RENDICONTI
del

SEMINARIO MATEMATICO
della

UNIVERSITA DI PADOVA

S.ZAIDMAN

On asymptotic series of symbols and of general
pseudo-differential operators

Rendiconti del Seminario Matematico della Universita di Padova,
tome 63 (1980), p. 231-246

<http://www.numdam.org/item?id=RSMUP_1980__63__231_0>

© Rendiconti del Seminario Matematico della Universita di Padova, 1980, tous
droits réservés.

L’acceés aux archives de la revue « Rendiconti del Seminario Matematico
della Universita di Padova » (http://rendiconti.math.unipd.it/) implique 1’accord
avec les conditions générales d’utilisation (http://www.numdam.org/conditions).
Toute utilisation commerciale ou impression systématique est constitutive
d’une infraction pénale. Toute copie ou impression de ce fichier doit conte-
nir la présente mention de copyright.

‘NuMbDAM

Article numérisé dans le cadre du programme
Numérisation de documents anciens mathématiques
http://www.numdam.org/


http://www.numdam.org/item?id=RSMUP_1980__63__231_0
http://rendiconti.math.unipd.it/
http://www.numdam.org/conditions
http://www.numdam.org/
http://www.numdam.org/
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On Asymptotic Series of Symbols
and of General Pseudo-Differential Operators.

S. ZAIDMAN (¥)

Introduction.

In their study of an algebra of pseudo-differential operators [6],
Kohn and Nirenberg presented concepts of canonical pseudo-differential
operators, asymptotic series of such operators-related to the notion
of order and true-order, —, homogeneous symbols of real degree,
asymptotic sums of such symbols and the mutual connection between
them. A very interesting existential result, apparently belonging to
Hoérmander is given in Theorem 2 (iv) of [6] (see also [4] and [11).

Similar facts are known in various other classes of symbols and
associated pseudo-differential operators (see [5], [8], [10], [11], [12]).

In the present work we introduce, following [6] and [13], a class
of symbols which are only measurable with respect to &€ R»— {0}
and C* for x € R" (precise definition will follow) and we indicate how
the above mentionned concepts and results can be extended to this
new situation. We will refer to [14] for a preliminary version of a part
of this paper (general pseudo-differential operators were not con-
sidered there).

1. — We consider a class of symbols which is denoted by &; it
consists of measurable complex—valued functions o(x, &) which are
defined on R” XR~— {0}.

(*) Author’s address: Department of Mathematics, Université de Montréal
Case postale 6128, Montreal, P.Q., Canada.

This is a research supported through a grant of the Natural Sciences and
Engineering Research Council, Canada and by the C.N.R. of Italy.
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We assume the following properties:
a) lim ¢(z, §) = o(c0, &) exists for all £eR*— {0} and is a
r—>o0
measurable bounded function there;

b) if ¢'(x, &) means the difference o(x, &) — o(o0, &) then

(L) (e, &) = (@a)2[exp [ia-n]d (1, §)dn, V(w, §) R xR — {0}
Rn

n
where -9 = Y o;m;, n€R”, while 6'(n, £) is a complex-valued func-
1

tion defined on R” xR — {0} which is measurable in 5 for all &€
€ R* — {0}, is measurable in £ for all # € R” and satisfies an estimate

1.2) I6'(n, )| <k(n), neR"
where (1-+ fnl?)'k(o) € LR, VI =0,1,2, .., (j]*= X

REMARK. The function &'(n, &) is the Fourier transform in the
sense of temperate distributions of the bounded function o'(x, &).
Furthermore o¢'(x, &) and o(z, &) are C*°(R}) and ?uB |Dja(x, £)| < oo,

Z,

Va = (a ... ¢,), a multi-index of non-negative integers.

Let us consider now an infinite sequence {a,(, &)};2 of functions
in &, and a strictly decreasing sequence of real numbers convergent
t0 — o0, 74> 1, > 1, ...; also, we consider a C*(R”) function {(£), which
is non-negative, equals 0 for |§|<3}, equals one for |§|>1, such that
0<l(£)<1, VEeRn.

Our main interest in this section is about series of the form

8

(1.3) ﬂt(g) €| as(x, &), where |&|2 = i-f?

J =1

il
o

and (t,)7 is a (conveniently chosen) sequence of real numbers.

Note that for any fixed £ R" — {0} the sum is finite [it equals

> C(tg) |&#a(x, &), xeR"
t; <2]§|

and in any sphere |§|<m it is written also as

5 ¢(§) e ).
1< <2m )
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We may define the function
@, &) = $¢(F) lepato, o

Obviously that a(z, &) = 0 for |£|<%, v € R" and that it is a measur-
able complex-valued function. The limit a(co, &) exists for £ € R* — {0}
being given by

C(té:) IElri(tj(OO, £) when |§l<m;

1<y <2m

accordingly, the difference a'(x, &) = a(x, &) — a(oo, §) is expressed by
2 (& (e
27 ) leaia &)

We see that a(w, &) is infinitely differentiable with respect to x, for
any £eR"—{0}.

2. - In this section we shall give a global estimate (i.e. on R» X

XR»—{0})of the above defined function a(«, &) and of the remainders
of order N:

by(z, &) = a(w, & ZC( )|§|r’“1 (@, & EC( )|§|”a (@, &) .

Precisely we will prove the following

THEOREM 1. — It is possible to choose a sequence of real numbers (t;)7,
to=1, such that the inequalities:

(2.1) la(z, &)| < C|&|™,  |b(z, &)| < Ox|E]™,
(@, ) eR*XR"— {0}, N=1,2,..

be satisfied. (In particular, the estimates
(2.2) la(oo, §)[<CIE[™,  [bu(oo, &)< OxlE]™, feR"—{0},

N =1,2,.. are also true.)
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PRrOOF. - Any function in the class € is bounded on R* X B*— {0};
let be M;= ?uel)) |a;(z, )], 1 =0,1,2,...
25

We indicate a choice of the sequence (¢;,); in such a way that the
estimates

(2.3) lC(t‘—’t)|§|’laj(x,§)’<%|§|n—x, i=1,2,..., @ & €R" xR — {0}

be all verified.
Actually, for |&|<1,/2, {(&/t;) = 0 and the estimates are obvious.
For |&|> }t; we remark firstly (using 0<({<1), the inequality

l C(tg) |§|”a,~(w, &) ’< Mflsl" .

Consequently, we can obtain (2.3) as a consequence of the stronger
inequalities
1 . 1
M,-l§|71<§; ‘Ei"d—l , j=1, 2, ey EeR*— {0} and ‘fl > é'tj
or

. 1
25M,.<I§|rj—1—n , j=12,.., IE' > étj .

We know that r,_,—r;>0, Vj=1,2,.. hence (3;/2)"~" < |§|f=~".
We choose now ¢; in such a way as to have

t Tj—1—74
2:‘M,<(§‘) !

that is
;> 2 21—, Mﬁf:—x—n)“ , Vi=1,2,..

This special choice of the sequence (¢,)7 has (2.3) as a corollary. We
have seen that a(x, &) = 0 for € R", |£|<4%; consider now }<|&|<1.
In this case |&/¢;|<1/t;.

Assume ¢, = 2 or bigger. Then |£/t;|<%,j=1,2,... and {(§/t;) = 0
for j =1,2,.... Hence a(x, &) reduces for these & to the single term
a(a, &) = L(E)|El"au(e, £) and we get |a(z, )| < My|E]", 0 < |§|<1, 2 B,
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Consider now |£|>1. In this case |[&["<|&[F, Vji=1,2,.... We
can deduce that

1
@, ) <Mfef+ e (5 + 35 + ) = o DI,
VzeR", |£|>1.

Let us estimate now by(w, &) for N =1, 2, ...

If |£|<1 and because t,>2, {(é/t;) = 0 for j = N, N +1, ...; thus
by(z, &) = 0 for |&|<1, xeR". For ||>1 we have |£|"<|E[™ when
j> N. Therefore we get

00 o0 1
|bx(x, )] < Malé]™ + 3 tg (g) || as(@, )| < Mulel™ + > = |g]
N1\l NT12
Consequently
<1
|bx(@, )| < Mulgl™ + & Y 5 =

NT129

(MN + )|§|m N=1,2,.
This ends the proof.

3. — We shall use here formula:

a”(wy E) = a(w’ ‘f)_a(ooy §) = z ( ) |§l"a'j .’L’, 5)’

1<h<2m
for |£|<m, xeR".
It follows that a’(z, £) admits a partial Fourier transform, with respect
to zeR", taken in §'(R")-sense, which equals

C(tg) |&|d@i(A, &), for |§|<m , AeR" (0 as usual here)
3.

1<y2m
‘We can write also:

&0, £) = ( )Ifl" 1 &)

which is a finite sum for any (4, £)eR» XR»— {0}.
Let us consider also, as in previous section, the remainders of
order N:

ba(a, &) = S¢(£) lerajia, o



236 S. Zaidman

and their partial Fourier transform:
: = (&) 1£1esm
Bi(h, &) =.ZN‘({) el &), N =1,2,...
= 3

Therefore we are now ready to state the following

THEOREM 2. A convenient selection of the real sequence (3;)g where
to=1, t,>2, allows inequalities

(3.1) a@' (4, &)| <K (A)|&]", AeRs, £eR—{0}
(3.2) [bx(4, E| <En(A)|EI™, AeRr, EcR"—{0}
where

(L4 [APPE@A) e MR, (14 |A])?Ey(4) € LY(R"),
Vp=0,1,2,.., N=1,2, ....

Proor. We know, because each a;(x, &) belongs to &, that
1@)(A, &)| <T,(4) Where

(1 + A2}k (A) e MR, VI=0,1,2,.., j=0,1,2,...
We shall define a real sequence (¢,)7 in such a way that the inequalities

, 1 A
(3.3) |c(§)| aih, &) < 2 el W(T))Il_ =12,

be all verified (k;(2) = (1 + |/112)fkj(z)).
We shall look for (¢,)7 such that, if |£|>}t,, then

(3.4) <27 k| e, T=1,2,...

This is equivalent with
(3.5) 2|8 ga < [E[
and is obviously implied by

(3.6) 2k || ;< (38;)

Tj1— 15 °
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Thus, a good sequence (t;); should satisfy the estimates
(3.7 8, > 20— 41| k;‘ “(g-l—n)-‘ .
‘We see now that (3.3) is indeed true.

This is obvious when |£|<1t?;, all terms at left are null.
For |&|> 1¢;, we have obviously

() e, 1< e

and we apply (3.4) and get (3.3). We are now ready to establish the
estimate (3.1). Again we see that d'(4,§) =0 for |§|<3; next, for

1<|g|l<1, if t,=1 and ¢,>2, we see that @'(1,&) = {(&)|&[dy(A, &)
and accordingly will be:

&' (4, &)|<ko(A)[£], (2,8 R X R*—{0}.
Now, for |£|>1 we see that |&[":<|&] j=1,2,...; then
@' (4, &)| < |E[Fko(A) + ]5['"_22—%,(1)"76;(~)““‘ (after using (3.3))

If K(2) = > 2-k;(A)|k;(-)|z* (2 measurable function which has ob-
i=1
viously a finite integral, —using Th. of B. Levi—(see [3], [7]), because

> 275( [k, (4) a2) 5 [ < 3,2 < o)
i=1 Rr j=1
we obtained:

|@"(2, &)< |E["(ko(A) + E(2)), (4, &) eR* X R"—{0}

and we have only to prove that

@ + A E@A) e IMRY, Vi=1,2,...

237
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Returning to the definition of K(1) we see that:

(=]

(L4 [AP)E@) = 3271 + AP) R ()7 =

i=1

= 2 270+ AR R@IEOE+ 3 270+ AP E@[ECO] -

1<i<i <j<oo

The first sum is finite, therefore € L! as requested.
In the second sum ! is smaller than j, therefore (1 -+ |1]2)'k;(4)<
<(1 + |A|2)k,(4) = kj(4) and it follows that

2 27Ol ‘f(l + AR dis S 27 < oo
I<i<oo el

R»

Another application of B. Levi’s theorem implies the result.

Similar reasonings apply in order to prove (3.2). For |£|<1,
by, ) =0VAieRr, N=1,2,... For [§|>1 we shall use the same
sequence (f,); as above. We get:

By, O < [EEel) + > 2 EP-R D)7 <

i=N+1

<lép {fn@) + S2 D)}

The integrable function ky(1) + X 2-7k;(A) | % ()| Zir (it is so again by
N+1
monotone sequences theorem) will be denoted with Ky(4).

We still have to show that (1 4 |4[2)>Ky(4)e L(R"), Vp =1, 2, ...,
which is a consequence of:

1+ ]l]z)fzé:lZ-f Ak () |Ze MR, Vp=1,2,...

In fact, for p<N + 1, j>N + 1, we have (1 - [A]2)?k;(4)<K](Z)
while for p>N 4 1 we write:

(L ) S2RMIETE =3 21 + )R K2 +

i=N+

+ 2271 A+ [A])7 k() [ 2 -

i>p
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The first sum at right is finite, thus € L'; in the second sum,
(1 4 JA|?)*k;(2) <k;(A) so that again B. Levi’s theorem will give the
requested result.

4. — Here we start considerations on pseudo-differential operators
associated to symbols in &; canonical pseudo-differential operators
associated to symbols of degree r, (i.e. of the form a(w, &)C(&/1)|E]",
r€R, teR+) asymptotic series of such canonical operators and pseudo-
differential operators which are sums of these series, associated to
symbols verifying (2.1), (2.2), and (3.1). Our main interest, as indi-
cated in the Introduction, is to state and prove an analogous of the
existential result Theorem 2 (iv) of [6] for our-somewhat different-
classes of symbols.

To start let us remark that the class & is more general than that
defined in our paper [13]; we kept i) and iv) but not ii) and iii). This
is enough however in order to define the operator a(x, D)= A,
S(R*) — §'(R*) by formula:

a(@, Dy (&) = a(co, E)AE) + (22)2[@'(E—, HFmdy,  VueS(R?)
R»

and prove that |a(z, D)u| g <Cy|u|g, Vs€R, Vue S§(R"), where H*
are the Sobolev spaces of real order s (on R#).

Therefore a(x, D) will extend by continuity to a linear continuous
operator from H*(R") into itself, Vs e R, therefore from H®(R") =

= () H*(R") into itself. Consider now a function (&/t), teR' as
seR
defined in section 1, and then for a real r, a function {(&/t) = 0 for

€] <dt, = L(E)IEl", for |§]>F¢.
Remark now that |&]<(1 + [|£]2)} and |&[r<(1 + |&[2)"2 for >0
while for r< 0 and |&| >}t it is (1 + |£]2)|€]"2= 1 + |§]-2<1 + 4¢-2 and;

(1 -+ €] > [Er@ + 462, [Elr< O, (1 + |EJ2)72.

Therefore we can derive

We can define an operator {,((1/f)D) given on S(R") by the formula:

2 (;0)u=g- (z;, () a(s)) :

<O(1 + |¢2)"2, VEeR*, VreR.
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51 being the inverse Fourier transform. Estimating the H -norm

=

Iz,
<o j(1+ |5|2)s+f|a<&>12ds) — Ofu

I I @w(é)|® dé‘)

|zs+ry, VseR, and Vue §(R?).

Therefore, {,((1/t)D) extends by continuity to an operatorin £(H*; H*)
V real s, and consequently it will map H* into itself. We call, follow-
ing [6], any operator {,(D/t)a(x, D), H®— H* a canonical operator of
degree r. We see that

:, (% D) a(e, Dyu| <

Now we shall define the concept of an asymptotic representation of a
linear operator H*— H* through a sequence of canonical operators
of degree 7, (r,); being a strictly decreasing sequence of reals con-
vergent to — oo (or a finite sequence, r, > 7, ... > ry). We need the
definition of order and true order of a linear opera,tor in H*® which is
given below in a form slightly more detailed than in [6] (see [1] for
a different, « non-linear » definition of the order). Denote by Lin (H>)
the vector space of all linear operators, H* — H*®. Given an operator
LelLin (H®) we associate to it a subset of the real line, O(L) (order
of L), which can be the empty set too, by means of the following:

Clula+r, VseR, VueH>R").

DEFINITION 4.1. O(L) = {re R such that, Vs<R, 30 e R+ with
property that |Lu| g < C,l|u|ger, Yue H}.

Let us remark that if »,€ O(L) and #' > r,, then ' € O(L) too.
Next, the true order of L is by definition:

t.o. (L) = inf O(L), the greatest lower bound of O(L).

If O(L) is the whole real line, t.o. (L) =— oo.

The true order can belong to the order set or not; a thorough discus-
sion of these concepts in a slightly more general frame-work will be
presented in [15].
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We are thus able to give

DEFINITION 4.2. Let (r;)g —>— oo be a strictly decreasing sequence
of real numbers, and {C,j((l/t,.)D)a,.(x, D)}:’ be a sequence of camoni-
cal operators of degree r;, corresponding to a sequence of positive reals
(t,)s and to a sequence of symbols {a;(x, &)}y c ©. A linear operator M,

H*— H> is asymptotically expanded into the series 2 &, ((/t;) D)a,(», D)
if the following holds:

N
t-o [M —>¢, (% D) a;(x, D)] <ry (strict inequality)
i=0 )

We say that
M~ (} D) a;(x, D).
i<o '\l

Our main goal in the remaining of this paper is to prove the following

THEOREM 3. Let be given a sequence {a;(%, &)}, of symbols in S
and a strictly decreasing to — oo infinite sequence of real numbers, {r;};>.
Then, there exists a sequence of canonical operators of degree r;, K; and
a linear operator P in H*, such that:

i) t.o. (P)<r,
) P~ E K,
i=0
Proor. We shall construct canonical operators K; in the following
way: First consider a fixed function (&), 0<{(')<1, {(§) =0 for
€<%, &(§) =1 for |§[>1, {(&)e C°(R").
Next define a sequence of real numbers (?;); as follows:
tb=1, $,>2, ;> max {Zj('J-x_Ti)-1+1M’(fl—l—ﬂ)'l’ 2i(fj-1~f1)“+1“ k;‘ “(n‘-l—ﬂ)"}
where, we remember,

M,= sup lai(@, &), k(A) = (1 4 |AP)k;(4)

k;(A) being associated to a,(z, &) as in (1.2).
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This choice of the sequence (#;);’ will permit, according to Theo-
rems 1 and 2, construction of a function a(x, §) verifying (2.1), (2.2),
(3.1), (3.2) simultaneously.

Now, K, is by definition the operator C,,((l/t,)D) a;(x, D) cor-
responding to the symbol a;(x, &) and to the real r; given and ¢; chosen
in the way indicated above. In terms of Fourier transform we have
the following representation formula for the action of a canonical oper-
ator on S(R"):

Ko = 5[ () aton, B200) + e faie—n, ) an)|

R»

Let us define now the operator P; remark that

aw,8) = 3, (F) e, 0

satisfies estimates which are somewhat different from those defining
the class &; still we can associate to it a linear operator in H® by
means of similar formulas as those defining a(x, D) when a(z, &) € .
Therefore, let us put, for » € S(R")

(Pu)(@) = F-1[a(c0, E)iU(E) + @m)z[a' € —n, )T dy] -

Rrn

If we consider separately the operator P(co, D)= F-la(co, -)F we
have immediately .

3
1P(c0, Dyulas = ( f (1 + [&[)']a(oo, 5)a<§>|*d5) <

Rn

{
<o o+ lerra + ey aer ) = ofulas

Rrn

(when we use (2.2) and the fact that a(oco, &) = 0 for [£|<} because
then |§r<C(1 + [£[2)™/2 for |&|>1%, for any real 7). If we look now

at the integral: f a'(E—mn, &)4(n)dn, ue S(R") we see first its absolute
Rn
convergence, for any &R~
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Remember that d'(4, &) = 0 for |§|<%, therefore

[a€—n oaman = o
R'l

too for £ in the same sphere.
For bigger |&], we can use estimate (3.1); accordingly

&' (& —mn, &)a(n)| < cK(E—n)(L + |E2)2a@n)| < Cu(1 + [E]2)*K(E—mn)

—Dbecause ¥%(n) is bounded on R"; now fK(E—?])d??< 0.
R'l
Therefore, the function G(£), = 0 for |&|<%, =|d'(§—n, &)d(n)dn,
R'l

for £ € R» is well defined for & € R~ verifying the inequality |G(£)|<
< 0y(1 4 |£J2)e/2; G(&) is also a measurable function as easily seen
the 2n-integral f|¢i’(§ —mn, &)@(n)|dndé is convergent when £ is
bounded). axa

Accordingly we can take the inverse Fourier-transform of (277)~"2G(£)
in 8'(R") sense and obtain P'(x, D)ue 8'(R").

We establish now an estimate in Sobolev spaces for P’ too. We
shall see that

| P’ (@, D)u

H* < 0, uuHH‘"o ) Vu € S(R") .

We must therefore give an upper bound for the L?(R") norm of the
function

U6 = (L -+ IEF)26E) = @m) 2 (L + [F)72a (¢ —, an)dy =

Rﬂ
()2 [ (L + [ER)(L + )2 (E —, &)L + Inl?)"2an) d5
[£1>3

it results

U8 < Cf (1 + [—n )R E—n)(L + [ER)2(L + Inf2) )| dn =

s>

O,f(1+ 6 —nf?) IR E(E—m)(L -+ [ER)R(L+ ) R+ )
1é1>%

@) < Of (1 -+ |6 —n 2RI (E — ) (L -+ )+ Vi)
Rn
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Substituting %’ for £ —» and applying Minkowski’s inequality for
integrals we obtain the required result.
Accordingly, P(z, D) = P(c0, D) + P'(x, D) will verify the same
inequality, for any real number s. Thus, 7,€ O(P) and t.o. (P)<7,.
The final part of our proof deals with upper bounds for the true

N
orders of all operators P— > K,, N=1,1,2,....
i=o

N

Let us give first the representation formula for & LE Kiu], u€eS.
i=0

We know that K; maps 8 in H®, we take § in 8'(R")-sense. We have:

f[gxm] _ %?[K,-u] zc,,() (00, E)ii(§) +
+3 @y, (f)RJ:d;(s—n, £)ii(n) dn = [z c,,( )a (c0) 5)] e +

+ (2m)-e f [Z c,,( )a;(f 7 5)] ii(n) dy

Therefore it is:

\‘F[Pu—gNK,u] _ [a(oo, £— zc,,( )a, (00, s)] (E) +
+ @) f [ E—n, &)— zc,, (i)d;(e—n, s)] )y .

Rn

Using notations in §2 and § 3 we have:

N
(00, )= 3.2, (F) as(o0, &) = baatoo, &
and because of (2.2) and of vanishing of by near the origin we get

|basa(00, &) <e(1 + €)™
also

a'E—n, &) ZCT,( )aj(f Ny &) = bpsa(E—, &)
and the estimate A

|51’v+1('17 f)l <CEyn (A1 + lflz)'”“lz ’ (4, &) eR*XR".
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Therefore

N
F[Pu—3 Hou] = busa(oo, §E) + ()™ Byaalé —n, T

R

In the same way as above we derive:

N
”Pu—‘OZKju”Hs< O|u|gesry,,» ueSRY), seR.

N
Therefore t.0. [P——ZK,.] <7y, Which is strictly < ry as requested.
0

This ends our proof.
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