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Existence of Solutions

for Some Quasi-Variational Inequalities.

ROBERT T. VESCAN (*)

1. - Introduction.

We are interested in proving the existence (Theorem 1 in Sect. 2)
of solutions for quasi-variational inequalities (QVI) using the same
argument for continuous mappings, as for situations in which one has
monotonicity and hemicontinuity assumptions. Thus, on the one hand
our Theorem 1 is valid (see Example 1 in Sect. 3) in the case of QVI
arisen from problems of plasma physics studied by Mossino [9], on
the other hand the existence result for variational inequalities for mo-
notone operators recently stated by Minty [8] is found again as a par-
ticular case of our mentioned theorem (see Example 2 in Sect. 3).
A joining of both sort of hypotheses can be bound in the application
(see Example 3 in Sect. 3) to QVI in connection with a free boundary
problem of hydraulics (investigated by other methods by Baioc-
chi [2], [3]) .

Unlike other authors ([5], [9], [11], [12]) who use different fixed
point theorems for suitable selection maps of the QVI, we achieve
the proof of Theorem 1 by a nonempty intersection property.

The notion of compatible topologies which we introduce just in
this introductory paragraph is not of small account. The charge of
this simple idea turns out specifically from the existence result
established in Theorem 2 of Sect. 4.

(*) Indirizzo dell’A.: University of Iasi, Faculty of Mathematics, 6600-Iasi,
Romania, or: Department of Math., Polytechnic Institute, 23 August 11, Iasi.
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Finally, let us point out the application of Theorem 2 to para-
bolic QVI (see Corollary 2 in Sect. 4) which is of different nature
than the existence results of [4].

We begin with the

DEFINITION. Consider two topological spaces (Ci, and (C2, T2);
we say that the topology ~1 is compatible on 01 r1 O2 with the top-
ology 1’2 if the diagonal of the product space ( C1 r1 C2) X ( C1 n O2) is
X t2-closed.

REMARKS. 1) Let be Banach spaces, y with duals C2 ,
such that the injection 01 ~ C2 is linear and continuous and 01 is
dense in C2. Consider ri the (Cl, Cx) weak topology on Cl and ~-2 the
norm topology on C2. z1 is compatible on Ci r1 C2 = Cl with z~2 since
both topological spaces (Ci, and have continuous injection
in where 1’3 is the ( C2 , C2 ) weak topology. If the injection

is even compact then the ( Cl , Ci) weak topology is stronger
than the trace of the norm topology of O2 on C1.

2) Let D be a bounded open subset with smooth boundary in
the plane R2. The weak topology z~1 of the usual Sobolev space 
is compatible on r1 C°(D) with the Banach topology 1’2 of the

space C°(D) of continuous functions on the closure D, because both
(.gl(D), and (C°(D), i2) have continuous injection in the Hilbert
space .L2(D).

2. - The existence theorem.

THEOREM 1. Let El and E2 be linear subspaces of a real vector
space E. Suppose that Ex, E~ are endowed with the linear separated
topologies respectively which are compatible on E1 r1 E2.
Further, let C1 be a t1-closed subset of Ex and C2 a 1’2-closed subset of E2.
Given h(u, w) and g(u, v, w) functions from respectively C2 X
X Cl X C1 into y let us assume that:

(1) For fixed U C- C21 h ( ~c, ~ ) and g ( ~, v, ~ ) are proper
convex functions on Ci.

(2) For fixed u E C2, g(u, v, v) = 0 and g(u, v, w) + g(u, w, v)  0
for all v, w E CI .
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(3) For WE 01, one has

(1- t) vl + tv2, w) = g(u, v,, w) for all vI, V2E C1 .
~0+

(4) For fixed wE Cl, h(~, w) is z2-upper semicontinuous (use) on C2.

( 5 ) h is T2xT1-10wer semicontinuous (lsc) on 

Let us also presume that there exists a nonempty subset K c
c 01 n O2, compact with respect to ri and t2-relatively compact and
one of the following condition holds:

either ( C1 ) g(., v, .) is z~2 X ri-lsc for fixed v E Ci and there exist
an element vo E K such that h(w, w) + g(w, vo, w) &#x3E; h(w, vo) for all

w E (C1 n C2)BK
or (C2) g(., ., w) is T2 X t1-usc for fixed WE C, and there exist

an element wo such that h(v, v) &#x3E; h(v, wo) -f- g(v, v, wo) for all
’

Under the above hypotheses the system of inequalities

has at least one solution u E K.

REMARKS. There are several significant differences between The-
orem 1 and Theorems 4.1-4.2 from [9; Chapter 1]. The function h(u, w)
is assumed to be continuous in the first variable and clearly it is not
of type of an indicator w) . Hence our theorem is not active
in the case of the  classical &#x3E;&#x3E; QVI introduced by Bensoussan-
Lions [4] [5]; its aplicability will be shown by the examples from
Section 3, which are QVI rather in the abstract sense of Tartar [12].

Note also that the alternate coerciveness properties ( C1 ) (C2)
have a new formulation that seems to us naturally suited. This coer-

civity condition together with the above mentioned continuity as-

sumption permits us to give a proof which is not based upon Kaku-
tani’s fixed point theorem applied to a selection map; implicitly, the
proof does not require the local convexity of the linear topologies.

Finally, y we make use of « compatible » topologies (the argument
involves their product) and in this way our theorem extends over a
larger class of QVI.
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PROOF OF THEOREM 1. First, it is to be established that, by com-
patibility of ri and ’i2, .K is necessarily ’i2-COmpact too. Moreover,
one can show that and ’i2 are even equal on K.

Next, let us define for each WE Ci r1 C, the subset

if the supposition ( C1 ) is valid or alternatively

under the supposition ( C2 ) . contains at least (w, w) . By hypo-
theses ( C1 ) , ( C2 ) one has respectively M2(wo) c I~ 

We have in mind to show that Mi(w) are 7:2 X t1-closed in O2 X 01
and that they have nonempty finite intersections.

Consider a generalized sequence tn. 7 U61,5c-,d in with ~1,

~a "I U2; the compatibility of z2 and z1 yields ui = u~ = u and, as a
consequence of hypotheses (4) (5) and (Cl) or ( C2 ), ( ~c, u ) must

belong to 
For a finite subset (wi, ..., wn) c 01 r1 O2 we denote by Z’ the fol-

lowing map defined on the n -1 dimensional simplex S of Rn:

where is the canonical basis of Rn.

A value = I aiwi, ~) of T belongs u ... U Mi(wn) and also
~ 

to ~(~i)U...U~f2(~). If not either

and this implies according to (2)

or in the second situation we get straightforwardly the same inequalities.
Using the convexity (1), it follows that
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and comparing to (2) we obtain a contradiction. Hence 

z = 1, ... , n, similarly T-l(M2(Wi)), i = 1, ... , n must cover the sim-
plex S and as easily seen each face of 8 is contained in the union of
the corresponding sets from these latter. Obviously T is continuous;
then, under the hypothesis (C1 ), T-’(Ml(wi)) are closed and alterna-
tively under (0’2), T-l(M2(Wi)) are closed in S. By virtue of Kna-

n

ster-Kuratowski-Mazurkiewicz respectively
n i=l

~0, and therefore either
i=l

We conclude that the global intersection

is nonempty in the i2 X ri-compact I~ X K. In the second case, we have
already proven the existence of the desired solution u e IT (see Corol-
lary 1 below).

In the first case, the assertion of the theorem will follow if we prove
that any E .K with

satisfies the QVI from the statement. Otherwise, it would exist
WE Ci r1 O2 with h(u, u) &#x3E; h(u, w ) -f - g ( ~c, u, iv-). Consider then t E ( o, 1 ]
and + Ci n C2 ; the lim inf as t t 0+ of

can be computed by (3) and (5) to obtain h(u, u) - g(u, u, w). Hence
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But it is also true that

We add these two inequalities multiplied by t, respectively 1- t,
and using the convexity (1) we get

This contradicts (2) and the proof is completed.

COROLLARY 1. (As one can ascertain according to the above proof)
Theorem 1 remains true under the assumption ( C2 ) if we omit the

monotonicity hypothesis g(u, v, w) + g(u, w, v)  0 from condition (2)
(we may neglect also hypothesis (3), which is implied by ( C2 )) .

3. - Examples.

We shall first apply Theorem 1 to some inequalities which arose
from plasma physics. Such QVI were solved by other methods
in [10] [11].

EXAMPLE 1. Let E1 = Ci = W1,2)(D) be the usual Sobolev space
on a bounded open subset D with smooth boundary of the n-dimen-
sional Euclidean space Rn. Consider ~cl the weak topology on 
Let E2 = O2 = L2)(D) be the space of all (equivalence classes of)
p-integrable functions on D, p &#x3E; 1, and z2 its usual Banach topology.
The topology ~2 is weaker on than zl . The choice
of the space is obvious.

Let us take g identically 0 on 0, X 01 X 01 and

defined on with f E Lq(D), 1/p -f-- 1/q = 1. We shall analyse
successively the conditions of Theorem 1.

To satisfy ( C1 ) or ( C2 ), we take K a bounded closed ball in
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centered at vo = 0, with a sufhciently large radius given by

11-1 
lim (h(w, w) - h(w, 0)) = + 00. Indeed, we have

llwllw1,p-+oo

because the functional ( ~ )+ is Lipschitzian. The latter shows that we
can choose a convenient radius for _K such that h(w, w) &#x3E; h(w, 0)
for all w E The Banach topology T2 of LI(D) and the
weak topology ~1 of are equivalent on K!

It is easy to see that h(~, ~ ) is strictly convex on Hypo-
theses (2) and (3) are vacuous for g « 0. Condition (4) is also verified
because

and it follows the continuity of h( ~ , ~,u) on 
It only remains to check the validity of hypothesis (~); h is i2 X ~1

lsc on L’P(D) X Wl,P(D), because is continuous,
DXD

with respect to the norm and is weak 1sc
on 

D

We point out that it was necessary to resort to the weak topology
on yVl,1’(D), since the continuity of h(~, ~ ) in the norm topology of Wl,’P
does not suffice to infer the conclusion (I~ is only weakly compact
in -W’,,,(D)) and L’P-semicontinuity in the second variable is useless
as Wl,’P(D) is not closed in 

We come to the conclusion that, according to Theorem 1, the

has a solution u E 
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EXAMPLE 2. Let El = E2 = E be a linear topological space and
C = O2 = .g a convex compact subset. Consider h identically 0 on
K x K and take y(~~~)==~2013~,/(~y~)~ where f is a mapping
from into a topological group Y, as in Minty’s paper [8].

In view of Theorem 1, we set as i1 = i2 the topology of El = 
Because and since f (v, ~ ) is presumed to be continu-
ous from K to the topological group Y and (’y’~ continuous on

(.g - .K) X Y, the hypothesis ( Cl ) is exceedingly verified.
For all y E Y,  ~ , y) is linear from E to .R, hence condition (1 ) of

our theorem is also satisfied. For all x E .E, x, ~ ~ is a homomorphism
of Y into the additive .,R and it is assumed that

and thus hypothesis (2) is verified.

Next, consider (as in [8]) Y with the weakest topology in which
all  0153, . &#x3E; are continuous and suppose that for any fixed u E I~, f( . , u)
has continuous restriction to any line segment in .K ; it follows that
condition (3) of Theorem 1 is satisfied.

Thus, we find again the existence result from a theorem for va-
riational inequalities recently given in [8]: the inequalities

have at least a solution u E K.

EXAMPLE 3. We can use Corollary 1 to give a direct proof for the
existence of a solutions of a QVI formulated by Baiocchi [2] [3].

Let D = y); a  x C b, 0  y  Y(x)~ be a subset of E~, where
a  0  b and Y is a certain C3 and strictly concave function on [a, b].
Suppose (see [3]) that Y(a) = Y(b) = 0 and 0  Y(c)  Y(O) for a

given CE(O, b). We take E2 = Hi(D) the Sobolev space with its
usual weak topology = 7:2.

Let us set 01 = C2 = f v E gl (D ) ; v(x, 0 ) = 0, a  0153  b~ which is a
closed subspace in .E (the trace v( ~ , 0 ) makes sense for v E .H’1(.D)) .

The functions g and h in this example are defined on C, X 01 by
g(v, w) = a(v, w - v) with
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and

where: D1uD2 is an open subset of D ; D3 = 
y3 and y, are the trace operators

and

with values in c), respectively b) (see [3] and [7], vol. I,
Ch. 1, ~ 11) ; p(x) is a continuous function on b].

We prove that Corollary 1 can be used to deduce the existence of
a solution u e 01 for the

One can verify that

for all v E C, and a(., .) is continuous bilinear on Ci taken with the norm

this defines on C, the same topology as the usual norm of Hi(D).
Thus g(v, w) is Tl-usc in the first variable. As
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it is possible to choose .l~ in (0, + oo) in such a way that the require-
ment ( C2 ) of Theorem 1 is satisfied for

Concerning continuity qualities of h, let us observe that the last
two integral terms are linear continuous on Ci and as to the first of
its integrals we find:

If the weak limit n, f + o0 of u n and wn are just uo , respectively wo ,
then the right side in this inequality tends to 0, because in

Zi(J9g) and (Y3Un)+-+ (Y3UO)+ in L1(0, c). Hence hypotheses (4) and (5)
of Theorem 1 are positively tested.

Clearly, y g(v, v) = 0 (as required in Corollary 1) for all 

Regarding the condition (1) we need still to note the convexity of the
functional (oc-.)+ on .R which implies the convexity of ~(2c, ~ ) on Cl .

It should be emphasized that a solution of the above QVI belongs
to according to [2] [3], where t4e existence of minimal and
maximal solutions is proved constructively by an iterative method.

4. - Parabolic QVI.

Our existence result for parabolic QVI is based on the following
general theorem which may be used even in stationary cases.

THEOREM 2. Consider the Banach spaces El ’E2 such that E1 C .E2
algebraically and topologically and E1 is dense in Denote by 
the weak (norm) topology of .El and by 7:2 the norm topology on .E2.
Let C c El be a convex closed subset with compact injection in E2
and let Q c .E2 X C be a r2 X r-continuous ( ~9], Ch. 1, § 7) multifunction
with convex (z1) closed values. Further suppose that g(v, w) is a real
function on C X C, t1-usc and concave in the first variable, convex
in the second one, X r-usc on each 00 X C, where Co is a ball of E1, y
with g(v, v ) = 0, Vv E C.
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If there exist a constant k &#x3E; 0 and an element Q ( u ) , for all u E C’
with so that g( v, wo )  0 for every v E C with 
then the

has at least one solution 

PEOOF. Let us define the selection map of the (QVI), namely

as if and only if v is a solution of the variational

problem

First, we appeal to Corollary 1 to prove that T(u) are nonempty.
We consider the trivial case when the two compatible topologies coin-
cide with ~cx on Ei and take Cx = C2 = Q ( u ) ~ ~. Conditions (1), (2),
(4), (5) of Theorem 1 are verified if we put g(u, v, w) = g(v, w) and
h _--_ 0 on Q (u) The actual hypotheses assure the existence of
the nonvoid zz-compact set

so that (C2) is thoroughly satisfied.
Since, Q(u) is t1-closed and g(., w) is t1-usc and concave it follows

that is T¡-closed and convex.
Next, we note that T(u) for all it E Co , where Co denotes the

set Co = C; This set is t1-compact and also t2-relatively
compact due to the compactness of the injection E2. The topo-
logies zl and 7:2 are compatible on Ei (Example 1 in Section 1) and
they are equivalent on Co .

The assertion of the theorem follows by Kakutani’s fixed point
theorem [6] applied to T : We must still show that ~’ is

closed in Co x co; to this purpose consider the sequence vn) E ly
with the limit (u, v) e Co x Co . We have g(Vn, ~)&#x3E;0y
Vw e and therefore
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where 6 is the indicator map

At this moment, we use the continuity property of the multivalued
mapping Q together with that of g, to infer

This means that v E Tu. The proof is completed.

COROLLARY 2. Let V be a real reflexive Banach space with linear
and compact injection into a real Hilbert space .8’; V is supposed
to be dense in H. Consider the weak (norm) topology on

E1= L2(0, T’; V) and 7:2 the norm topology on E2= L2(o, ~’; .g‘).
Let a( ., . ) be a continuous coercive bilinear form on V f E L 2 ( o, T ; H)
and denote (.,.) the pairing between V’’ and Tr. For an arbitrary
a &#x3E; 0, denote

Let Q c E2 X C be a i2 X t-continuous multifunction with convex val-
ues, such that there exist for at least one subset

uEB

with the radius k larger than a certain constant depending on a(.,-),
f and 

The QVI

has at least a solution u E Q (u ) .
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PROOF. Apply Theorem 2 to the function

defined on C X C.
The set C is convex and closed in L2(0, T; V): if vn E C, vn-+v

in L2(o, T ; V), then necessarily a subsequence of dvnfdt converges
weakly to v in T ; V’) and v = dv/dt; thus we get v E C. By a
theorem due to Aubin [1] the injection C ~ E2 = .L2(o, T; H) is

compact.
Obviously, g(v, .) is affine and g(v, v) = 0, b’v E C. Each integral

T

term of g is concave in v&#x3E; on C, even f (dvldt, - v) dt because of the
o

restriction v(O) = vo, Vv E C. Moreover g(., w) is t1-usc on C, since
the very same three terms are strongly continuous in v on C c
c L 2(o T ; V) (here one avails himself of the fact that for the second
integral dwfdt is bounded by a in the norm of L2(0, T ; Y’), C).

From continuity and coerciveness properties it follows that

with 11./1 11 the norm in L2(0, T ; V). Then the required inequality
g(v, wo)  0 holds for all v E where B is as before with a suf-

ficiently large radius k ~ ko dependent on a, 1V12 , ~13 and IIwol/.

EXAMPLE 4. We attempted a similar existence result in [13]. The

hypothesis wo e n Q(u) for a certain bounded subset 
uEB

seems of different nature than the usual growth as-
suptions on Q and is perhaps the main difference by comparison to
the existence results from [4].

To reassure us concerning the requirements on Q, let us consider
just the following simple case: for a bounded open set D c Rn, take
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defined by

Q is closed, i.e. if and un converges strongly to u in

~L~ (o, T ; L2(D)), vn converges to v in L2 (o, T ; .H1(D)), then (u, v) E Q.
Finally, wo = 0 E Q(u), ’iuEL2(0, T ; and thus the above men
tioned hypothesis is trivially satisfied by Q.

Our Theorem 2 has applications as well to stationary QVI. We
draw the following

COROLLARY 3. Consider the Hilbert spaces E1 c E2 such that the
injection is linear compact and El is dense in Suppose
that El is an ordered linear space with closed positive cone. Denote

by a ( ’ , ’ ) a coercive bilinear continuous form on El X EI, by f an ele-
ment of E2 and by ( ’ , ’ ) the inner product in Let M: E2 -+ El
be a mapping which is continuous from the norm topology of E2 to
the norm topology of El and bounded from below, on at least

one ball with k ~ ko, where ko is a certain

constant depending on IIwo a(.,.) and f. The

has at least a solution u  Mu.

PROOF. Apply Theorem 2 to 

0 = El and Q(u) = Clearly, we have to do with a
strict specialization of the data of that theorem. Q c E2 X El has
convex values by linearity of «  &#x3E;&#x3E;. Q is closed by continuity of M

. 
and closeness of the positive cone in El. From

we see that g(v, wo)  0 is valid for all v E C with with

Note that M1 depends on the continuity of a ( - , - ), 1f~2 on its coercivity
and on the injection .El a* E2 -
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REMARKS. Corollary 3 enlightens the connections between Theo-
rem 2 and the existence theorems from [5] and [12]. In our Corollary 3,
the space E2 is not ordered and the positive cone is closed only m L~1,
condition (11) on Q from [12] or the corresponding assumption
« if decreasing &#x3E;&#x3E; from [5] are replaced in Corollary 3 by the hy-
pothesis that ~tl is bounded below on a certain ball from El.

To illustrate let us take M: E2 = L2(D) - .E1= .g1(Dj, defined by

If satisfies the required conditions: lt~ is strongly continuous and
Vui E E, Mu is a constant function such that with on D.

Acknowledgement. I am grateful to Professor V. Barbu for his help
and encouragement.
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