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Acceleration Waves in Thermo-Viscous Fluids.

ANGELO MORRO (*)

SUMMARY - Acceleration waves in heat-conducting viscous fluids are inves-
tigated through a model of fluid with hidden variables. It turns out that
both longitudinal and transverse waves may occur.

1. - Introduction.

The theory of viscosity based on Navier-Stokes’ law does not ac-
count for wave propagation. Differently from the analogous paradox
whereby temperature waves are ruled out by Fourier’s law, aside
from refs. [1, 2], such a problem has been given little attention.

Really, it can be shown that at least two approaches account for
wave propagation in viscous fluids. The first one employs fading
memory functionals [3] whereas the second one describes the material
properties via hidden variables [4, 5]. This paper aims to deliver a

theory of wave propagation through heat-conducting viscous (thermo-
viscous) fluids appealing to the second approach. Yet a strict appli-
cation of the rule of equipresence leads to a theory ruling out the pos-
sibility of wave propagation. Accordingly, it is assumed that not all
external variables, which the evolution function depends on, influence
directly the response of the material. Precisely, the evolution func-
tion depends on the temperature rate, the temperature gradient, and
the stretching tensor while the response function does not. In spite

(*) Indirizzo dell’A.: Istituto di Matematica dell’Università, via L. B.
Alberti 4, 16132 Genova (Italy).

Lavoro eseguito nell’ambito del G.N.F.M. (C.N.R.).



170

of being not common in the literature, the disregard for the rule of
equipresence is not at all new since it is exhibited in the papers [6, 7 J
though in connection with the temperature gradient only.

The general properties of materials with hidden variables are set up
in sec. 2 while an analysis of acceleration waves in temperature rate
dependent thermo-viscous fluids is outlined in sec. 3. On assuming
the Clausius-Duhem inequality as statement of the second law of

thermodynamics, sec. 4 deals with a thermodynamic theory of a par-
ticular model of thermo-viscous fluid. Such a model appears to be
the natural generalisation of the customary model of thermo-viscous
fluid in that asymptotically it gives Fourier’s law and Navier-Stokes’
law but, meanwhile, it accounts for the existence of acceleration waves.

It is a quite remarkable result that the model proposed in this note
allows the existence of transverse waves thus providing a property
especially suited for testing experimentally the validity of the model
itself.

2. - Materials with hidden variables.

Henceforth R, R+, R++ stand for the real numbers, the positive real
numbers, and the strictly positive real numbers, respectively. A dot
between two vectors or tensors means inner product. The symbols
Y, Z, denote finite-dimensional real normed vector-spaces while
L(Y, A) designates the normed vector space of all linear maps from Y
into A. The evolution of a body B may be described by supposing -4
constituted by particles labelled by the positions they occupy in a
reference configuration M. The vector x(X, t) denotes the position of
the particle X at time t. To save writing, the dependence on 
is understood and not written. A superposed dot denotes material
time differentiation. The symbols grad and div stand for the spatial
gradient and divergence operators.

The present approach to materials with hidden variables hinges
partially on Day’s [5]. The main differences are the following ones.
First, not all external variables affect the response function. Second,
the hypothesis about the evolution function is used in a more restrictive
form thus simplifying the next applications. So, the general properties
of materials with hidden variables may be assembled as follows.

A. materials with hidden variables zo, ao, U, V, a, h~ on YX Z X A
consists of a ground state (yo, zo, ao) E Yx ZXA together with an
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open connected neighbourhood Ux V of and the maps

while A state of the material is a triple
(y, z, a) E a being the vector value of the hidden variables.
The response of the material and the growth of the hidden variables
are given by

To clarify the notion of equilibrium state it is convenient to introduce
a map E: Yx Z - A subject to the following restriction. Correspond-
ing to each pair (y, z) E there is just one hidden variable

E(y, z) E A such that

while

The set of hidden variables

is open in A, and there is a subset *’ c such that (yo, zo) 
and the restriction E = Elr of E is a bijection from W onto B
whose inverse P-1 E C2(B,if/").

If (y, z) E Ux V, the triple ( y, z, E( y, z)) is an equilibrium state.

The equilibrium response has the form

It is assumed that there exist a map A E L(A, A) and a positive
constat 6 such that
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So we have the uniform Lipschitz condition h(y, x, ~ ) E Lip + 6),
( y, z) E U X V. Moreover the map A + 61A is supposed to be negative
definite.
A path is a bounded and piecewise continuously differentiable map 7C

from R into UX V. If n is a path and t E R then is termed the

value of 7C at time t. A history is a function defined on R+ with values
in Ux Y. Given a path n and a time t E R, the history of n up to time t,
~t{ ~ ), is defined by = is a pair (7C, a)
defined on R and with values 7C E Ux V, 
A path 7C = (y, z) determines the growth of the hidden variables

through the evolution equation

For any given continuously differentiable path n, appealing to (2.3)
a well known theorem allows us to say that the solution of (2.4) exists
and is unique. Here I point out some properties of the solution.

Consider the hidden variables a, a E A corresponding to two
different paths n, n + v, that is to say

Subtraction gives the evolution equation for the difference P in the form

where

Observe that in terms of r (2.3) takes the form I r  6 1 P I - In view
of (2.5) it follows that

whence
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Then, letting - yrz  0 denote the real part of the eigenvalue of A
which has the largest real part, we have the estimate

The inequality (2.6) will be essential to deriving thermodynamic
restrictions in sec. 4. Yet, as it stands, (2.6) seems insufficient in that
the sought function B occurs in either of the sides. To eliminate this
insufficiency a routine procedure applies. First replace (2.6) by

Observe that

Then integration and substitutions deliver

Notice that m - 6 &#x3E; 0 because of the negative definiteness of A + 
The inequality (2.7) provides a bound for the difference P at time t

in terms of the initial value and of the difference path v via the
quantity y. In the special case of equal paths, that is v ---_ 0 and hence
y == 0, (2.7) reduces to
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whereby the difference between the hidden variables, arising from dif-
ferent initial values, decreases in time at least as exp (- (M - 6) (t - to)) .
Accordingly, letting 7r’= a’E B, the evolution equation

satisfies the condition of asymptotic stability

This result lends operative meaning to the assignment of the initial
condition for the hidden variables; we can get the initial value a’
at time t simply by holding the path n equal to up to time t.

3. - Acceleration waves.

A particle of a thermo-viscous fluid is characterised by identifying
y E U with the pair (0, e) and z E V with the tiple ( 8, g, D ) ; here 0
stands for the temperature, e the actual mass density, g ,the spatial
temperature gradient, and D the stretching tensor. Indeed, once the
path n = (0, eg 01 g, D) is given, the internal energy density .~, the

entropy density q, the heat flux q, and the Cauchy stress tensor T
are given by

being a = (.e, ~, q, T).
This section deals with acceleration wave propagation in fluids

described by (3.1). In this connection note that the hidden variables

a(t) are independent of the present value 7r(t)-see, e.g., [8, 9]. Such
a property allows us to assume the continuity of a even though 7t
suffer jump discontinuities as it happens at wave fronts. This war-
rants the following

DEFINITION. A wave a(t) is said to be an acceleration wave if:

A1) the functions x, 0, ~o, a are continuous everywhere;
A2) the functions x, D, ~, g, ~, grad e, a, grad a, and the deriva-

tives of higher order suffer jump discontinuities across but are
continuous functions everywhere else.
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By adopting standard notations - see, e.g., [10]-and denoting by ~
any of the quantities x, 0, p7 a, A1 ) means [~] = 0. Then Maxwell’s
theorem gives

while the kinematic condition of compatibility may be written as

n being the unit normal to o(t) and U the local speed of propagation.
The definition of acceleration wave and the assumption (3.1) imply that
[ T] = 0, [q] = 0. Accordingly, (3.3) yields

The propagation of waves is governed by the balance equations.
If, as usual, the body force and the energy supply are supposed con-
tinuous across the wave front, the balance equations provide the
jump relations

being v - ac. Let 0, a stand for the thermal amplitude [6] and the
acceleration amplitude [v ], respectively. In view of (3.3) we get the
identities

whence [div v] = - U-1 a. n. Hence it is an immediate consequence
of ( 3.1 ) that

with the subscripts denoting partial differentiations. Since 0, e, a are
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continuous across the wave front, the jump [h] arises only from the
contributions of and D. Moreover these contributions can be
handled easily if h is assumed linear with respect to If

such is the case, we have

Then, appealing to (3.4)-(3.8), a straightforward calculation delivers

where

A more explicit form of the relations (3.10) is examined in the next

section through an example of constitutive equations closely related
to Fourier’s and Navier-Stokes’ laws. Here it is worth emphasising
the general property that the present account of the dependence on
the temperature rate 0, the temperature gradient g, and the stretching
tensor D are not in contrast with the existence of acceleration waves.

Indeed, the relations (3.9), (3.10 ) show how such dependences give
rise to new additive terms besides the standard ones.

(1) The linearity with respect to 6, D is consistent with Lubliner’s pro-
posal [I I] whereby the evolution function must depend linearly on the time
derivatives of the external variables (o _ - e tr D). If Iz is a non-linear
function of 0, g, D, the result (3.9) holds in connection with infinitesimal
waves.
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4. - An example.

The preceding examination of acceleration waves shows that the
dependence of 1z on 0, e is not at all essential. On the other hand,
the general assumption (2.3) means that h must be a nearly linear
function of the hidden variables. Bearing this in mind, to adhere as
close as possible to Fourier’s law of heat conduction and Navier-Stokes’
law of viscosity it is convenient to suppose that the hidden variables a,
at each particle X, consist of a vector a2 e Y’ and a symmetric tensor
a2 E Sym (Y, governed by the evolution equations

The negative definiteness of A makes 1’1, 1’2 E R++. The two parame-
ters ri, 1’2 can be thought of as relaxation times. So eqs. (4.1) allow
heat conduction and viscosity to be affected by different relaxation
times.

The equilibrium map is a w (aI, a2) - (g, D). The obvious solu-
tions of (4.1) are

the symbol ~(t; z) being defined by

The response function a(0, e, a) must be compatible with the second
law of thermodynamics. Unfortunately this assertion has not a unique
mathematical counterpart since the current literature exhibits several
statements of the second law. Here it is considered the compatibility
with the second law in the form of the Clausius-Duhem inequality
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which appears to be the most restrictive statement. Accordingly, y on
introducing the free energy y = e - 0n, the inequality

is assumed to hold for every C’ (0, e, g, D) on R. Substi-
tution of (4.1) allows (4.2) to be written as

Given a path 1t E and the present time t, consider a path
1t + v E C1(18) such that v(t’) = 0, t’E [to, t - s], and, meanwhile, 0(t),
g(t), and D(t) are arbitrary. First, the estimate (2.7) tells us that the
change of the hidden variables, ~3, due to the change from n to 1t + v
vanishes identically outside [~2013~ t]. Second, (2.6) enables us to say
that may be as little as we please provided E is small enough.
In conclusion, upon the choice of a small enough 8 we obtain that,
via the change R - R + v, the quantities 6y D, and g change arbi-
trarily while the quantities between brackets change as little as we
please. So, (4.3) holds if and only if

Then a a) satisfying (4.5) makes the response functions
(4.4) identically compatible with the second law of thermodynamics.

To specialise the example under consideration look now at a free
energy function 1p dependent on 0, e and on the quadratic invariants

and in the form
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where x, P7 A are non-vanishing constants. It is a simple matter to
show that the function (4.6) satisfies (4.5) if and only if

Substitution of (4.6) into (4.4) yields

where p = As to the meaning of (4.7) note that, if g and D
are constant in time, on account of the asymptotic stability and of
the equilibrium map we have

This allows us to say that when g and D are constant in time eqs. (4.9)
asymptotically become the Navier-Stokes and Fourier constitutive

equations. So, (4.7) may be regarded as the Stokes-Duhem and
Fourier inequalities.

The behaviour of the fluid as to the propagation of acceleration
waves is described by (3.9). Indeed, account of the response func-
tions (4.6)-(4.9) allows us to write (3.9) in the form

where JV = n ~ a2 n and -0’= are the components of a2 n,
that is
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The explicit expressions of the quantities p, po, are

The propagation condition associated with the homogeneous system
(4.10) in the unknown amplitudes a, e follows straightaway.

Setting aside a comprehensive investigation of (4.10), it seems

interesting to point out some particular solutions. First, if ~ = 0
the system (4.10) bears evidence of the existence of purely mechanical
transverse waves, that is to say a - n = 0, O = 0. Such waves propa-
gate through the fluid with the local speed of propagation

So these transverse waves closely resemble the customary transverse
waves in elastic materials-possibly with microstructure [12]-once
pl-c, is viewed as Lam8’s coefficient.

Second, longitudinal waves too may exist. For, letting a = (o n) n.
O ~ 0, the system (4.10) is associated with the propagation condition

where
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As to the waves accounted for by (4.12 ), examine first the possibility
of symmetric waves-symmetric roots of (4.12). These waves occur if

and only if the coefficients cl , C3 vanish. According to (4.13) this hap-
pens if «i n = 0. On the other hand, since the possibility of sym-
metric waves has already been examined by Suliciu [13], a comparison
is in order. Using the present notations Suliciu’s requirements (3.11),
(3.12) read

Here the relations (4.15) are trivially true while both relations (4.14)
hold if ain = 0. So, Suliciu’s theory and ours ultimately lead to

the same condition for the existence of symmetric waves. This is
due also to the fact that the introduction of hidden variables ac-

counting for viscosity does not give rise to additive terms in Cl and c3.
A simple special case of (4.12) is provided by non-heat conducting

viscous fluids. Indeed, letting x = 0 we have co == 0, Cl = 0, c, = 0
and (4.12) yields

displaying the additive contributions arising from viscosity (2). Ac-

cordingly longitudinal waves exist (U2 &#x3E; 0) provided T21%1 C 1 and
í21tr  1.

A final comment about (4.12) concerns the limiting case 1’1 -+ 0,
T2 -+ 0; for the sake of simplicity suppose The

physical meaning of this limit may be realised by observing that,
in respect of the response functions, the presence of hidden variables
induces memory effects. In particular, the example at hand accounts
for memory effects associated with heat conduction and viscosity. In

this sense the limit r ~ 0 corresponds to an extremely short memory
and hence we expect such a limit to establish a connection with
Fourier’s and Navier-Stokes’ theories. To clarify this point observe that

(2) If 6 == 0 it is evident from (4.11) tbat po, ee, ~02 ee - p depend only
on 0 and e.
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Hence, if r - 0, ci- and c2 increase as r1 while co as ~2. Then, because
of (4.12), the speed U goes to infinity as T-1. This provides the sought
connection in that Fourier’s and Navier-Stokes’ laws, forbidding ac-
celeration wave propagation, may be obtained from the constitutive
equations (4.9) via the 0.

~5. - Remarks.

On the basis of different viewpoints, two objections to the analysis
of sec. 4 may be in order. First, the evolution equations (4.1) are not
objective-or material indifferent [14]. Second the analysis of acce-
leration waves relies on the Clausius-Duhem inequality as statement
of the second law of thermodynamics. An answer to these objections
may be given as follows.

Objective evolution equations. The material time derivative of vec-
tors and tensors is not objective. In respect of (4.1), if a1 (a,) is an
objective vector (tensor) then objective evolution equations can be
obtained by replacing al, a2 by the co-rotational time rates Oi, «2’
respectively, defined by

W being the skew-symmetric part of the velocity gradient. This

makes eqs. (4.1) to be replaced by

So, in writing the counterpart of the relations (4.10) we have new
contributions because
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being [tF]==2013(2!7)-~(~@~2013~0~). Although this gives rise to

more cumbersome formulae, the new contributions do not exhibit
qualitatively new terms. Then, setting aside an exhaustive description
of waves according to objectivity, here it is pointed out that the new
terms vanish if «i and a2 vanish at the wave. This happens when
g = 0, D = 0 until the arrival of the wave.

Thermodynamic restrictions. Doubtless the results about wave propa-
gation hinge on the thermodynamic restrictions placed by the state-
ment assumed for the second law of thermodynamics. An analysis
of the consequences of the various statements of the second law is

obviously beyond the scope. Yet it is significant to show that account
for transverse acceleration waves is not typical of the previous example
only. To this end, independently of any thermodynamic consideration,
generalise Fourier’s and Navier-Stokes’ laws by means of the con-

stitutive equations (4.9) and assume that 1p, rJ, .e, and p depend only
on 0 and e. In such a case we find that the relations

must hold at the wave. Again / = 0 allows the existence of purely
mechanical transverse waves with the local speed of propagation Ur .
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