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A Characterization of the Bernoulli
and Euler Polynomials.

L. CARLITZ (¥)

1. The following three multiplication formulas are well-known
[5, pp. 18, 24]:

(1) Bw) —wr S B0+ 2)
$=0 n
(12)  Buna) — nkkf<—1)sEk(m + 5) (n odd)
8=0

(13) o) =—22S C1yBifo+ 5) (n even),
8§=0

where B, (x), Eix(x) denote the Bernoulli and Euler polynomials in the
standard notation,

rev® S 2F
(1.4) pr— —IZOBk(m) Ak

2 xz 00 k
(1.5) AT

Nielsen has observed [4, p. 54] that (1.1) and (1.2) characterize
the respective polynomials. More precisely, if a monic polynomial of
degree k satisfies (1.1) for a single value n > 1, then it is identical with

(*) Indirizzo dell’A.: Department of Mathematics - Duke University -
Durham, N.C. 27706 U.S.A.
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By (x); similarly if a monic polynomial of degree k satisfies (1.2) for
a single odd » > 1, then it is identical with Ey(z). The present writer [1]
has proved that if fy(#), g»—.(#) are monic polynomials of degree k,
k—1, respectively, that satisfy

2,nk—1 n—1

Z (—1) fk(ﬂ'/' + ) (n even)

{1.6) Jr(nw) =

for two distinet even k, then
(1.7) fel@) = By(®) + ¢, Gpa(0) = Exy(®) ,

where ¢ is a n arbitrary constant.
The writer [2] has generalized (1.1), (1.2), (1.3) in the following way:

(1.8)  me sz( + ";8) — mr1 sz(m + %) ,

ms

n—1 m—1
(19) w3 1)sEk(§ + 7) —m3 (- l)fEk(% +%‘)
(m=n=1 (mod?2)),

. m—1
(1.10)  n* E (—1)*Besy (n + ’?) —— % k + m* 3 B, (% + %)
(n even) .

These results were suggested by the formula for the gamma function

(1.11) :]j:r(mx + 7—2—8) — (ﬁ

mnx+(mn—m—n)/2
n

m—1
(2m)m=mi2 ] I (mc + n_r)
r=0 n

due to Schoblock [3, pp. 196-198]. For m = 1, (1.11) reduces to the
familiar multiplication formula for the gamma funection.

The purpose of the present note is to see to what extent the Ber-
noulli and Euler polynomials are characterized by (1.8), (1.9), (1.10)
We show that (1.8) and (1.9) do indeed characterize the Bernoulli and
Euler polynomials, respectively, if a monic polynomial of degree k
satisfies (1.8) for two unequal values m, n, then it is identical with
By(n); if a monic polynomial of degree % satisfies (1.9) for two unequal
odd values m, n, then it is identical with K, ().
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The situation for (1.10) is somewhat less simple. We show that
if finu(z) and gx(x) are monic polynomials of degree k¥ + 1, and Fk,
respectively, that satisfy

&x ms

n—1
12 WE 1 (7—& ; —-) -

1 m—1 x nr
=—3; & +1)m 2(—1)%(7—” + —)

r=0 m
for two pairs of m, n and m’, n’, where n and n’ are even and in addition

m'n—mn' #£0,
then

fena(®) = By(®) + ¢, (@) = Ey(w),

where ¢ is an arbitrary constant. If however (1.12) is assumed only
for the single pair m, n with n even, then

(1.13) fen(®) = a0 + iaj+lmk_iB;i+1(w)

i=0

if and only if

(1.14) ge(®@) = D (G + 1)aun*Eyx) .

ng

)

Conversely, if g;(x) is defined by (1.14) then fiy,(#) is determined
by (1.13) with a, arbitrary.

We remark that the results concerning the Euler polynomial can
be carried over to the Eulerian polynomials discussed in[1] and [2];
however we shall not do so in the present note.

2. We first prove

THEOREM 1. Let the monic polynomial f.(x) of degree k satisfy

(2.1) nk_lzgfk (g ms) mk“lz fk ( m‘)

m
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for two distinct (positive) values m,n. Then

(2.2) fe(@) = Bi(x) .
Proor. Let
n—1
(2.3) Si(@; m,n) =n*13 B, (_a_c + @) ,
8=0 n n
so that, by (1.8),
(2.4) Su(w; myn) = Sp(®;n,m) (k=0,1,2,...).

It is clear from (2.3) that S.(«; m, n) is 2 monic polynomial of degree k.
Moreover, from the proof of (1.8), we have

A 2 ze(emmr—1)
(2.5) kZOSk(m, m, ) M e e 1)
Now put
3
(2.6) fe(®) = Zoa'iBj(w) (@ =1),

where the coefficients a; are independent of # and are uniquely de-
termined by fi(x). Thus (2.1) becomes

n"“‘azoa,sz B,( ) = m-1 Za, ZB ( m)

Hence, by (2.3),

k k
S a,nki8,(w; mym) = 3 a,mt=I8,(w; my m)
j=0 i=0

so that, by (2.4),

k
(2.7 > a(n*~i— m*9)8;(@; m,n) =0 .
i=0

Since §,;(x;m,n) is of precise degree j in z, it follows from (2.7)
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that
a;,=0 (j=0,1,2,...,k—1)

and (2.6) reduces to fi(x) = By().
We remark that it follows from (2.5) that

(2.8) mnkS;_,(s; myn) = (mB + nB + & 4+ mn)*— (mB + nB + x)*,
where
k!

2.9 mB + nB 4 x)k = —  miniB,Bxt1-,
(2.9) ( + + ) ,-+,Z<kz!j!(k—z—9)! ’

Alternatively, (mB + nB -+ x)* can be exhibited as a Bernoulli poly-
nomial of higher order [5, Ch. 6].

3. Turning to (1.9) we shall prove

THEOREM 2. Let the monic polynomial g,(x) of deg}ee k satisfy

nl m~—1

m m

for two distinet odd values of m,n. Then

(3.2) gu(2) = Ei(x) .
Proor. Let
. n-l x  ms
(3.3) Tutas myn) = s, (<178 +5).
8§=0 n n
so that, by (1.9),
(3.4) Ti(@; myn) = Ti(@; nym), (k=0,1,2,..),

at least for m,n both odd. It follows from (3.3) that, for n odd,
Tw(®; m,n) is a monic polynomial of degree k. From the proof of
(1.9) we have

. $ e mym © = 2D
( ) kgoT (wy m, n) Ll (em 4 1)(6"’—f— 1)
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Now put

3
(3.6) gi(®) —_—';)bjEj(w) (br=1),

where the coefficients b; are independent of # and are uniquely de-
termined by g.(x). Thus (3.1) becomes

k. n—1 k. m—
w30 s (] + %) = 505 - arm (2 +2).

i=0 8=0 n i m

Thus, by (3.3),

j=

k k
Zbi’nk—lTi(“’; m, n) = ijmk—ij(s; n, M) ,
0 i=0

so that, by (3.4),
k

(3.7) > by(n*~i —mr=i) T (x5 myn) =0 .
i=o0

Since T,(xz; m,n) is of degree j in x, it follows from (3.7) that
b,=0 (j=0,1,2,...,k—1)

and therefore (3.6) reduces to gi(x) = Ei(x).
It follows from (3.5) that

(3.8) 2mnTi(x; myn) = (3mC + inC 4+ v + mn)* +
+ (3mC + $nC + 2)* (m=b=1 (mod)),

where

1 ] k k! e .
— — — Z - 9=i=imini(.(.pk—i—i
(3.9) ( mC —I— nC—i—m) : ,gk’l«']‘( K ?)'2 m*n 0,0,(1/‘

and [5, p. 28]

(3.10) @)= (@ + 30, Ey(0) = 2C,.
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For » even, it is proved in [2] that

oo kn— ms . 2exz(1__6mnz)
250 B e+ ) e e

Since the right hand side is symmetric in m, n, it follows that (1.9)
holds provided only that m and » have the same parity. The definition
(3.3) holds for arbitrary n and therefore

2ea:z(1 — emnz)
(e + 1)(e + 1)

(3.11) ozo: Ez_ (x; myn) = (n even).

We accordingly get
(3.12) 2mnT(x; m, n) =
= (3mC + }nC + x)*— (3mC + inC + x 4+ mn)* (n even).

Expanding the right member of (3.12) it is clear that, for n even,
Tiw(w; m, n) is of degree k — 1; the coefficient of #*-! is equal to — mn.

We now consider the equation (3.1) assuming that both m and n
are even. The proof of Theorem 2 applies without change down to
and including (3.7). In the present situation T',(z; m,n) is of degree
j—1 for j>1. Hence we infer that

b,=0 (j=1,2,..,k—1).

Finally we may state

THEOREM 3. Let the monic polynomial g.(x) satisfy (3.1) for two
distinct even values of m,n. Then

(3.9) 9u(x) = Ey(x) + ¢,

where ¢ 18 an arbitrary constant.

4. Let fr41(2) be a monic polynomial of degree k¥ 4 1 and let g.(x)
be a monic polynomial of degree k. Consider the equation

n_1 m—1
(4.1) n* Zo (— 1)ka+1(§ + 7—”—8) = —;—(k + l)m"gogk(% + "—r)

n m

for fixed m and fixed even n.
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Put
(4.2) Urni(@; my m) = n* 2(— 1)*Bess (n + 7;8)
and
ol z
(4.3) Vi(@; myn) = m ,goEk (7_n + %) )
Then by (1.10)
(4.4) Upnl(@; myn) =—3%(k + 1) Vi(z; myn) .

By (4.3) it is evident that Vi(x; m, n) is monic of degree k. Hence
Uii(w; myn) is of degree k and with highest coefficient equal to

— 3k +1).
Let
k+1 k
'(4-5) fk+1 Za B .{0) ’ gk(w) = .ZobiE:'(m) y

where the a;, b, are independent of x and are uniquely determined by
fenn(®) and gi(x), respectively; in particular, @, = b= 1.
Substituting from (4.5) in (4.1), we get

k+1 n-—1
""2%2(—1)8 (*-{-%ﬁ):—%(k 1)mkzb;ZE,(m nr)’

=0 r=0 m
that is
k+1 k
4.6) Yan=it1U (x; myn) =—3}(k + 1) > b;m~iV,(x; m, n) .
i=0 i=0

By (4.4) this reduces to
(4.7) a1 Uy(x; my, n) +
+ 3k + 1)§:0{b,-m’°-"—— (G + Daun* 7} Vie; myn) =0.
Note that |

Usla; m, m) = n—I"E 1)8B0( + ms) —0.

n
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Sincé Vix; m, n) is of degree j it follows from (4.7) that
(4.8) bmt—i— (f + Da;un~i=0 (j=0,1,2,.., k).
For j = k, (4.8) is automatically satisfied in view of a., = b= 1.
We now assume that (4.1) is satisfied by a second pair of numbers
m'yn', with »' even. Then by (4.8) we have also
(4.9) bym't=I—(j +1)a;n =0 (j=0,1,2,..,k).
It follows from (4.8) and (4.9) that
(4.10)  a;u((m )= — (mn')~1) =0 (j=0,1,..,k—1).
For j = k—1, (4.10) reduces to
ax(m'n—mn') = 0.
We therefore assume that
(4.11) m'n—mn' #£0 .

It is then clear that (4.10) implies

(4.12) ;=0 (=12,..,k),
so that
(4.13) b,=0 (=0,1,..,k—1).

This completes the proof of

THEOREM 4. Let fiy(x) and g.(x) be monic polynomials of degree
E + 1 and k; respectively. Assume that

P 1yer (T ms)y _ 1 0SS (2o
(L14) 3 (—1)fens (7—@ + ——) —— 50+ 1m rgogk(m + )

n m

for two pairs of number m,n and m',n', where n and n' are even and
in addition

(4.15) m'n—mn’ £0 .
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Then
(4-16) fk+1(w) = Bk+l(w) +ec 9 gk(w) = Ek(w) 9

where ¢ is an arbitrary constant.

If we assume only that (4.14) is satisfied for the pair m, n we get
the following

COROLLARY. Let firii(2) and gi(x) satisfy the hypothesis of Theorem 4.
Assume that (4.14) holds for the pair m, n with n even. Let

3
(4.17) frna(@) = @+ Zai‘-l-lmk_jB:i'i-l(m) .
=0

i=

Then gi(x) is uniquely determined by

M=

(4.18) ge(@) = 2 (7 + 1) a;nn*~7 By() .

i=0

Conversely, if gi(x) is given by (4.18) then fi1,(x) is determined by (4.17)
with a, arbitrary.
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