RENDICONTI del SEMINARIO MATEMATICO della UNIVERSITÀ DI PADOVA

GIUSEPPE ZAMPIERI

A link between C^{∞} and analytic solvability for P.D.E. with constant coefficients

Rendiconti del Seminario Matematico della Università di Padova, tome 63 (1980), p. 145-150

http://www.numdam.org/item?id=RSMUP 1980 63 145 0>

© Rendiconti del Seminario Matematico della Università di Padova, 1980, tous droits réservés.

L'accès aux archives de la revue « Rendiconti del Seminario Matematico della Università di Padova » (http://rendiconti.math.unipd.it/) implique l'accord avec les conditions générales d'utilisation (http://www.numdam.org/conditions). Toute utilisation commerciale ou impression systématique est constitutive d'une infraction pénale. Toute copie ou impression de ce fichier doit contenir la présente mention de copyright.

$\mathcal{N}_{\text{UMDAM}}$

Article numérisé dans le cadre du programme Numérisation de documents anciens mathématiques http://www.numdam.org/

A Link Between C^{∞} and Analytic Solvability for P.D.E. with Constant Coefficients.

GIUSEPPE ZAMPIERI (*)

0. Let Ω be an open set of \mathbb{R}^n and P(=P(D)) a linear partial differential operator with constant coefficients; Hörmander and Malgrange proved that:

$$PC^{\infty}(\Omega) = C^{\infty}(\Omega),$$

if and only if Ω is P-convex in the sense of the following definition:

(2) Ω is P-convex if to every compact set $K_0 \subset \Omega$ there exists another compact set $K \subset \Omega$ s.t. $g \in C_{\mathfrak{o}}^{\infty}(\Omega)$ and supp $P(-D)g \subset K_0$ implies supp $g \subset K$.

Of course (2) is not necessary to get $PC^{\infty}(\Omega') \supset r_{\Omega'}^{Q}C^{\infty}(\Omega)$ (where $r_{\Omega'}^{Q}$ denotes the restriction map from Ω to Ω') for every relatively compact open set Ω' of Ω , because every differential operator with constant coefficients is semiglobally solvable in view of the existence of the fundamental solution. Denoting by $A(\Omega)$ the space of the real analytic functions on Ω , we prove here that (2) is also necessary in order to solve analytically the equations Pu = f, $\forall f \in A(\Omega)$, over compact subsets of Ω ; namely:

THEOREM 1. Let Ω be an open subset of \mathbf{R}^n . If $PA(\Omega') \supset r_{\Omega'}^{\Omega}A(\Omega)$ for every relatively compact open subset Ω' of Ω , then $PC^{\infty}(\Omega) = C^{\infty}(\Omega)$.

(*) Indirizzo dell'A.: Seminario Matematico dell'Università, via Belzoni 7, I 35100 Padova.

L'autore usufruisce di borsa di studio C.N.R. per l'Analisi Funzionale.

Since in our work [6] we proved that (1) is sufficient to have $PA(\Omega) = A(\Omega)$ when $\Omega \subset \mathbb{R}^2$, we can state:

THEOREM 2. Let Ω be an open set of \mathbb{R}^2 ; $PA(\Omega) = A(\Omega)$ if and only if $PC^{\infty}(\Omega) = C^{\infty}(\Omega)$.

Note that if n>2 the result isn't generally true. Indeed in [4] Hörmander proved that $PA(\mathbb{R}^n)\neq A(\mathbb{R}^n)$ unless every irreducible germ of the real characteristic asymptotic variety $\{x\in\mathbb{R}^n\sim 0\colon P_m(x)=0\}$ (where P_m is the principal part of P) is of dimension n-1. For the heat equation in \mathbb{R}^3 the real characteristics form a line from which follows the nonsurjectivity of the heat operator thought as endomorphism of $A(\mathbb{R}^3)$; this explaines a conjecture by E. De Giorgi and L. Cattabriga [1] which L. Piccinini first proved.

1.

We need some preliminary information. We call (\mathfrak{LF}) -space every Hausdorff T.V.S. which is the union of an increasing sequence $\{A_i\}_i$ of (\mathcal{F}) -spaces, the imbedding of E_i into E_{i+1} being continuous, endowed with the inductive limit topology of E_i . We call strictly bornological space every Hausdorff space which is the inductive limit of a family of Banach spaces. It is easy to see that every Hausdorff quasi-complete space is strictly bornological if (and only if) it is bornological. That said, if E is a strictly bornological space and F a (\mathfrak{LF}) space, every linear map of E into F is continuous if and only if it has closed graph (see [2] pg. 271).

Let x be the variable in \mathbb{R}^n and (x,t) that in \mathbb{R}^{n+1} ; consider \mathbb{R}^n as a subset of $\widetilde{\mathbb{R}}^{n+1}$ where $\widetilde{\mathbb{R}}^{n+1}$ is the Alexandroff compactification of \mathbb{R}^{n+1} . Let Ω be a subset of \mathbb{R}^n not necessary open, set $A(\Omega) = \lim_{n \to \infty} A(B)$ (in the algebraic sense) where B varies in the family of the open sets of \mathbb{R}^n containing Ω which are connected with Ω ; $\forall f \in A(\Omega)$ there is one and only one harmonic symmetric (with respect to \mathbb{R}^n) function $\tilde{f}(x,t)$ in an open symmetric neighbourhood of Ω in \tilde{R}^{n+1} s.t. $\tilde{f}(x,0) = f(x) \ \forall x$ in an open neighbourhood of Ω in \mathbb{R}^n . So we algebraically and topologically identify the space $A(\Omega)$ with $\lim_{n \to \infty} A_s(B)$ when B varies in the family of symmetric neighbourhoods of Ω in \tilde{R}^{n+1} and $A_s(B)$ denotes the (\mathcal{F}) -space of the harmonic symmetric functions on B (that are infinitesimal at ∞ when $\infty \in B$). One can prove that $A(\Omega) = \lim_{n \to \infty} A(K)$ with K varying in the family of

compact subsets of Ω ; with such a topology, $A(\Omega)$ is a Hausdorff complete barreled bornological (and so strictly bornological) space and, if Ω is a compact set, a (\mathfrak{LF}) -space. Denoting by $A'(\Omega)$ the dual of $A(\Omega)$ there is an algebraic and topological isomorphism:

$$\Psi \colon A'(\Omega) \! o \! A_s(ilde{R}^{n+1} \! \sim \! \Omega)$$

defined as follows: if $(x,t) \in \widehat{\mathbb{R}^{n+1}} \sim \widehat{\Omega}$ and $T \in A'(\Omega)$, $\Psi T(x,t) = \langle T_{\xi}, E(x-\xi,t) \rangle$ where E is the fundamental solution of Δ in \mathbb{R}^{n+1} infinitesimal at ∞ ; precisely $E(x,t) = \alpha/|(x,t)|^{n-1}$ (here we suppose $n \geqslant 2$) with α suitable constant. One obtains ΨT on a neighbourhood of $\mathbb{R}^{n+1} \sim \Omega$ by means of an analytic continuation. Such an identification enables us to say that every analytic functional has compact support and that the polinomials are dense in $A(\Omega) \ \forall \Omega \subset \mathbb{R}^n$ (1).

2.

Prof of theorem 1. Given a generic function $g \in C^{\infty}_{\epsilon}(\Omega)$ we associate to g the linear functional on $A(\Omega)$ defined by:

$$\langle T_{\sigma},f
angle = \! \int \! \! g f \, dx \hspace{0.5cm} orall f \in \! A(\varOmega) \; .$$

 T_g is continuous on $A(\Omega)$ for the seminorm:

$$f \to \sup_{x \in \text{supp } g} |f(x)| \qquad f \in A(\Omega)$$

is continuous on $A(\Omega)$. First we prove that supp $g = \sup T_g$, where supp T_g is the smallest compact set of \mathbb{R}^n s.t. $T_g \in A'(\sup T_g)$ or equivalently the smallest compact set of \mathbb{R}^{n+1} on the complement of which ΨT_g has a harmonic continuation (Ψ is the representing isomorphism of $A'(\Omega)$). Indeed observe that:

$$\varPsi T_{s}(x,t) = \int \frac{\alpha g(\xi)}{|(\xi - x,t)|^{n-1}} d\xi = g \otimes \delta_{t} * E(x,t) \quad \forall (x,t) \in \mathbf{R}^{n+1} \sim \overline{\Omega}.$$

Since $g \otimes \delta_t * E$ is continuous in \mathbb{R}^{n+1} because it is the newtonian

(1) For more information see [5].

potential of the masses with density g, it follows that $\Psi T_{\sigma}(x,t) = g \otimes \delta_t * E (x,t) \ \forall (x,t) \in \mathbb{R}^{n+1} \sim \sup T_{\sigma}$. Finally $\sup T_{\sigma}$ is the support, in \mathbb{R}^{n+1} , of the distribution $\Delta(g \otimes \delta_t * E) = g \otimes \delta_t$ or equivalently it is the support, in \mathbb{R}^n , of g. We want to prove now that the distances from $\mathbb{R}^n \sim \Omega$ to $\sup T_{\sigma}$ and to $\sup P^t T_{\sigma}(2)$, which obviously coincides with $\sup T_{P(-D)\sigma}$, are equal. Let Ω_n be the open set of all $x \in \Omega$ s.t. |x| < n and the distance from x to $\mathbb{R}^n \sim \Omega$ is larger than 1/n and note that there is a n_0 s.t., $\forall n > n_0$, $T_{\sigma} \in A'(\Omega_n)$. Fix a n among them and set $d(\sup P^t T_{\sigma}, \mathbb{R}^n \sim \Omega) = d$; consider $\forall y \in \mathbb{R}^n$ s.t. $|y| < \inf \{d-1/n, n\}$ the functional $\tau_y P^t T_{\sigma}$ where τ_y is the translation operator by means of y. Obviously $\tau_y P^t T_{\sigma}$ has its support in Ω and moreover belongs to $P^t A'(\Omega_{2n})$ — (weak closure). In fact, for every fixed $f \in A(\Omega_{2n})$ s.t. $P^t = 0$, the map:

$$y \mapsto \langle \tau_y {}^t P T_g, f \rangle \quad \forall |y| < \inf \{d-1/n, n\}$$

is analytic and, since it vanishes with all its derivatives at y=0, it is identically zero. So $\forall |y|<\inf\{d-1/n,n\}^tPT_g\in {}^tPA'(\tau_y\Omega_{2n})^-;$ and, since by hypothesis $PA(\tau_y\overline{\Omega}_{2n})\supset r_{\tau_y\Omega_{2n}}^{\tau_y\Omega}A(\tau_y\Omega)$, it follows that there is some $T^y\in A'(\tau_y\Omega)$ s.t. ${}^tPT_g={}^tPT^y$. In fact consider the (commutative) diagram:

$$A(\tau_{y} \overline{\Omega_{2n}}) \xrightarrow{P} A(\tau_{y} \overline{\Omega_{2n}})$$

$$r_{\tau_{y} \overline{\Omega_{2n}}}^{\tau_{y} \Omega_{2n}} \qquad \qquad r_{\tau_{y} \overline{\Omega_{2n}}}^{\tau_{y} \Omega_{2n}}$$

$$A(\tau_{u} \Omega) \xrightarrow{P} A(\tau_{u} \Omega)$$

The space $A(\tau_y \overline{\Omega_{2n}})$ is of type (\mathfrak{CF}) because $\overline{\Omega_{2n}}$ is a compact set, while $A(\tau_y \Omega)$ is a strictly bornological space; so we can use the closed graph theorem as we saw in paragraph 1; thus we conclude that $PA(\tau_y \overline{\Omega_{2n}}) \supset r_{\tau_y \overline{\Omega_{2n}}}^{\tau_y \Omega_{2n}} A(\tau_y \Omega)$ implies ${}^tPA'(\tau_y \overline{\Omega_{2n}}) - {}^tPA'(\tau_y \Omega)$ (3). Since, $\forall y, T_g = T^y$ (indeed the map $P: A(\mathbb{R}^n) \to A(\mathbb{R}^n)$ has dense

Since, $\forall y, T_g = T^y$ (indeed the map $P: A(\mathbb{R}^n) \to A(\mathbb{R}^n)$ has dense range because the polynomials are dense in $A(\mathbb{R}^n)$) it follows that $T_g \in \bigcap_{|y| < \inf\{d-1/n,n\}} A'(\tau_y \Omega)$.

- (2) ${}^{t}P$ is the transpose of $P: A(\Omega) \to A(\Omega)$.
- (3) See Theorem 2 of [7] and repeat step by step the demonstration of the analogous implication. Note that for spaces like $A(\Omega)$ and $A(\Omega_{2n})$ we couldn't obtain the same result since, Ω_{2n} being open, $A(\Omega_{2n})$ isn't an inductive limit of a sequence of (\mathcal{F}) -spaces.

Thus $d(\text{supp } T_a, \mathbf{R}^n \sim \Omega) \geqslant \inf \{d - 1/n, n\}$ and, with n tending to ∞ $d(\text{supp } T_a, \mathbf{R}^n \sim \Omega) \geqslant d$.

Summarizing we proved that $\forall g \in C_c^{\infty}(\Omega)$ $d(\text{supp } g, \mathbb{R}^n \sim \Omega) = d(\text{supp } P(-D)g, \mathbb{R}^n \sim \Omega)$ which obviously implies that Ω is P-convex.

q.e.d.

3. - Remark.

It is very easy to prove theorem 1 when Ω is a subset of \mathbb{R}^2 and P is homogeneous; to see this we'll use an idea suggested by prof. Bratti. If $PC^{\infty}(\Omega) \neq C^{\infty}(\Omega)$ we know there exists a characteristic line of P that intersects Ω in more than one interval; by change of the affine coordinate system we can suppose that such a line is the x_1 -axis (and so $P(D_{x_1}, D_{x_1}) = D_{x_1} R(D_{x_1}, D_{x_2})$) and that Ω contains an open subset

$$\begin{split} & \Omega^0 = \ \Omega^1 \cup \Omega^2 \cup \Omega^3 \ \text{ s.t.} : \\ & \Omega^1 = \{(x_1, \, x_2) \colon -\varepsilon_1 \! < \! x_1 \! < \! \varepsilon_2, \ -c \! < \! x_2 \! < \! 0\}; \\ & \Omega^2 = \{(x_1, \, x_2) \colon -\varepsilon_1 \! < \! x_1 \! < \! -a_1 \! < \! 0, \ -c \! < \! x_2 \! < \! d, \ d \! > \! 0\}; \\ & \Omega^3 = \{(x_1, \, x_2) \colon 0 \! < \! a_2 \! < \! x_1 \! < \! \varepsilon_2, \ -c \! < \! x_2 \! < \! d\}; \end{split}$$

and the point $(0,0) \notin \Omega$.

From the hypothesis $PA(\Omega') \supset r_{\Omega'}^{\Omega}A(\Omega)$, $\forall \Omega'$ relatively compact open subset of Ω , it follows that $D_{x_1}C^{\infty}(\Omega^0) \supset r_{\Omega^0}^{\Omega}A(\Omega)$. In fact given $f \in A(\Omega)$ and given, $\forall n$, $u_n \in A(\Omega_n^0)$ (4) s.t. $Pu_n = f$ in Ω_n^0 then $R(u_{n+1} - u_n)$ is analytic in Ω_n^0 and since it verifies there

$$D_{x_1}R(u_{n+1}-u_n)=0\;,$$

it has an analytic extension on the convex hull of Ω_n^0 . Since the C^{∞} solutions in \mathbb{R}^2 of $D_{x_1}u=0$ are dense in the space of the C^{∞} solutions in convex regions of the same equation, we can use the well known device of the telescopic series to find a function $u \in C^{\infty}(\Omega^0)$ which resolves $D_{x_1}u=f$. But such a solution u can't exist when the datum f

(4) Ω_n^0 is the subset of Ω^0 defined in the proof of theorem 1.

is $1/(x_1^2 + x_2^2)$; in fact if it existed we would have, in Ω^1 :

$$u(x_1, x_2) = 1/x_2 \arctan(x_1/x_2) + u(0, x_2)$$
.

This gives $\lim_{x_1\to 0^-} u(0, x_2) = +\infty = -\infty$.

BIBLIOGRAPHY

- [1] E. DE GIORGI L. CATTABRIGA, Una dimostrazione diretta dell'esistenza di soluzioni analitiche nel piano reale di equazioni a derivate parziali a coefficienti costanti, Boll. U.M.I., 4 (1971), pp. 1015-1027.
- [2] A. GROTHENDIECK, Espaces vectoriels topologiques, publicação da Societade de Matematica de San Paulo, 2º edição, 1958.
- [3] L. HÖRMANDER, Linear partial differential operators, Springer-Verlag, 1963.
- [4] L. HÖRMANDER, On the existence of real analytic solutions of partial differential equations with constant coefficients, Inventiones math., 21 (1973), pp. 151-182.
- [5] F. Mantovani S. Spagnolo, Funzionali analitici reali e funzioni armoniche, Ann. Sc. Norm. Sup. Pisa, Cl. Sci. Mat. Fis. Natur., III Sez., 18 (1964), pp. 475-513.
- [6] G. Zampieri, A sufficient condition for existence of real analytic solutions of P.D.E. with constant coefficients, in open sets of R², Rend. Sem. Mat. Univ. Padova, 63 (1980).
- [7] G. Zampieri, Un'estensione del teorema sulle suriezioni fra spazi di Fréchet. Qualche sua applicazione, Rend. Sem. Mat. Univ. Padova, 61 (1979).

Manoscritto pervenuto in redazione il 4 settembre 1979.