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On Asymptotic Series of Symbols
and of General Pseudo-Differential Operators.

S. ZAIDMAN (*)

Introduction.

In their study of an algebra of pseudo-differential operators [6],
Kohn and Nirenberg presented concepts of canonical pseudo-differential
operators, asymptotic series of such operators-related to the notion
of order and true-order, -, homogeneous symbols of real degree,
asymptotic sums of such symbols and the mutual connection between
them. A very interesting existential result, apparently belonging to
H6rmander is given in Theorem 2 (iv) of [6] (see also [4] and [1]).

Similar facts are known in various other classes of symbols and
associated pseudo-differential operators (see [5], [8], [10], [11], [12]).

In the present work we introduce, following [6] and [13], a class
of symbols which are only measurable with respect to ~ E Rn - {0}
and C°° for x E (precise definition will follow) and we indicate how
the above mentionned concepts and results can be extended to this
new situation. We will refer to [14] for a preliminary version of a part
of this paper (general pseudo-differential operators were not con-

sidered there).

1. - We consider a class of symbols which is denoted by 6; it

consists of measurable complex-valued functions a(x, ~) which are
defined on 
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We assume the following properties:

a) lim a(x, ~) = exists for all $ and is a
x-oo

measurable bounded function there;

b) if cr’(x, ~) means the difference 6(x, ~) - then

n

where x - 21 = I x,271, q c- Rn, while 6’(n, E) is a complex-valued func-
1

tion defined on Rn xRn - {0} which is measurable in q for all ~ c
c Rn - {0}, is measurable in E for all n c- Rn and satisfies an estimate

REMARK. The function c~’ (~, ~) is the Fourier transform in the
sense of temperate distributions of the bounded function ~).
Furthermore 6’(x, E) and a(x, $) are OCO(R:) and sup /D:a(x, E)|  oo,x 

(x,E) &#x3E;
Va = («1... «n), a multi-index of non-negative integers.

Let us consider now an infinite sequence of functions
in 6, and a strictly decreasing sequence of real numbers convergent
to - oo, ro &#x3E; r2 ...; also, we consider a OCO(Rn) function C($), which
is non-negative, equals 0 for ~~~ c 2 , equals one for such that

0~)1, 
Our main interest in this section is about series of the form

and is a (conveniently chosen) sequence of real numbers.

Note 

0 

that for any fixed ~ E {01 the sum is finite it equals

and in any it is written also as
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We may define the function

Obviously that a(x, ~) - 0 for I~I  1, x E Rn and that it is a measur-
able complex-valued function. The limit ~) exists f or ~ e Rn - {o}
being given by

accordingly, the difference a’(x, ~) - a(x, ~) - a(oo, ~) is expressed by

We see that ~(x, ~) is infinitely differentiable with respect to x, for
any 

2. - In this section we shall give a global estimate (i.e. on Rn x
fOI)of the above defined function a(x, ~) and of the remainders

of order N:

Precisely we will prove the following

THEOREM 1. - It is possible to choose a sequence of real numbers 
to = 1, such that the inequalities :

be satisfied. (In particular, the estimates
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PROOF. - Any function in the class Q5 is bounded on Rn xRn- ~0~ ;
let be Mj = sup E)|, j = 0, 1, 2, ....

(z,.;)
We indicate a choice of the sequence in such a way that the

estimates

be all verified.

Actually, for ’(Eft;) = 0 and the estimates are obvious.
For we remark firstly (using the inequality

Consequently, we can obtain (2.3) as a consequence of the stronger
inequalities

or

We know that r~_1- ri &#x3E; 0, 7 b’~ = 1, 2, ... hence
We choose now t, in such a way as to have

that is

This special choice of the sequence ( t~ ) i has (2.3) as a corollary. We
have seen that a(x, ~) = 0 for x E I~I:!; consider now )  I~I : 1.
In this 

Assume ti = 2 or bigger. Then = 1, 2, ... and = 0

for j = 1, 2, ...: Hence ~) reduces for these ~ to the single term
~) = E) and we get E) c 0  1$1  1, x C Rn.
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Consider now I~I:&#x3E; 1. In this case Vj = 1, 2, .... We
can deduce that

Let us estimate now b,(x, $) for N = 1, 2, ...: -.
If and because i&#x3E;2, = 0 for j = ~ ~ +1,...; thus

for 1~11, For we have when

j &#x3E; N. Therefore we get

Consequently

This ends the proof.

3. - We shall use here formula:

It follows that ~) admits a partial Fourier transform, with respect
taken in 8’(R")-sense, which equals

We can write also:

which is a finite sum for any 
Let us consider also, as in previous section, the remainders of

order N:
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and their partial Fourier transform:

Therefore we are now ready to state the following

THEOREM 2. A convenient selection o f the real sequence (t,)’ where
to = 1, I t1 &#x3E; 2 , allows inequalities

where

PROOF. We know, because each belongs to Q5, that

~(~,~)~~(~) where

We shall define a real sequence in such a way that the inequalities

be all verified = (1 -~- ~~,~2)~1~~(~,)~.
We shall look for (t3)o such that, if ~j&#x3E;~,, then

This is equivalent with

and is obviously implied by
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Thus, a good sequence (t~)o should satisfy the estimates

We see now that (3.3) is indeed true.
This is obvious all terms at left are null.
For we have obviously

and we apply (3.4) and get (3.3). We are now ready to establish the
estimate (3.1 ). Again we see that ~(~~)E=0 for 1~I:t; next, for

! : I~I : 1, if and ~&#x3E;2, we see that a’(~,, ~) _ ~(~) ~~~r~a"co(~,, ~)
and accordingly will be :

Now, for we see that ~~~% ~==1,2,...; then

00

If K(2) = (a measurable function which has ob-
?=i

viously a finite integral, -using Th. of B. Levi-(see [3], [7]), because

we obtained:

and we have only to prove that
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Returning to the definition of K(Â) we see that:

The first sum is finite, therefore E L1 as requested.
In the second sum I is smaller than j, therefore (

; (1 + = 1~~ (~,) and it follows that

Another application of B. Levi’s theorem implies the result.
Similar reasonings apply in order to prove (3.2). For 

6’ (A, ~) = 0 VA = 17 2, ...: -. For 1~1&#x3E;1 we shall use the same
sequence as above. We get:

00

The integrable function l~N(~,) (it is so again by
N+1

monotone sequences theorem) will be denoted with K~V(£).
We still have to show that (1 + Vp = 1, 2, ... ,

which is a consequence of:

In fact, for we have
while for p &#x3E; N + 1 we write:
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The first sum at right is finite, thus E Ll; in the second sum,

(1 + so that again B. Levi’s theorem will give the
requested result.

4. - Here we start considerations on pseudo-differential operators
associated to symbols in 6; canonical pseudo-differential operators
associated to symbols of degree r, (i.e. of the form ~) ~(~ jt) ~~ ~r,
r E E R+) asymptotic series of such canonical operators and pseudo-
differential operators which are sums of these series, associated to

symbols verifying (2 .1 ), (2.2), and (3.1). Our main interest, as indi-
cated in the Introduction, y is to state and prove an analogous of the
existential result Theorem 2 (iv) of [6] for our-somewhat different-
classes of symbols.

To start let us remark that the class C is more general than that
defined in our paper [13]; we kept i) and iv) but not ii) and iii). This
is enough however in order to define the operator a(x, D) = A,

by formula:

and prove that where HS
are the Sobolev spaces of real order s (on Rn).

Therefore a(x, D) will extend by continuity to a linear continuous
operator from into itself, ds E R, therefore from 
- n into itself. Consider now a function ~/~ ~ e l~t as

seR

defined in section 1~ and then for a real r, a function ~r(~/t) = 0 for
-- ~(~/t) I ~ ~r9 for ~~ I ~ 2 t.

Remark now that ~)(1 + )$)2)I and ~~~r~ (~ -~-- l~12)rI2 for r~ 0
while for and (1 + j~j~~j-2~ 1 + ~)-2~i-)-4~-2~~~

Therefore we can derive

We can define an operator given by the formula:
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being the inverse Fourier transform. Estimating the g’s-norm
we get

Therefore, extends by continuity to an operator in Hs-r)
V real s, and consequently it will map Hoo into itself. We call, follow-
ing [6], y any operator Cr(D/t)a(m, D), Hoo - Hoo a canonical operator of
degree r. We see that

Now we shall define the concept of an asymptotic representation of a
linear operator through a sequence of canonical operators
of degree r,, (r,)’ being a strictly decreasing sequence of reals con-
vergent to - oo (or a finite sequence, ... &#x3E; rN). We need the
definition of order and true order of a linear operator in which is

given below in a form slightly more detailed than in [6] (see [1] for
a different, « non-linear » definition of the order). Denote by Lin (Hoo)
the vector space of all linear operators, Hoo - Hoo. Given an operator

we associate to it a subset of the real line, (order
of Z), which can be the empty set too, by means of the following:

DEFINITION 4.1. such that, with

property that 
’

Let us remark that if and r’ &#x3E; ro , then too.

Next, the true order of .L is by definition:

t.o. (L) = inf c~ (.L) , the greatest lower bound of 0 (L) .

If 0(L) is the whole real line, t.o. (L) _ - oo.
The true order can belong to the order set or not; a thorough discus-

sion of these concepts in a slightly more general frame-work will be
presented in [15].
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We are thus able to give

DEFINITION 4.2. Let (r~)o be a strictly decreasing sequence
of real numbers, and D))§’ be a sequence of canoni-

cal operators of degree corresponding to a sequence of positive reals
and to a sequence of symbols E)}oo0 c 6. A linear operator M,0 

0

- Hoo is asymptotically expanded in to the series ECrj((1/tj) D)aj(x, D)
if the following holds : ~"°

We say that

Our main goal in the remaining of this paper is to prove the following

THEOREM 3. Let be given a sequence of symbols in 6
and a strictly decreasing to - oo in f inite sequence o f real numbers, 
Then, there exists a sequence of canonical operators of degree Kj and
a linear operator P in Hoo, such that :

PROOF. We shall construct canonical operators Xi in the following
way: First consider a fixed function C($), 0 c ~( ~ ) c 1, ~(~) = 0 for

~~ ~ c 2 ~ ~(~) = ~ for [ $ ] &#x3E; 1 , 
Next define a sequence of real numbers (t~)o as follows :

where, y we remember, y

being associated to as in (1.2).
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This choice of the sequence (t~)o will permit, according to Theo-
rems 1 and 2, construction of a function ~) verifying (2.1), (2.2),
(3.1), (3.2) simultaneously.

Now, K; is by definition the operator D) cor-

responding to the symbol a;(x, ~) and to the real rj given and tj chosen
in the way indicated above. In terms of Fourier transform we have
the following representation formula for the action of a canonical oper-
ator on 

Let us define now the operator P; remark that

satisfies estimates which are somewhat different from those defining
the class 6; still we can associate to it a linear operator in H’ by
means of similar formulas as those defining a(x, D) when a(x, ~) E 6.
Therefore, let us put, for u e 8(Rn)

If we consider separately the operator we

have immediately

(when we use (2.2) and the fact that ~) = 0 for l~l ~ 2 because
then + ~~~2)’’’~2 for 1~1&#x3E;!, for any real ro). If we look now
at the integral: we see first its absolute

R.

convergence, for 
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Remember that (1’ (Â, g) = 0 for c 2 , therefore

too for ~ in the same sphere.
For bigger we can use estimate (3.1); accordingly

-because is bounded on Rn; now 00.

Rn -

Therefore, the function

for ~ E Rn is well defined for ~ verifying the inequality ~G(~) ~ 1
Cz(1 + I ~ ‘2 )r®~2 ; G ( ~ ) is also a measurable function as easily seen

(the is convergent when S2 is

bounded). 
Accordingly we can take the inverse Fourier-transform of (2~)’~C(~)

in S’(Rn) sense and obtain P’ (z, D) u E 8’(Rn).
We establish now an estimate in Sobolev spaces for P’ too. We

shall see that

We must therefore give an upper bound for the norm of the

function

it results
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Substituting q’ for $ - q and applying Minkowski’s inequality for
integrals we obtain the required result.

Accordingly, P(x, D) = P(c&#x3E;o, D) + P’(x, D) will verify the same
inequality, for any real number s. Thus, and t.o. (P) c ro.

The final part of our proof deals with upper bounds for the true
N

orders of all operators N = 1, 1, 2, ... :
;=0 N -

Let us give first the representation formula 
o J

We know that K; maps 8 in H’, we take Y in We have:

Therefore it is:

Using notations in § 2 and §3 we have:

and because of (2.2) and of vanishing of bN near the origin we get

also

and the estimate
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Therefore

In the same way as above we derive:

Therefore t.o. which is strictly  rN as requested.

This ends our proof.
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