RENDICONTI del SEMINARIO MATEMATICO della UNIVERSITÀ DI PADOVA

G. D'ESTE

Torsion-free abelian groups and completely decomposable *p*-adic modules

Rendiconti del Seminario Matematico della Università di Padova, tome 62 (1980), p. 95-102

http://www.numdam.org/item?id=RSMUP 1980 62 95 0>

© Rendiconti del Seminario Matematico della Università di Padova, 1980, tous droits réservés.

L'accès aux archives de la revue « Rendiconti del Seminario Matematico della Università di Padova » (http://rendiconti.math.unipd.it/) implique l'accord avec les conditions générales d'utilisation (http://www.numdam.org/conditions). Toute utilisation commerciale ou impression systématique est constitutive d'une infraction pénale. Toute copie ou impression de ce fichier doit contenir la présente mention de copyright.

NUMDAM

Article numérisé dans le cadre du programme Numérisation de documents anciens mathématiques http://www.numdam.org/

Torsion-Free Abelian Groups and Completely Decomposable p-adic Modules.

G. D'ESTE (*)

Let C be the class of all torsion-free abelian groups G such that $J_p \otimes_{\mathbf{Z}} G$ is a completely decomposable J_p -module for every prime p where J_p is the ring of p-adic integers. This class has been studied by Procházka in [5], where it is proved that C is quite large. In fact, by ([5] Theorem 4*), C contains all torsion-free groups which belong to some Baer class Γ_{σ} .

In section 1 of this note we show that, if G is torsion-free, then $G \in \mathbb{C}$ if and only if, for every prime p, the group $G/p^{\omega}G$ is a p-pure subgroup with divisible cokernel of a free J_p -module whose rank coincides with that of G/pG.

In section 2 we give some examples of groups that are not in C. Indeed, since C is not closed under direct products, very few reduced torsion-free separable or cotorsion groups belong to C.

In section 3 we describe the behaviour of C with respect to pure subgroups and extensions.

I am indebted to Prof. L. Procházka for the advice that the original proof of theorem 1 was incorrect.

- § 1. All groups considered in the following are abelian groups. For all unexplained terminology and notation we refer to [1]. In particular, **P** is the set of prime numbers, **N** the set of natural numbers; **Z** and J_p are respectively the groups (or rings) of integers and p-adic
- (*) Indirizzo dell'A.: Seminario Matematico, Università di Padova Via Belzoni 7 35100 Padova (Italy).

Lavoro eseguito nell'ambito dei Gruppi di Ricerca Matematica del C.N.R.

integers. If G is a torsion-free group and X is a subset of G, then $\langle X \rangle_*$ denotes the pure subgroup of G generated by X. If H is a pure subgroup of G, then we write $H \leqslant G$. Throughout the paper, the symbol \otimes always stands for $\otimes_{\mathbf{Z}}$. For every reduced torsion-free group G, we view G as a subgroup of its cotorsion completion $G = \operatorname{Ext}(\mathbb{Q}/\mathbb{Z}, G)$ and we identify G with $\prod_{p \in \mathbb{P}} G_p$ where $G_p = \operatorname{Ext}(\mathbb{Z}(p^{\infty}), G)$ for all p. If G is torsion-free and p is a prime, then we regard $G_p = G/p^{\infty}G$ as subgroup of G_p .

We can now determine the groups that belong to C.

THEOREM 1. Let G be a torsion-free group and let $p \in \mathbb{P}$. The following statements are equivalent:

- (i) $J_n \otimes G$ is a completely decomposable J_n -module.
- (ii) $G_p = G/p^wG$ is a p-pure subgroup with divisible cokernel of a free J_p -module.

PROOF. (i) \Rightarrow (ii). Since $J_{\mathfrak{p}} \otimes p^{\mathfrak{w}}G$ is divisible, $J_{\mathfrak{p}} \otimes G$ is isomorphic to $(J_{\mathfrak{p}} \otimes p^{\mathfrak{w}}G) \oplus (J_{\mathfrak{p}} \otimes G/p^{\mathfrak{w}}G)$. Hence, by (i), $J_{\mathfrak{p}} \otimes G_{\mathfrak{p}} = J_{\mathfrak{p}} \otimes G/p^{\mathfrak{w}}G = F \oplus D$ where F is a free $J_{\mathfrak{p}}$ -module and D is divisible. Let $f: J_{\mathfrak{p}} \times G_{\mathfrak{p}} \to G_{\mathfrak{p}}^*$ be the map defined by $f((\alpha, x)) = \alpha x$ for all $\alpha \in J_{\mathfrak{p}}$, $x \in G_{\mathfrak{p}}$. Then there is a homomorphism φ that makes the following diagram commute:

Let $\pi: J_p \otimes G_p = F \oplus D \to F$ be the natural projection and identify G_p with the subgroup $\mathbb{Z} \otimes G_p$ of $J_p \otimes G_p$. Thus G_p is p-pure in $J_p \otimes G_p$ and $J_p \otimes G_p/G_p$ is divisible. Since $\operatorname{Ker} \pi < \operatorname{Ker} \varphi$, it is easy to check that $G_p \cap \operatorname{Ker} \pi = 0$. Hence G_p is isomorphic to $\pi(G_p)$ and (ii) holds.

(ii) \Rightarrow (i). By the remark made in the first part of the proof, it is not restrictive to assume $G \cong G_p$. Consequently, by (ii), there is a free J_p -module F such that G is a p-pure subgroup of F and H = F/G is divisible; so $H = A \oplus T$ where A is torsion-free and T is a torsion-group with $t_p(T) = 0$. Since $J_p \otimes H \cong J_p \otimes F/J_p \otimes G$ and $J_p \otimes H \cong J_p \otimes A$ is torsion-free, we conclude that $J_p \otimes G$ is a pure subgroup of $J_p \otimes F$. Let $J_p \otimes F = D \oplus L$, $J_p \otimes G = D' \oplus R'$ with D, D' divisible, R' reduced and L a free J_p -module. Since $R' \leq J_p \otimes F = D \oplus D$

 $=D\oplus L$, one obtains $R'\cap D=0$. Therefore R' is isomorphic to a submodule of L under the canonical projection $D\oplus L\to L$. Thus R' is a free J_p -module ([1] Theorems 14.5 and 14.7) and $J_p\otimes G$ is a completely decomposable J_p -module. \square

The above characterization of the class C is the analogue of a result ([3] Theorem 4.1) concerning torsion-free modules over discrete valuation rings. Also note that, if $G \in \mathbb{C}$ and $p \in \mathbb{P}$, then the rank r of G and the p-rank r_p of G, i.e. the dimension of G/pG over the field with p elements, uniquely determine the structure of $J_p \otimes G$. Indeed let $J_p \otimes G = F \oplus D$ with F free and D divisible; then, as in ([3] Lemma 1.2), $J_p \otimes G$ and F are J_p -module of rank r and r_p respectively.

§ 2. We now look at the behaviour of C with respect to direct products.

PROPOSITION 2. Let $G = \prod_{i \in I} G_i$ where $G_i \in \mathbb{C}$ for every $i \in I$ and let $p \in \mathbb{P}$. The following are equivalent:

- (i) $pG_i = G_i$ for almost all $i \in I$.
- (ii) $J_{\mathfrak{p}} \otimes G$ is a completely decomposable $J_{\mathfrak{p}}$ -module.

PROOF. (i) \Rightarrow (ii). Let $I' = \{i \in I : pG_i \neq G_i\}$ and let $I'' = I \setminus I'$. Since $J_p \otimes G = (J_p \otimes \prod_{i \in I'} G_i) \oplus (J_p \otimes \prod_{i \in I'} G_i)$ where the second summand is divisible, I' is finite and $G_i \in \mathbb{C}$ for all $i \in I'$, evidently (ii) holds.

 $(ii)\Rightarrow (i)$. As before, let $I'=\{i\in I\colon pG_i\neq G_i\}$. We want to prove that I' is finite. Assume the contrary. To see that this is impossible, choose, for every $i\in I'$, an element $x_i\in G_i \setminus pG_i$ and let $L_i=\langle x_i\rangle_* < G_i$. Let now $L=\bigoplus L_i$ and $H=\prod_{i\in I'}G_i$. Then, by (ii), $J_*\otimes H$ has a decomposition of the form $F\oplus D$ where F is a free J_p -module and D is divisible. Write $F=\bigoplus_{k\in I}F_k$ with $F_k\cong J_p$ for all $k\in K$. Let π and π_k , for every k, be the canonical projections of $J_p\otimes H$ onto F and F_k respectively. Observe now that there exists a commutative diagram

where φ is a homomorphism and f sends (α, x) to $\alpha \overline{x} = \alpha(x + p^{\omega}H)$ for all $\alpha \in J_v$, $x \in H$. Hence the same arguments used in theorem 1 and the definition of L tell us that L is isomorphic to $\pi(L)$. Since L is p-pure in $J_n \otimes H$, it follows that $\pi(L)$ is p-pure in F; consequently $L/pL \cong \pi(L)/p\pi(L) \cong \pi(L) + pF/pF$. From this remark and the hypothesis that L/pL is not finite, we deduce that the set $S = \{k \in K : k \in$ $\pi_k(L) \neq 0$ is not finite; thus we may assume $\mathbb{N} \subseteq S$. For every $n \in \mathbb{N}$, let $S_n = \{k \in K : \pi_k(x_n) \neq 0\}$ and let $T_n = \bigcup_{i=1}^n S_m$. Define by induction a sequence $\{y_n\}_{n\in\mathbb{N}}$ in L with the following properties: if n=0, then $y_n = x_n$; if y_m is defined for all $m \le n$ and $h_n = \max\{h(\pi_k(y_n)): k \in T_n\}$ where h is the p-height function on F, then $y_{n+1} = y_n + p^{h_n+n+1}x_{n+1}$. Obviously $\{y_n\}_{n\in\mathbb{N}}$ has a limit $y\in H$ with respect to the *p*-adic topology. On the other hand, the support of $\pi(y_n)$ is T_n for every $n \in \mathbb{N}$ and, by the choice of $\{y_n\}_{n\in\mathbb{N}}$, $\bigcup_{n\in\mathbb{N}}T_n$ is not finite. Therefore $\{\pi(y_n)\}_{n\in\mathbb{N}}$ cannot converge in F equipped with the p-adic topology. This contradiction shows that I' is finite, as claimed.

While completely decomposable torsion-free groups clearly belong to C, we have the following

COROLLARY 3. The class C does not contain the class of torsion-free separable groups.

PROOF. Let $G = \mathbb{Z}^{\mathbb{N}}$; then, by ([1] Proposition 87.4), G is separable and, by proposition 2, $G \notin \mathbb{C}$.

We next prove that very few reduced cotorsion groups belong to C.

COROLLARY 4. Let G be a reduced torsion-free group and let $G = \prod_{n \in \mathbb{P}} G_n^*$ be its cotorsion completion. The following facts hold:

- (i) $G \in \mathbb{C}$ if and only if, for every prime p, G_p is a J_p -module of finite rank.
 - (ii) If $G \in \mathbb{C}$, then $G \in \mathbb{C}$.

Proof. (i) Fix $p \in \mathbb{P}$. Then

$$J_{p} \otimes G^{\centerdot} = (J_{p} \otimes G_{p}^{\centerdot}) \oplus \left(J_{p} \otimes \prod_{q \neq p} G_{q}^{\centerdot}\right)$$

where the second summand is divisible. Let \mathbb{Z}_p be the group of rational

numbers whose denominators are prime to p. Since the sequence

$$0 \to G_{\mathfrak{p}}^{\bullet} \cong \mathbb{Z}_{\mathfrak{p}} \otimes G_{\mathfrak{p}}^{\bullet} \to J_{\mathfrak{p}} \otimes G_{\mathfrak{p}}^{\bullet} \to J_{\mathfrak{p}} \otimes G_{\mathfrak{p}}^{\bullet} / G_{\mathfrak{p}}^{\bullet} \to 0$$

is exact and $J_n \otimes G_n^{\bullet}/G_n^{\bullet}$ is torsion-free, we get

$$J_p \otimes G_p^{\scriptscriptstyle \bullet} = G_p^{\scriptscriptstyle \bullet} \otimes (J_p \otimes G_p^{\scriptscriptstyle \bullet})/G_p^{\scriptscriptstyle \bullet} \quad \text{with} \quad J_p \otimes G_p^{\scriptscriptstyle \bullet}/G_p^{\scriptscriptstyle \bullet}$$

divisible. Consequently $J_{\mathfrak{p}} \oplus G_{\mathfrak{p}}^{\bullet}$ is a completely decomposable $J_{\mathfrak{p}}$ -module if and only if the same applies to $G_{\mathfrak{p}}^{\bullet}$, i.e. if and only if $G_{\mathfrak{p}}^{\bullet}$ is a $J_{\mathfrak{p}}$ -module of finite rank.

(ii) Assume $G \in \mathbb{C}$ and let p be a prime. Then, by (i), $G_p \cong J_p^n$ for some $n \in \mathbb{N}$, while, ([4] Ch. II § 5.5 Theorem 1), G_p is a p-pure subgroup with divisible cokernel of G_p . This remark and theorem 1 assure that $J_p \otimes G$ is a completely decomposable J_p -module. Thus $G \in \mathbb{C}$ and (ii) follows. \square

The above proof indicates that, if G is a reduced torsion-free cotorsion group and $p \in \mathbb{P}$, then $J_p \otimes G$ has a decomposition of the form $C \oplus D$ where $C \cong G_p^* \cong G/p^{\omega}G$ and D is divisible. Therefore $J_p \otimes G$ is generally very far from being completely decomposable.

As the following statement shows, also the larger class of locally cotorsion groups, introduced in [6], does not contain many groups of C.

COROLLARY 5. Let G be a reduced group and let $G \in \mathbb{C}$. Then G is locally cotorsion if and if $G/p^{\omega}G$ is a J_{v} -module of finite rank for every $p \in \mathbb{P}$.

PROOF. Recall that, if G is reduced and torsion-free, then, by ([6] Theorem 4.2), G is locally cotorsion if and only if $G/p^{\omega}G \cong G_{p}^{*}$ for all prime p. Hence our claim is an immediate consequence of corollary 4. \square

§ 3. The next result gives a closure property of the class C.

PROPOSITION 6. The class C is closed under pure subgroups.

PROOF. Let $G \in \mathbb{C}$ and let H be a pure subgroup of G. To see that $H \in \mathbb{C}$, fix $p \in \mathbb{P}$. Since $H_p = H/p^\omega H = H/p^\omega G \cap H \cong H + p^\omega G/p^\omega G \leqslant \langle G/p^\omega G = G_p \text{ and } G \in \mathbb{C}$, theorem 1 implies that H_p is a p-pure subgroup of a free J_p -module F. Let R be the submodule of F generated

by H_p ; then R is free and clearly R/H_p is divisible. Applying theorem 1, we conclude that $J_p \otimes H$ is a completely decomposable J_p -module. Therefore $H \in \mathbb{C}$, as required. \square

Let us note that C is the class of all torsion-free groups G such that, for every prime p, the \mathbb{Z}_p -module $\mathbb{Z}_p \otimes G/p^{\omega}G$ admits \mathbb{Q}_p , the field of p-adic numbers, as a splitting field in the sense of [3]. Hence proposition 6 is similar to half of the first assertion of ([3] Corollary 2.2). Indeed, since free groups belong to C, the class C is not closed with respect to torsion-free homomorphic images.

Observe now that there exists a group G such that $G \notin C$, but G < H where H is reduced, $H \in C$ and H/G is a torsion group. For instance, let $G = \mathbb{Z}^N$ and let $H = \langle G \rangle_* < \prod_{p \in P} \mathbb{Z}_p$. Then, by proposition 2. $G \notin C$ and $\prod \mathbb{Z}_p \in C$: thus, by proposition 6. $H \in C$ and the

tion 2, $G \notin \mathbb{C}$ and $\prod_{p \in \mathbb{P}} \mathbb{Z}_p \in \mathbb{C}$; thus, by proposition 6, $H \in \mathbb{C}$ and the rest is obvious.

Nevertheless, it is easy to find examples of reduced torsion-free groups which are not subgroups of a reduced group of C. Indeed we can prove the following

PROPOSITION 7. Let G be a reduced torsion-free cotorsion group and let R be a reduced group of C. If $G \le R$, then $G \in C$.

PROOF. Let G and R be as in the hypothesis and let G < R; we claim that $G \in \mathbb{C}$. By corollary 4, it is enough to prove that, if p is any prime and G is a J_r -module as in the hypotheses, then G is a J_r -module of finite rank. Indeed, by theorem 1, there is a free J_r -module F such that $R/p^{\omega}R < F$. Since $G \cap p^{\omega}R = 0$, we deduce that G is isomorphic to a submodule of F. Consequently G must be a J_r -module of finite rank and the proof is complete. \square

Recall that ([5] Lemma 4), if G is a torsion-free group such that $G/H \in \mathbb{C}$ where H is of finite rank, then $G \in \mathbb{C}$. We shall now see that the restriction on H cannot be omitted.

PROPOSITION 8. The class C is not closed under extensions.

PROOF. Let $G=J_p^{\mathbf{N}}$ and let B be a free J_p -module such that $B \leq G$ and G/B is divisible. Evidently $B, G/B \in \mathbb{C}$, while, by proposition 2, $G \notin \mathbb{C}$. \square

Let G be a torsion-free group and let $H \leq G$. Then the following are obvious consequences of the preceding results,

- (i) $H, G/H \in \mathbb{C} \Rightarrow G \in \mathbb{C}$;
- (ii) $H, G \in \mathbb{C} \implies G/H \in \mathbb{C}$;
- (iii) $G, G/H \in \mathbb{C} \Rightarrow H \in \mathbb{C}$.

A lot of slender groups belong to C; however, we have the following

Proposition 9. There exists a slender group G such that $G \notin \mathbb{C}$.

PROOF. Fix $p \in \mathbb{P}$ and let G be a \mathbb{Z}_p -module of J_p such that $1 \in G$; $p^n J_p \leq G$ for every $n \in \mathbb{N}$ and G is not p-pure in J_p . Since G is slender ([4] Ch. V § 2.4 Theorem), it remains only to check that $G \notin \mathbb{C}$. Suppose the contrary. Then, by theorem 1, there is an embedding $\psi \colon G \to F$ where F is a free J_v -module and $\psi(G)$ is p-pure in F. If $\bar{\psi}$ is the extension of ψ to the cotorsion completions of G and F, evidently $\psi(g) = \bar{\psi}(g) = g\bar{\psi}(1) = g\psi(1)$ for all $g \in G$. Hence $\psi(G) \leq J_{\varphi}\psi(1)$ and this enables us to assume $F = J_n^n$ for some $n \in \mathbb{N}$. Let now $\psi(1) =$ $=(\alpha_1,\ldots,\alpha_n)$ where $\alpha_i\in J_p$ for every i. Then the hypothesis that $\psi(G)$ is p-pure in F guarantees that $\alpha_k \notin pJ_p$ for some k. Let $\tau \colon G \to J_p$ be the map that takes g to $\alpha_k g$ for all $g \in G$. To see that $\tau(G)$ is p-pure in J_p , suppose $p^n x = \tau(g)$ with $x \in J_p$, $n \in \mathbb{N}$ and $g \in G$. Since $\psi(G)$ is p-pure in F and $h(\alpha_i g) \geqslant h(\alpha_k g) \geqslant n$ for every i, there exists $g' \in G$ such that $\psi(g) = p^n \psi(g')$. Therefore $p^n x = \tau(g) = p^n \tau(g')$ and so $\tau(G)$ is p-pure in J_{n} . On the other hand, since G is not p-pure in J_n , we can choose $\alpha \in J_n$, $m \in \mathbb{N}$ such that $\alpha \notin G$ and $p^m \alpha \in G$. Consequently $\alpha_k \alpha \notin \tau(G)$, while $p^m \alpha_k \alpha \in \tau(G)$. This contradiction implies that $G \notin \mathbb{C}$, as claimed.

By the preceding result, C does not contain the class of all \mathbb{Z}_p -modules that are subgroups with divisible cokernel of a free J_p -module.

Let p be a prime and let $R = K \cap J_p$ where, as in [3], K is a field such that $\mathbb{Q} \leq K \leq \mathbb{Q}_p$. If $G \in \mathbb{C}$, then it is natural to ask if $R \otimes G$ is a completely decomposable R-module. We shall prove that, if $R \otimes G$ is a completely decomposable R-module, then R contains the subring of J_p generated by the set S, where

$$S = \{\alpha \in J_{\mathfrak{p}}: \ \alpha x \in G_{\mathfrak{p}} = G/p^{\omega}G \ \text{ for some } x \in G_{\mathfrak{p}} \diagdown pG_{\mathfrak{p}}\} \ .$$

Indeed, with the same arguments used in the first part of theorem 1, it is easy to show that there is an injective homomorphism $\psi: G_p \to F$ such that F is a free R-module and $\psi(G_p)$ is p-pure in F. Let now $\alpha x \in G_p$ where $\alpha \in J_p$ and $x \in G_p \setminus pG_p$. Since F has a decomposition

of the form $F = F' \oplus F''$ with $\psi(x) \in F'$ and $F' \cong \mathbb{R}^n$ for some $n \in \mathbb{N}$, we may write $\varphi(x) = (\alpha_1, \ldots, \alpha_n)$ with $\alpha_i \in R$ for all i. Moreover, since $x \notin pG_p$ and $\psi(G_p)$ is p-pure in F, there exists some k such that $\alpha_k \notin pR$; hence α_k is a unit of R. Since $\alpha x \in G_p$ and $\psi(\alpha x) = \alpha \psi(x)$, it immediately follows that $\alpha \in R$. This completes the proof.

REFERENCES

- [1] L. Fuchs, Infinite Abelian Groups, vol. 1 and 2, London-New York, 1971 and 1973.
- [2] L. Fuchs, Notes on abelian groups, II, Acta Math. Acad. Sci. Hung., 11 (1960), pp. 117-125.
- [3] E. L. LADY, Splitting fields for torsion-free modules over discrete valuation rings, J. Algebra, 49 (1977), pp. 261-275.
- [4] A. Orsatti, Introduzione ai gruppi abeliani astratti e topologici, Quaderni dell'Unione Matematica Italiana, Vol. 8, Pitagora Editrice, Bologna, 1979.
- [5] L. Procházka, Sur p-independence et p^{∞} -independence en des groupes sans torsion, Symposia Math., 23 (1979), pp. 107-120.
- [6] L. SALCE, Cotorsion theories for abelian groups, Symposia Math., 23 (1979), pp. 11-32.

Manoscritto pervenuto in redazione il 5 aprile 1979.