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Some Remarks Concerning Regularity of Solutions for

Abstract Differential Equations.

S. ZAIDMAN (*)

Introduction.

Theorems on regularity (or differentiability, or smoothness) of

(weak) solutions of partial differential equations were studied inten-
sively (see for example Hörmander’s book [7 - Ch. IV]). In Lions’

monograph [8] various regularity theorems are proved for (weak)
solutions of operational-differential equations: u’(t) = A(t) u(t) -~- f (t),
and more recently, in Treves [10, Sect. 42] are again explained re-
gularity results for weak solutions of abstract evolution equations.
The propositions that we present in this Note are most closely related to
some of the facts exposed in Chapter IV of the fundamental memoir [1]
of Agmon and Nirenberg which is concerned with differentiability (or
analyticity) of solutions of - Au = f (in a Banach
space), assuming f to be differentiable (or analytic).

They prove necessary conditions which are obtained by employing
the closed graph theorem in a suitable space and sufficient conditions
which are not too far removed from the necessary ones.

They consider the classes C’~, C°° and the class of analytic functions,
and note that various other classes of functions could be treated by
the same procedure and that weak solutions of equations 
- Au = f (in some sense) have also similar regularity properties.

In our paper [12] we have considered the second order differential

(*) Indirizzo dell’A.: Department of Mathematics, Case postale 6128,
Succursale « A », Montreal, P.Q., H3C3J7.
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equation - Au(t) = f (t), - oo  t  oo and have proved regularity
theorems for .L2-weak solutions (in Hilbert spaces) of this equation.
Equations with time dependent operator: = f (t)
where considered by A. Friedman in [5] (see also our Lecture Notes [13]
and his book [4]).

Regularity of distributions solutions of the above indicated equa-
tions in Hilbert spaces was demonstrated by V. Barbu in [2], [3] and
more recently, in our Note [14] we have given for the first order equation
u’(t) - Au(t) = f (t) a sufficient condition for differentiability of weak
solutions which is closely related to the statements in [1].

In the present work we concentrate ourselves mainly on the study
of the necessary conditions for smoothness of weak solutions in both
Hilbert and Banach spaces. After proving some preliminary remarks
concerning weak solutions we present in Theorems 1 and 2 a necessary
condition for regularity in an interval (a, b) up to the boundary of
this interval whereas in Theorem 3 we explain a similar condition for
interior regularity (i.e., regularity in any strict subinterval (0153, fl) c
c (a, b)). Whereas the above Theorems 1, 2, 3 concern .L2-weak solu-
tions in Hilbert spaces, in our Theorem 4 we give also a result in Banach
spaces, where continuous. weak solutions are instead considered.

The paper ends by indicating how one can extend our paper [4]
in order to obtain sufficient conditions for interior L2-regularity in
finite intervals (the above indicated Note [14] is dedicated to Liow
solutions on the whole real line).

The methods are essentially those used by Agmon and Nirenberg,
with convenient modifications corresponding to the class of weak

solutions that are here investigated.
While preparing the manuscript we had the opportunity to have

some interesting discussions with professor J. Goldstein.

1. Let be H a Hilbert space and A a linear closed operator :
where the is dense in H.

Denote as usual by A* the Hilbertian adjoint to A, so that

holds for any and (the
domain D(A*) is also dense in H-see [11]).

Given an interval I = (a, b) c R (the real line) let us define the

class b) of vector-valued test-functions:
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Consider now the operator (abstract differential) L = (d/dt) - A which
is classically defined on functions u(t) E C1 (a, b; H) such that u(t)
E O(A) Vt E (a, b) and (Au)(t) E C(a, b; H); next we define a natural

weak extension cvL as follows: the domain consists of those
functions u(t) E L2(a, b; H) such that there exists f (t) E L2 (a, b; H)
with the property that the integral identity

is verified.
We say that: A few observations concerning this de-

finition are necessary:

PROPOSITION 1. To a given (single) element u(-) E 9)(coL) it cor-

responds ac single element f(.) E L2(a, b ; H) such that (roL) u 3 f.

Otherwise we could have, say such that
this means, using 1.2 ) the equality

Let us take = v(t) h, where h E D(A*) and v(t) e b). We

obtain

Using density of D(A*) in H we deduce equality

If we take now an arbitrary to E (ac, b) and positive r small enough,
and if we consider the function
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we can find a sequence vp(t) e b), such that
b) sense. Then

as easily seen by Schwartz inequality

Hence,

Now, by a well-known result (see [6] p. 88) we obtain as r - 0, that
- f 2(t) = 0 almost everywhere.

PROPOSITION 2. The domain is a linear set in L2(a, b; H)
and coL; ~(cvL) ~ L2(a, b; H) is a linear operator on it.

is true, E KA.(a, b).
Summing, we get
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Hence, U1 + ~~ E and

Similarly

PROPOSITION 3. closed operator, ~ H.

Let us consider a sequence such that in

.L~(a, b ; H) and (wL) ~~ = f n ~ f E b ; H) in the same sense. Hence,
we can write equalities

as n - oo we get readily

This means that u(t) E and == f.
Finally, we shall prove the

PROPOSITION 4. The domain 5)(coL) is dense in L2 (a, b; H).

This is a consequence of the more general fact:

For any dense set c H, the set of f inite . ’Pi(t) L=1.2.... where
h, E A and ¥’i(t) E b) is dense in L2(a, b; H).

A straightforward proof can be given in the following way : given
f E .L2(ac, b ; .H) and e&#x3E;O, 3

i) a continuous function fe(t) E C[a, b; H] s.t. - fe 11 L’(a,b;H)  8.

ii) using the vector-form of Bernstein’s approximation theorem
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Then

Then

Consequently

2. We shall consider the graph of the operator roL, as a sub-
set of the cartesian product L2(a, b; H) x L2(a, b; H). It consists of
all pairs ~u, where u belongs to 0(coL); it becomes a Hilbert
space with the usual scalar product and norm, due to closedness of
the operator 

Let us consider now the important particular case when L = dldt
(so that A = 0, the null operator).

Now c~L = has as domain the set of functions u(t)
such that 3v(t) E L2(a, b; H) with property that
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(we remark that for A = 0, b ) reduces precisely to b ; H)).
Also, for = v. Now, as above, the graph

becomes a Hilbert space with usual norm:

We denote this space by b ; H). We assume the following
regularity hypothesis :

We shall prove below the following

THEOREM 1. Let us suppose R.H. true. Then, there exists a positive
constant K &#x3E; 0 such that if 2 is a complex number and III &#x3E; K, then the
inequality

is verified.

PROOF. The hypothesis R.H. means the inclusion: Graph (wL) c
b ; H). Consider the inclusion map ,I ; each element in Graph (wL)

is transformed in the same element considered in b; H). We
remark that i is a closed map. Assume ( U%)i c Graph (wL), 
in and in b ; H).

Then (1), lTn - u in and in L2(a,b,H)
so that u = v = iu. Using the closed graph theorem [11] we obtain
that i is a continuous map. Hence, there exists a positive constant K
such that

(1) Because both topologies, in GcvL and in b; H) are stronger than
the topology of L 2(a, b; H).
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which means

Using the standard procedure in [1] we shall apply the « a priori
estimate &#x3E;&#x3E; 2.5) to all functions u(t) - 0 exp [i2t], where o E 
and Â is a complex number. Any such function is a classical (strong)
solution of the equation

and consequently is in

easily seen. Also w(djdt)
We see now that

also, for

hence

Also

Next (wL)u== so that
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and

After these computations (2.5) becomes

This obviously simplifies to

and also

and

Assume then and (2.9) becomes

which proves our Theorem 1.
A variant to Theorem 1, similar to Theorem 11.1, page 145 in [4]

is given in

THEOREM 2. Let us suppose R.H. true. Then, there exists a positive
constant N &#x3E; 0 such that f or A E ~C and I A ~ N, the inequality

is 0 being a positive constant.
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The proof is similar to that of Theorem 1. We obtain again

(when IT&#x3E;1 as we can always assume). Hence,
we have

This proves Theorem 2.

3. The results expressed in Theorems 1 and 2 give necessary con-
ditions for regularity in an interval (a, b) up to the boundary of this
interval ; this has permitted us to derive the estimates (2 .11 ) and ( 2 .3 )
for all complex numbers Â lying outside some disk in the complex plane.

If we restrict our requests and look only for interior regularity re-
sults (of the form; uEL2(a,b;H) and 

for any then we obtain estimates which
are valid for only real values of A outside a certain interval. We state
the precise result in form of 

°

THEOREM 3. Let us acssume A to be a closed linear operator in the
Hilbert space H with dense domain and let be L = d/dt - A
and wL the strong and weak abstract differential operators associated to it.
Let a  a  (J  b. Assume that if belongs to so

that (coL) u = f E L2(a, b; H), - then the weak derivative exists
and belongs to L2(a, {1; H). It follows that

where C, N are some positive constants.
The proof is similar to the one exposed in Theorems 1 and 2. In

the same way, we obtain the a priori estimate
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Again, we shall apply (3.2) to functions u(t) = exp where

0 and I is any real number. We obtain the inequality

hence

and also

for any real 2 

Remark now that

Hence,

so that

and

We shall consider now necessary conditions for regularity in more
general Banach spaces (see A. Friedman, Th. 11.1, page 145 of [4]).

Following definitions of our paper [15] let us consider a Banach
space ~, ~* its dual space and a linear closed operator A with dense
domain let be A * the dual operator with usual defi-
nition ; given a (finite) interval (a, b) c R, define the class KA.(a, b) of
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test-functions consisting of continuously differentiable functions 
a  t  b - I* having compact support in the open interval (a, b);
0(t) E 9)(A*), Vt and A* 0 is X*-continuous in (a, b).

Associated to the (classical) abstract differential operator .L =
== (dldt) -A defined on such that

u(t) E Vt E (a, b) and (Au)(t) E b); we consider the weak
extension (oL which is defined in the following way:

The domain consists of those u(t) E C([a, b]; such that
there exists f(t) E C([a, b]; X) with property that

is satisfied. Then, by definition, We have

PROPOSITION 5. The single- valued.
In fact, otherwise we would have, say, such

that and (wL)u:3/2’ This means, using (3.7), 7 the equality

Take here §(t) = where v(t) E b) and z* E 1‘~(A*). We ob-
tain equality

Now, remark that ~x*, fl(t)- f 2(t)~ E C[a, b] ; as usual (3.9) will imply
that x*, fl(t) - t2(t» = 0 Vt E [a, b] and IVZ* E ~(A*).

But, as well known, the domain ID(A*) is a total set in :1;*. Con-

sequently, we obtain that = f 2(t) on [a, b].
It is easy to see (cf. Prop. 2 ) the following

PROPOSITION 6. The domain is a linear set in C( [a, b] ; lll) and
the operator (coL), C([a, b] ; X) is a linear map.

Finally, we have
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PROPOSITION 7. The operator is a closed operator.

Let c un - u in 0([a, b]; ae) and .(coL) u,, = f n - f in

C( [a, b] ; ~ ). Then we have

as n -~ oo we get readily

which means that u E and = f.
We shall now prove a counterpart to the previous Theorem 3, in

the following

THEOREM 4. Let be A a linear closed operator with dense domain
in the Banach space X, and (wL) = A) the above defined

weak extension. Let a  a  ~  b. Assume that if u E 0([a, b] ; and
so that f E C([a, b] ; then UE CI( [a, {3]; I)

It follows

where C, N are some positive constants.

PROOF. Consider the graph OwL as a subset of C([a, b]; 
X C([a, b] ; consisting of pairs fu, it is a Banach space
as easily seen (with usual graph topology).

Consider now the mapping W from GWL into /3]; defined

by : u. By the assumptions of the theorem, this map
is well-defined on the whole space OwL’ Furthermore, it is a closed

map. Let in fact be: c I converges to ~uo, vo~ E G~,L
and - un converges to Ul in C~([a, ~8]; ~).

Actually, ~uo, Vol E GWL so that uo E and (oL) uo = Vo. Hence
~ uo in 0([a, b] ; ~ ), (coL) un ~ in C( [a, b] ; ~ ) and also un - u,

in C1( [a, p]; This implies uo in [a, ~8]. Hence W ~un , -
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Using the closed graph theorem we conclude that W is a continuous
mapp, that is

IT being a positive constant.
Let us take now u(t) = x exp

number. Obviously.

In the space we use the norm

Consequently we obtain

which ~~ if which we shall assume.
On the other hand

Hence, it follows that, for 

This transforms into

Remark now that
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Hence, for

This proves Theorem 4.

4. In this final section we shall see how some simple modifications.
of the argument used in our previous paper [14] permits us to prove
interior regularity on finite intervals for weak solutions in Hilbert spaces.

Consider as in [14] a Hilbert space H and a linear closed operator A,
where D(A) is dense in H. Assume that the inverse

operator (i~,- A)-1 exists and belongs to ~(H; H) for any real 2 with
and that the estimate

Consider now a finite interval in R, - oo  a  b  oo and de-
fine as above the class of test-functions b). Next, consider a
pair of functions: E L2(a, b ; H), f(t) E L2(a, b ; H) connected through
the integral identity

Then we shall prove the following result of interior regularity :

THEOREM 5. I f (4.1) and (4.2) are verified, then u(t) equals almost-
everywhere in (a, b) a strongly continuous f unction; u(t) belongs to 
almost- everywhere in (a, b); the strong derivative u’ (t) exists almost-

everywhere in (a, b) and belongs to L2( a, (3; H) for any a  a  b;
Au(t) also belongs to L2(a, (3; H) for any a  a C ~  b. The equality
u’ = Au + f holds almost-everywhere on (a, b).

PROOF. Let us consider a real-valued function ~(t) E C’(R), which
equals one for a ~- ~ ~ t  b - ð, equals 0 for - oo  t  a + ~/2,
b - ~/2 ~ t C 00, and 0~1 for any 

Define then a function v(t), R -+ H by the formula: v(t) - 

a  t  b, v(t) = 8, for Then v = u on [a + b,b-6] and v
has compact support on R. Now we can state
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LEMMA. Let be h(t) = C’ (t) u(t) + ~(t) f (t) for a  t  b, h(t) = 8 out-
side (a, b). Then, the integral identity

is veri f ied for 99 E .KA; (R) = K-,..

is defined in a similar way to b)-see [14] ~ .

PROOF. Let us take any rpEKA.. We have

Now, it is easy to see Using (4.2)
we shall obtain

and hence

which proves Lemma.



63

From now on we can deduce, exactly as in [14], that the Fourier
transform belongs to L’(R; H), so that v(t) equals almost every-
where on R a strongly continuous function. Hence u(t), which equals
v(t) on [a + 6, b- 6] will be continuous on this interval, outside a
null-set 96. If we take a sequence ~n = 1/n, we find a sequence of
null-sets such that u(t) is continuous for

00

Then, obviously u(t) is continuous 
1

that is almost-everywhere on [a, b]. The remaining of the proof
follows the lines in [14] with a few minor modifications.
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