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On the Euler Equations for Nonhomogeneous Fluids (I).

HUGO BEIRÃO DA VEIGA - ALBERTO VALLI (*)

1. - Introduction and main results.

In this paper we consider the motion of a non-homogeneous ideal
incompressible fluid in a bounded connected open subset Q of ~2.

We denote by v(t, x) the velocity field, by x) the mass density,
and by a(t, x) the pressure. The Euler equations of the motion are
(see S6dov [18], chap. IV, § 1, p. 164)

where n = is the unit outward normal to the boundary T of Q,
b = b(t, x) is the external force field, and a = = oo(r) are

the initial velocity field and the initial mass density, respectively.
Non-homogeneous ideal incompressible fluids are considered by many

(*) Indirizzo degli AA. : Dipartimento di Matematica e Fisica, Libera
Universita di Trento, 38050 Povo (Trento), Italy.
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authors; see for instance Sédov [18], Zeytounian [23], Yih [22]; see

also LeBlond-Mysak [13].
For the case in which the fluid is homogeneous, i.e. the density e0

(and consequently ~o) is constant, equations (E) have been studied
by several authors (for some reference see [2]). For non homogeneous
fluids, Marsden [15] has stated the existence of a local solution to
problem (E), under the assumption that the external force field b(t, ~~
is zero. Marsden claims that his proof can be extended to the case
in which b(t, x) is divergence free and tangential to the boundary, y
i.e. div b = 0 in and b . n = 0 on [0, To] X 1-’. However for non

homogeneous fluids a general force field can not be reduced to this
particular case (for homogeneous fluids this can be done by sub-
tracting a gradient).

Marsden’s proof relies on techniques of Riemannian geometry on
infinite dimensional manifolds. Our proof is quite different and is
related to those of Wolibner [21] and Kato [9]. However the gener-
alization of the techniques used in these last papers gives the existence
of a solution only under the additional assumption 
where K is an a priori fixed constant depending essentially on S~ (see
our previous paper [2]). The aim of this paper is to drop this con-
dition by introducing an essential device, the elliptic system consisting
in the seventh, the eighth and the ninth equation of system (A),
in § 4. The system (A) does not contain explicitly (compare
with system (4.17) in [2]) and this allows us to drop the referred
additional assumption.

We prove the following result:

A uniqueness theorem for problem (E) is proved by Graffi in [6];
see also [2].

For a mathematical study of non-homogeneous viscous incompres-
sible fluids see Kazhikhov [10], y Lady~enskaja-Solonnikov [11] and

Antoncev-Kazhikhov [1] ; see also Lions [14] and Simon [24].
In the forthcoming paper [3] we prove corresponding results for

the three-dimensional case. Since the publication of this paper has
had some delay, a new result of the authors has appeared in the
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meantime: we give an easier existence proof in Sobolev spaces, without
the use of characteristics, and we prove a C°° regularity result (see [4]).

Finally the authors remark that the extension to the case when
S~ is not simply connected follows an essentially well known argument
([9], [2]). However, for the sake of completeness a preprint containing
all the computations is available (see On the Euler equations f or non-
homogeneous fluids (1), Q not simply connected, Trento 1979) .

2. - Notations.

Let S2 be a bounded connected open subset of R~. We denote by
with k a non negative integer and 0  1  1, the space of

k-times continuously differentiable functions in S2 with 1-H61der con-
tinuous derivatives of order k. For each T E ] o, To] we denote by
C°(QT) the space of continuous functions in Qp and by C1(QT) the
space of continuously differentiable functions in QT .

We set

and

is 1-H61der continuous in t, uniformly with respect to 0153} , y

is 1-H61der continuous in x, uniformly with respect to t} y
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We denote by the supremum norm, either in d7 or in Q,, by
[ . ]~ the usual 1-H61der seminorm in D, by 11 the usual A-H6lder
norm in Furthermore we define

Corresponding definitions, with the same notations, are given for vector
fields u = (1h, Every norm and seminorm is computed as in the
following example:

Moreover we set

and analogously for all other norms or seminorms. We put

where q is a scalar function and u = (ul, u2) is a vector function.
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3. - Preliminaries.

In the following, x) E will be a generic element of

the sphere

where the radius A is a positive constant, which we will specify below
(see (4.11)).
We denote by c, c,, c2, ..., positive constants depending at most

on A and S~.

Let y be the solution of the problem

for each T ] . We put

and we write v = 

One has

LEMMA 3.1. Let v = Then v E and

Moreover

For the proof see [2], Lemma 3.1.
We now construct the streamlines of the vector field v(t, x). We set

U((1, t, x) - (1, t E [0, T], x E ls, where is the solution of the

ordinary differential equation

This solution is global since v -n = 0 on [0, T] xT. Moreover U E Ci
- ([0, T] X QT) since v E (see for instance Hartman [7], chap. V,
Theor. 3.1, p. 95). We put sup IIDi U(6, .,.)lloo; an analo-llDi U(a,



156

gous convention holds for all norms and seminorms concerning U
a,nd its derivatives.

We have

LEMMA 3.2. The vector function satis f ies the following
estimates

PROOF. From the resolving formula

we obtain

Hence from Gronwall’ s lemma

i.e. estimate (3.7)~.
Analogously

From Gronwall’s lemma we have (3.7 ) ~ .
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On the other hand (3.8) yields

where ei is the unit vector corresponding to the i-th axis.
By using Gronwall’s lemma to estimate U.

. (a, t, x) - Dg y) I and x) - Di s, r) I we obtain

respectively (3.7 )3,

and

Given a velocity v(t, x), we denote = .I’2[v] the solution of the
problem

We denote by ë, i5l, ë2, ..., positive constants depending at most on
A Q, oo , b.

The following result holds

LEEMA 3.3. Let e0 E 01+A(Q) with 9.(x) &#x3E; 0 for each x E lie Then
the o f (3.9) is given by
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PROOF. By using the method of characteristics one easily obtains
(3.10). From this last formula it follows that

and we prove (3.11) by direct computation. D

Now we wish to study the following equation, which will be useful
in the next section:

We easily obtain the formal solution of (3.12) by using the method
of characteristics:

By direct computation of this formula we obtain



159

4. - Existence of a local solution of the auxiliary system (A) when
S~ is simply-connected.

We wish to prove the existence of a local solution of the following
system

where - rot a(~), fl(t, x) - rot b(t, x), and we have extended the
outward normal vector n(x) to a neighbourhood of T.

First of all we study the system

where is divergence free and tangential to the boundary, i.e. div v = 0
in D and = 0 on .h. Since is simply-connected, (4.1 )1 is equi-
valent to
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hence (4.1) is equivalent to

e Then f ~ g E and problem (4.1) has a unique
w. Moreover w e and

where K is a non-decreasing function in the variable IIVe/ell.t.

PROOF. The existence and uniqueness follow from classical Fred-
holm alternative arguments (see for instance Miranda [17], Theo-

rems 22.1 and 22.111, p. 84); in fact the adjoint homogeneous prob-
lem of (4.3), i.e.

has a unique linearly independent solution (since the same holds for
the homogeneous equation (4.3)). By direct computation one veri-
fies that this solution is and hence the compatibility condition

is satisfied (see Lemma 5.2). 
_

Moreover the solution a belongs to and is unique up to
a constant. Furthermore (see Miranda [16], Theor. 5.1, or Ladyzen-
skaja-Ural’ceva [12], chap. III, Theor. 3.1, p. 126)
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where .l~ _.- S~, a non-decreasing function in the vari-
able 

One easily sees that the particular solution 1(; of (4.3) such that
= 0, where xo e 17 is fixed, satisfies

where K is as before; hence (4.4) holds.
The functional H[n] - can be replaced by any other bounded

linear functional in the uniform topology. 0

4.2. Let v = e = .F2[v]. Then problem (4.1 ) has a
unique solution ~,v(t, ~ ) for each t E [0, T]. Moreover w E and

where c is non-deereasing in the variables A and T. We denote this

unique solution by w = F3[V, ~O].

PROOF. We have only to see that and that (4.5)
holds. Since f E c C°([0, T] ; C~’ (S~)) and 9 E C°~x ~ ~ ([o, T] xr) c
c 0°([0, T]; C1 +~’(h)) for each A’ Â (see Kato [9], Lemma 1.2), it

follows easily from estimate (4.4) (with A replaced by A) 
.([0, T]; c Finally (4.5) follows from (4.4), from

and from (3.4) and (3.10). Estimate (4.6) follows from (3.10). 0

Now we want to study the vorticity equation

i.e. equation (3.12) with

From Lemma 3.4, (3.11), (3.7) and (4.5) one gets easily the following
result:
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The function ~ of Lemma 4.3 satisfies (4.7)2 trivially; moreover ( is
a solution of (4.7 ) ~ in the following weak sense:

LEMMA 4.4. For each 0 E one has

where ( , ) is the scalar product in L2(Q).

For the proof see Kato [9], Lemma 2.4.
We now define a map F as follows. The main of F is the sphere

of defined by (3.1) with A such that

We put

where successively v = ~o = F2 [v] and w = .F’3[v, e].
It follows from estimates (4.9) that there exists TI E ]0, To) such

that the set

satisfies F[S] c S, where .F’, the norms, and the seminorms correspond
to the interval [0, T,].

~S is a convex set and by the Ascoli-Arzela theorem it follows that
~ is compact in CO(QTJ.

Moreover

LEMMA 4.5. The map F: S ~ S has a tixed 
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PROOF. By Schauder’s fixed point theorem we have only to prove
that .F is continuous from S in S in the C°(QTl)-topology. Assume that
T. - 99 in 99. c- S. Then in C~([o, 06(.Q)), since the
immersion (see Kato [9], Lemma 1.2)

is compact for B &#x3E; 0 small enough.
Consequently from Schauder’s estimates

By estimating I Un(a, t, x) - U(a, t, x)| I by Gronwall’s lemma, one cb-
tains as in [2], Lemma 4.3

and

Consequently

On the other hand from the formula en(t, x) _ x)) it fol-
lows that is bounded in and is bounded in

hence

where 8 &#x3E; 0 is small enough.
Now it follows from (4.13), (4.17) and (4.4) (with A replaced bye)

that

Hence ~n -~ ~ in I
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The fixed point _ ~ = F[(p] so obtained, together with v = 
and is a solution of auxiliary

system (A) in Q7,", since from (3.5) rot v = g~ = C.
Equation (A)1 is satisfied in the sense described in Lemma 4.4.

5. - Existence of a solution of system (E) when S~ is simply-connected.

First of all we prove that exists in the classical sense and

belongs to Define

where y) is the Greenls function for the operator - LJ with zero
boundary condition. Recall that Ggg is the solution of problem (3.2).

LEMMA 5.1. Put

Then

moreover ro E hence Dtv E oo,Ä(QpJ.
PROOF. For (5.3) see Kato [9], Lemma 3.2. For the regularity

of cv see [9], Lemma 1.5, using in this lemma a result of Widman [20]
(see also Gilbarg-Trudinger [5], pp. 105-106) instead of a result of
Kellogg. D

The following two known results will be useful for proving (5.6)
below.

LEMMA 5.2. I f v E 01(Q), div v = 0 in Q and v · n = 0 on F, then
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where the operator div is to be intended in the sense of distributions
in Q.

For the proof see for instance Temam [19], Lemma 1.1.

LEMMA 5.3. I f v E C, E (D), then

in the sense of distributions.

For the proof see Kato [9], Lemma 1.1.

LEMMA 5.4. The solution w of system ~4.1 ) is given by

PROOF. Set

From (A)3, (A). and (5.4)1 it follows that for PI]

in the sense of distributions.
On the other hand from (A)~ and (5.4)2 one has for each t E [0, Tl]

Finally from (4.10), (5.5) and (A)2 one obtains for each t E [0, TI]

in the sense of distributions. 
Hence by (A)7 one obtains for each t E [0, TI]

in the sense of distributions.
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From (5.9) it follows that w* _ Vq for q e (see for in-
stance Kato [9], Lemma 1.6, or Hopf [8]); by using now (5.7), (5.8)
it follows that w* = 0 in D

From (4.2) it follows that

i.e. (E)1 holds, with
Furthermore

and consequently (E), holds.

REMARK 5.5. To complete the proof of Theorem A, we observe
that from Lemma 3.1 and Lemma 5.1 it follows that 

Consequently, from (E)4 and (3.11),, i.e.

REMARK 5.6. If estimate (3.7) of [12], chap. III, p. 127, holds
with luI2,G¥,D and replaced by and respectively,
then in our result it is sufhcient to assume that S~ is of class C2+~.
In this case x E and the function 2u defined by (4.1) belongs
to The estimates for w in are sufficient for our

method to be applied.
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