. Then there are elements

Â2, ..., in in ~l. such that

say, and we may suppose that HA - To simplify notation put
.gi = HAl’ i = 1, 2, ..., n. Now, by Theorem 1, there is a subnormal
subgroup L of G such that

Then X r1 L is subnormal in G and so Lemma 1 implies that
is also subnormal in G. Since and we

must have (X ~1 L) Y = X. Hence

and therefore a subnormal composition fac-
tor of J above H, Ht). Replacing G by J, (7) follows.

Thus we have G =- HI, .H~2, ..., Hn) with each Hi subnormal in G
and is a subnormal composition factor of G with 
It now suffices to prove the theorem in the case when

(8) G is soluble .

For, let P2 = PH,JHI)’ the permutizer of in .H~2. Then .H1 
Put Q2 = H1P2. By Lemma 2, P2 is subnormal in G and therefore

Q2 is also subnormal in G, by Lemma 1. Thus there are subnormal
series



291

According to Schreier’s Theorem, these series have isomorphic refine-
ments and so we may assume that either

or

It is very easy to see that and so in
case (9)

as required. Therefore suppose that (10) holds. By Lemma 3 there
is an integer such that There is no loss of generality
in taking Hi = Q2 and so we may assume that .g2d$’ c g1. Repeating
this process with H3, ... , .gn in turn replacing B’’2 , we obtain

2 c i ~ n, for certain integers di . Now by Theorem 2 there is an

integer d such that

Let N = G~~&#x3E;. Since HI n .H~i N = (H, n Hi) N and

for all i, it follows that we may replace G by GIN, i.e. we may assume
that G is soluble. We have therefore established (8).

It is now clear that Z1)’ a cyclic group of prime order p.
The next step is to show that, in this situation,

(11) we may assume that G is f initely generated .

For choose s Then ~2~ ’"? = M, say, where gi
is a finitely generated subgroup of .H~i, for each i. is finitely
generated. Let
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Thus M = .Hi , ... , .gn ~ and Hi* is subnormal in Put

~1 = X Y1 = Y r1 M. Since x E we have

and hence If the Theorem holds for finitely gener-
ated groups, then

for some j &#x3E; 2. Let 

be a series with all abelian. Intersecting with .ll, we obtain

and

for some i, and so

showing that the theorem will hold for all groups. Therefore (11)
follows.

Now G is a finitely generated soluble group. Let

be a series with each factor abelian. Choose i as large as
possible such that Bi+I/Bi has Z~ as a subnormal composition factor.
Then for must be periodic. Since G is finitely
generated, induction over j decreasing shows that is finite
and Bi+, is finitely generated. Therefore we may assume that X = Bi+~
and Hence /G:HI/ is finite. We have already seen (while
proving (8)) that it is in order to replace G by G factored by any
normal subgroup contained in .H1. Thus we may assume that is
core-free in G and so G is finite.
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Finally, y for let Gi = ~2?’"? Since all the sub-

groups Gi are subnormal in G, Schreier’s refinement theorem gives

for some Therefore by Wielandt’s theorem ((3) above) applied
to the finite group generated by the subnormal subgroups 
and Gi,

as required. 
’

This completes the proof of Theorem A.

3. The connection with residuals.

Let G be a finite group and let 8 be a set of abstract simple groups.
By (5) there is a unique subnormal subgroup G* of G minimal subject to

and clearly G*v G. Now suppose that G (still finite) is generated by
subnormal subgroups Hi, .H‘2 , ... , Then

and hence Therefore and so

Conversely let .Hi, ... , Ya .~, where X is subnormal in G and
is simple. Then G = ... , Hn, Y) and thus, by Theorem A,
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Hence ... , H*&#x3E;. Consequently

This result is due to Wielandt ([5], Satz 2.4). Clearly by far the
greater part of the argument lies in establishing (13), i.e. Theorem A.
However, Theorem A does not require G or the number of generating
subnormal subgroups to be finite, and so we can obtain, as our final
result, what is essentially a generalisation of (14) to arbitrary groups:

THEOREM C. Let G be generated by subnormal subgroups .ga, (A E A).
If XfY is a subnormale composition factor of G, then

PROOF. Since G =  Y, E .~1~, we may take Hi in Theorem A
to be Y here.
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