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Soluble Products of Nilpotent Groups.

JOHN C. LENNOX - DEREK J. S. ROBINSON (*) (**)

1. Introduction.

It is a famous theorem of P. Hall that every finite soluble group
can be expressed as a product of pairwise permutable nilpotent sub-
groups, for example the members of a Sylow basis. Here we are con-

cerned with the question: to what extent do infinite soluble groups
have this property? We shall be particularly interested in polycyclic
groups or more generally soluble groups with finite total rank. Here

a soluble group is said to have finite total rank if the sum of the

p-ranks (including p = 0) is finite when taken over all the factors of
some abelian series. (Groups of this kind are sometime called soluble
groups of type A or 61-groups.)

THEOREM A. A soluble group of finite total rank which has Hirsch
length 1 is expressible as a product of finitely many pairwise per-
mutable nilpotent subgroups.

On the other hand

EXAMPLE 1 There exists a polycyclic group of Hirsch length 2
that is not a product of pairwise permutable nilpotent subgroups.

(*) This work was carried out at the University of Freiburg where the
first author was an Alexander von Humboldt Fellow and the second a Hum-
boldt Prize Awardee. The authors wish to thank Professor 0. H. Kegel for
hospitality. A version of this paper was presented at the Convegno « Teoria
dei gruppi », Universita di Trento, June 1979.

(**) Indirizzo degli AA.: Derek J. S. Robinson, Dept. of Math., University
of Illinois, Urbana, Ill. 61801, U.S.A.; John C. Lennox, University College,
Cardiff, Wales, G.B.
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Supersoluble groups exhibit somewhat better behaviour, as a more
;elaborate analysis of their nilpotent subgroups reveals.

THEOREM B. A supersoluble group of Hirsch length 2 is expres-
sible as a product of finitely many pairwise permutable nilpotent
subgroups.

Again this is the best that can be done in this direction.

EXAMPLE 2. There exists a supersoluble group of Hirsch length 3
that is not a product of pairwise permutable nilpotent subgroups.

Nor is it possible to extend Theorem B to soluble groups of finite
total rank in the sense indicated by the following example.

EXAMPLE 3. There exists a soluble group with finite total rank
.and Hirsch length 2, having a normal series whose factors are locally
cyclic, but which is not a product of pairwise permutable nilpotent
subgroups.

In spite of these examples soluble groups of finite total rank that
are expressible as products of permutable nilpotent subgroups are

numerous, and they can have arbitrarily complicated subgroup structure.

THEOREM E. Any soluble group of finite total rank can be embedded
in a soluble group of finite total rank that is expressible as a product
of finitely many pairwise permutable nilpotent subgroups. The same

is true of polycyclic groups.
The proof of Theorem E depends on a useful result of Zaicev [8] to

the effect that a soluble group with finite total rank has a subgroup
of finite index that is the product of two nilpotent groups, one of them
normal. Taken together with Theorem E this shows that soluble groups
nof finite total rank are in a sense « sandwiched » between products of
permutable nilpotent subgroups.

We shall prove a generalization of Zaicev’s result by a simpler
method, using some of the « near splitting &#x3E;&#x3E; techniques developed in [6]
and [7]: this is Theorem C.

Under certain circumstances it is possible to embed the group of
Theorem E as a subgroup of finite index.

THEOREM F. Let G be a soluble group of finite total rank which
is abelian by finite by nilpotent. Then there exist a finite normal sub-
group F and a soluble group G of finite total rank which is a product
of finitely many pairwise permutable nilpotent subgroups such that

is isomorphic to a subgroup of finite index in G. If G has no quasi-
cyclic subgroups, ~’ can be taken to be 1.
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The proof of Theorem F depends on certain results about modules
over finite by nilpotent groups which, we feel, are of independent
interest. The crucial fact needed is

THEOREM G. Suppose that Q is a finite by nilpotent group and A
is a Q-module which has finite total rank as an abelian group. Then

the following conditions are equivalent:

(i) The largest Q-trivial image AQ of A is finite.

(ii) The largest Q-trivial subgroup AQ of A is finite.
This leads to

THEOREM H. Let Q be a finite by nilpotent group and let A be
a Q-module which has finite total rank as an abelian group. Assume
that A, (or equivalently AQ) is finite. Then A) and H~(Q, A)
have finite exponent for all n.

VVe mention a consequence of this theorem that may be compared
with Theorem C (and also with Theorem D below).

COROLLARY. Suppose that G is a group with a normal abelian sub-
group B of finite total rank such that is finite by nilpotent. Then
there exist a normal subgroup A of G, contained in B, and a nilpotent
subgroup X such that XA] I and I X r) A) I are finite.

In the context of the Corollary (and also of Theorem D) it is im-
portant to observe

EXAMPLE 4. There exists a torsion-free polycyclic group that has
no subgroup of finite index which is the split extension of one nil-
potent group by another.

This despite the well-known fact due to Mal’cev that polycyclic
groups are nilpotent by abelian finite ([5], 3.25 Corollary).

2. Groups with Hirsch length at most 2.

PROOF OF THEOREM A. Let G be a soluble group of finite total rank
whose Hirsch length does not exceed 1. It follows from Lemma 9.34
and Theorem 9.39.3 of [5] that G has a normal series 
wherein T is a divisible abelian group with the minimal condition, y

is torsion-free abelian of rank 1 and is finite.
Now [T, [T, = A, say, for also is

nilpotent. It follows by Theorem C of [7] together with Lemma 10 of [6]
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that G has a subgroup X with the properties G = XA and ~~ n A ~ C oo.
It is easy to see that X is nilpotent by finite, so we may write X = YL
where Y is finitely generated and .L is nilpotent and normal in X.
Clearly Y is polycyclic, while G = Thus we may assume G
to be an infinite polycyclic group.

There exists a normal infinite cyclic subgroup A of G with finite
index. Thus G/A possesses a Sylow basis (PI/A, P2/A, ... , Pk/A); we
shall assume that is a 2-group. Naturally G = Pi ... Pk and
Pi Pi = pipi -

Let C denote Co(A); then so that if i &#x3E; 1. Hence
C = Clearly C and Pi, are nilpotent.
Moreover if I &#x3E; 1 ,

Hence (P~ r’1 CIA, P2IA, ..., is a Sylow basis of CIA.
Next, since p¡/P¡ r1 C is cyclic, we may write P, - r’1 C).

Now n C)tIA, PtIA,..., PkIA) is a Sylow basis of CIA, so it must
be conjugate to CIA, P2/A, in C. Hence there is a c
in C such that (Pl n C)~ - (Pl n C)t and Pi = Pi if i &#x3E; 1. This
means that u = normalizes Pl r1 C and also Pi if i &#x3E; 1. There-

fore G = C) P2 ... Pk is a product of pairwise perm.utable nil-
potent subgroups.

The proof of Theorem B is expedited by a simple lemma.

LEMMA. Let H be a supersoluble group which has a free abelian
normal subgroup A of rank 2 such that A = and H/A is

finite but not cyclic. Then there exist elements x and y such that
H = x, y, A&#x3E; and H’ ~ C,(x) CA(y).

PROOF. Let H = This is effectively a finite group of integral
triangular 2 X 2 matrices, so it is a 4-group. Let H = y, A~. If H
is diagonal, we may choose x and y to operate on A according to the
matrices

in which event the result is obvious.

Supposing 17 not to be diagonal, we may assume, after an appro-
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priate choice of basis, y that x operates like

let us say the former. Now the centralizer of x in the group of

triangular matrices is X ~-1~, so this must be H. Therefore we

may choose y to operate like

Thus (2, 0), (0,1)&#x3E; = K say. Clearly [A, H]  K. Sup-
pose that [x, y] 0 K. Then [x, y] must have the form (2r + 1, 8) for
some integers r, s. Hence [x2, y] = [x, = (4r + 2, 2r + 1). On
the other hand so x2 = (2t, t) for some t: hence [x2, y]
= (- 4t, - 2t), a contradiction. Thus g’ ~ K. The second possibility
for x is handled in a similar way.

PROOF OF THEOREM B. Let G be a supersoluble group with Hirsch
length h(G) = 2. It is obvious that we may assume the centre of G
be trivial. Since G is supersoluble, it follows that 02(G) = 1 and G’
contains no elements of order 2.

There exists a normal free abelian subgroup A with rank 2 and
finite index-this is a consequence of a familiar theorem of Hirsch

(see [5], 9.39.3). Put C = C,,(A). Then G/ C, being isomorphic with a
finite group of triangular 2 X J matrices, is elementary abelian of order 2
or 4. We shall assume that /0:°1 = 4, the other case being simpler
and amenable to treatment in the manner of Theorem A.

Let (PI/A, P2/A, ... , P1c/A) be a Sylow basis of G/A with Pl/A a
2-group. Then Pi ~ C if i &#x3E; 1. Since G = PIP2 ... have

where T = P1 r1 C; these factors are permutable nilpotent subgroups.
Next A is contained in Z(T), the centre of T, and T/A is a 2-group.

Therefore T’ is a finite 2-group, which means that T’= 1 and T is
abelian. Denote the torsion subgroup of T by To ; of course this is a
finite 2-group. 

- - -

Write Pi - etc. We claim that C~ (T) = T. For if ~ E Op (T),
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then Note also that T is
free abelian of rank 2 and G/C. Applying the Lenuna we
conclude that P, contains elements z and y such that

Define .L/To and MjTo to be the preimages of and CT(y) under
the natural homomorphism T--*T, and write

Then ~To; since x acts on the finite 2-group To as an element of
order 2, we conclude that X is nilpotent. Similarly Y is nilpotent.

Observe that L « P, and M « Pl since T is abelian. In addition

[x, y] Therefore

Obviously so that

Now the T,P2’’’’’Pk permute among themselves. Also TJPI,
while X and Y are subgroups of Pl. Therefore it remains only to prove
that X and Y permute with the Pi , i &#x3E; 2.

Since a finite supersoluble group is 2-nilpotent, D = P2 ... Pk is

a normal subgroup of G. Consequently if i &#x3E; 1,

Therefore and the proof is complete.

3. Generalizations of Zaicev’s theorem.

THEOREM C. Let N be a normal subgroup of a group G. If N is
a soluble group with finite total rank and G/N is nilpotent-by-finite,
there exists a nilpotent subgroup X such that I G: XN I is finite.

PROOF. We can form a characteristic series
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such that each factor is abelian and is either torsion-free or satisfies
the minimal condition (see [5], 9.34). We may assume that k &#x3E; 0 and
use induction on k. Thus there is a nilpotent subgroup such that

IG: YNI  00.

There is an integer r such that A = has the following
property: if N, is torsion-free, A/[A, Y] is a torsion group, while if Nl
satisfies the minimal condition, A = [A, Y]. Applying Theorem 4
of [6] or Theorems C and D of [7], we conclude that there is a sub-
group .~1 of Y such that and Now Xi
is finite-by-nilpotent, so it has a normal nilpotent subgroup X of finite
index. Then so oo and 

Finally oo as required.
An example of Zaicev [8] shows that it is insumcient to assume

that N (or even G) has finite Priifer rank. Also it is not in general
possible to choose .~ so that X r1 N is finite-as Example 4 shows.
However, this can be done if G acts sufficiently non-trivially on abelian
factors.

THEOREM D. Let N be a normal nilpotent subgroup of a group G-
Assume that N has finite total rank and that G/N is nilpotent by finite.
Suppose further that if F is an infinite abelian G-factor of N, then
GjCa(F) is infinite. Then G has a nilpotent subgroup ~Y such that
~G : .XN ~ I I are finite.

Since a soluble group with finite total rank is nilpotent by abelian
by finite, Theorem D gives a condition for such a group to have a,

subgroup of finite index which is a split extension of nilpotent groups.

PROOF OF THEOREM D. We begin by forming a G-admissible series
in N whose factors are N-central and either are torsion-free or satisfy
the minimal condition. After refinement we can suppose the factors of

the series to be  G-irreducible » in the sense that non-trivial G-admis-

sible subgroups of torsion-free factors have torsion quotients while
proper G-admissible subgroups of torsion factors are finite. Let the

resulting series be 1 We can assume that

k &#x3E; 0 and proceed by induction on k. Thus there is a nilpotent sub-
group YIN,, such that I and I are finite.

Consider the case where N1 is torsion-free. Suppose that Y]
is infinite. Then it follows via [7], Lemma 5.12, that N,.I[N,,, Y] is

not a torsion group. Now [Nl , Y] = [N,, YN] since Nl is central
in N. Consequently C] is not a torsion group where C is then
core of YN in G. Hence [Nl , C] = 1 by irreducibility. But G/ C is’
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finite, so we have a contradiction. When Nl is torsion, is finite,
as an analogous argument shows.

The near splitting theorems now give a subgroup X1 such that
I and I X, n Nl) are finite. But X, has a nilpotent subgroup X

of finite index. Clearly I G: XN I and I are finite.

4. Embedding theorems.. -

PROOF OF THEOREM E. Let G be an arbitrary soluble group of
finite total rank. Then G has a normal nilpotent subgroup N such
that GIN is abelian by finite. According to Theorem C there is a

nilpotent subgroup X such that is finite. Since the core of
XN has finite index in G and contains N, we may assume that XN « G.
Write Q = 

By a well-known principal we may embed G in the standard wreath
product W = (XN) S Q (see [4]). Notice that ~ is a soluble group
with finite total rank.

Let B denote the base group of the wreath product. Since Q is
a finite soluble group, it has a Sylow basis (Pl , P2 , ... , Pk ) and so

Now we may write where B1= XQ
:and B2 = NQ. Note that B2 « ~YV since N « G; also Bl a BIQ. There-

fore W = Pl P2 ... PifBlB2 is a product of pairwise permutable nilpotent
subgroups.

The same argument applies to polycyclic groups.
In view of Theorem C it is reasonable to ask whether a soluble

group of finite total rank can always be embedded as a subgroup of
finite index in a group of the same type that is a product of pairwise
permutable nilpotent subgroups. We do not know if this can always
be done. However in the special case of abelian by finite by nilpotent
groups such an embedding always exists, as we shall establish in
Theorem F. The proof of this second embedding theorem must be
deferred until the next section where the necessary module techniques
are developed.

.5. Modules over finite by nilpotent groups.
We consider a finite by nilpotent group Q and a Q-module A which

has finite total rank (as an abelian group). We shall be interested in
the connection between Q-trivial submodules and Q-trivial images of
the module A . 

’ 

I
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Recall that AQ is the largest Q-trivial submodule of A, that is the
set of Q-fixed points of A, and that AQ is the largest Q-trivial image of A,
that is, A/[A, Q], where [A, Q] is the subgroup generated by all

a(x-1 ), a E A, Thus and 

THEOREM G. Suppose that Q is a finite by nilpotent group and A
is a Q-module which has finite total rank as an abelian group. Then
the following conditions are equivalent:

I ) AQ is finite

II) AQ is finite.

PROOF. 1) The equivalence of I) and II) when Q is f inite (of order
q say).

since ys = s for all y E Q. It follows that is fi-

nite. But AQ/[A, Q] r) AQ is also finite since A~ is finite. Therefore AQ

is finite.

which shows that

But AQ is finite, so there is an n &#x3E; 0 such that nA  [A, Q]. However
this implies that AQ is finite.

Since the finite case has been dealt with, we may assume that Q is
infinite. By a theorem of P. Hall ([5], § 4.2) the centre of Q is non--
trivial. It is also clear that we can always suppose Q to act faith-
fully on A.

In what follows denotes the p-rank of an abelian group H.

2) I) ~ II) when A is a torsion-free group.
Choose a non-trivial element r from the centre of Q and let 0 be

the non-zero Q-endomorphism a - a (x -1 ) . If Ker0 = 0, then A Q = 0
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and we are done. Assume therefore that Then ro(AO) 
ro(A). Since A8 inherits the hypotheses on A, we have by induction
that is finite and therefore zero. Let SIAO be the torsion-

subgroup of Then S is a Q-module. Now AO/AO is torsion,
so that SQ is torsion since Hence ,~~ = 0. Moreover

ro(A/S) C ro(A), so by induction and hence AQ= SQ - 0,
as required. 

’

3) I ) =&#x3E; II) when A is a torsion group.
We can assume that A is divisible by factoring out a finite

Q-invariant subgroup. Choose x and 0 as in 2). If Ker 0 is finite, we
are done, so let it be infinite. Hence r,(AO)  rp(A) for some prime p.
It follows by an obvious induction that (AO)Q is finite and (AIAO)Q
is finite. Therefore Ali is finite.

4) II ) =&#x3E; I ) when A is a torsion-free group.
Choose x and 0 as in 2). If is finite, we are finished. Sup-

pose that A /A0 is infinite: then by a result of Fuchs (see [6], Lemma 9)
Ker 0 ~ 0 and  ro (A ) ; hence by induction is finite. More-

over and (Ker O)Q is finite, again by induction. It fol-
lows that AQ is finite.

5) II ) =&#x3E; I ) when A is a torsion group.

Replacing A by a multiple if necessary, we may assume that A
is divisible. As in 4) we are justified in supposing to be infinite.
But in that case rp(AO)  rp(A) for some prime p and so by induction
(AO)Q is finite. Since (Ker O)Q is finite, we conclude that AQ is finite.

The mired case.

6) I) =&#x3E; II). Supposing this to be false, we choose for A a

counterexample with minimal torsion-free rank . Let T be the torsion

subgroup of A . Then it follows from 2) that A Q ~ T . If TQ were finite,
we could apply 3) to obtain finite, as required. Thus we

may assume that T is infinite and [T, Q] = 0.
We claim next that is irreducible in the sense that any non-

zero submodule has a torsion quotient in A. If this is not true, there
exists a submodule B such that T  B  A and is torsion-free.
Now 0, so (B/T)Q = 0. Thus by 4) we have that (BjT)Q is
finite, so BQ, and hence Aj[B, Q], has finite total rank.
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Suppose that ro(Aj[B, Q])  ro(A). Then by minimality we con-
clude that (Aj[B, Q])Q is finite, which implies that BQ is finite. Further-
more (AjB)Q = 0 by 2). It follows that AQ== BQ is finite, a con-

tradiction.
Hence Q]) = ro(A), so that ro(Aj([B, Q] + T)) = ro(AjT),

which can only mean that [B,Q]T. However (A/T )Q = 0, whence
B = T, another contradiction. The irreducibility of has there-
fore been established.

Let now C be the centre of Q. We consider first of all the case
where [A, C]  T, so that [A, C, C] = 0, since [T, Q] = 0. Because A.
is finite, [A, C]I[A, Q, C] is finite. But [A, Q, C] = [A, C, Q] since C
is central; therefore [A, C]Q is finite.

Now [A, C] is a Q/ C-module. Thus by induction on the upper
central height of Q we obtain that [A, C]Q is finite. In addition C]
has finite total rank since [A, C] ~ T. Thus, again by induction,
(A/[A, C])Q is finite, Hence AQ is finite, a contradiction.

It follows that [A, Cj 6 T and therefore there exists an x E a
such that [A, x] ~ T . Let 0 be the Q-endomorphism a ~ ac(x -1 ) .
Then since AIT is irreducible, 0 induces a monomorphism in AjT. Con-
sequently Ker 0 = Ker 92 = T, from which it follows that AO n T = 0.
Also, by the result of Fuchs referred to above, the group + T)
has finite order, m say. Thus + T, which implies that

[mA, Q] c A8. Furthermore AI[MA, Q] is finite, so AjAO is finite.
However this forces T to be finite, a final contradiction in this case.

7) II) =&#x3E; I ) . Supposing this to be false, we choose A to be a
counterexample with minimal-here T is the tor-

sion-subgroup of A. Replacing A by some integer multiple if neces-
sary, it is easy to see that we may assume T to be divisible. If

then 4) implies the finiteness of whereas TQ is

finite by 5); thus AQ is finite, a contradiction. Hence 

Now we may clearly replace A by D where D/T = Assume

therefore that 
We claim that T is irreducible in the sense that every proper sub-

module is finite. If not, there exists an infinite proper submodule
of T. Let (Aj8)Q. Suppose that r(m(B n T))  r(T ) for some
m &#x3E; 0. Then (mB)Q, and hence BQ, is finite by minimality. But

[B, Q]  8, so BjS is finite: by minimality (AjB)Q is finite. Moreover

it follows from 5) that SQ is finite. Hence AQ is finite, a contradiction.
Thus r(m(B n T)) = r(T) for all m &#x3E; 0. This means that B n T = T
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and T  B since T is divisible. But TQ is finite, so To is finite by 5).
Hence is finite. Therefore T = [T, Q] -[- ~S = S since [T, Q] 
 [B, Q]  S. This is a contradiction. Thus T is irreducible, as claimed.

Let C be the centre of Q and suppose first that [T, C] = 0. We
claim that T. DIAO, say, is finite. For [D, Q, C] = 0, so that
[D, C, Q] = 0 and [D, C]  AQ, which is finite of order m, say. It fol-

lows that [mD, C] = 0 and mD  A°. Hence DIAC is finite, as required.
We note that AIAo has finite total rank. For if AIAo contains

.an element of prime order p, so also does A. Moreover AlAc7
so that AIAo is a Q/ C-module. By induction on 

. 

the upper central

height of Q we conclude that (A/AO)Q is finite. Induction also shows
that is finite. Consequently A~ is finite, a contradiction.

It follows that [T, C] ~ 0, so there exists x E C such that [T, x] ~ 0.
Let 0 be the Q-endomorphism a « a(s- 1) of A. By the irreduc-
ibility of T we have T n Ker 0 finite, so that T = TO. Also A8  T,
because (AIT)Q = Hence A8 = TO = T and A02. We

deduce that A = AO + Ker 0 = T + Ker 0; now Q]  T n Ker 0,
which is finite. Therefore m(Ker 0)  Aa for some m, so that Ker 0
is finite. Hence A = T + Ker 9 is a torsion group, a final contradiction.

REMARK. It is evident from the proofs that Theorem G holds if

the hypercentre of Q has finite index provided that A is not mixed.
However in the mixed case the theorem fails even if Q is a hypercentral
group, as the following examples show.

Let A = B (D C where B = b2 , ...) is a quasicyclic 2-group and
C _ (c) is infinite cyclic. Let Q be the locally dihedral 2-group

Two actions of Q on A are defined in the following manner:

and

With action (i) one has

as Hartley and Tomkinson [2] have observed.
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In the case of action (ii)

Thus Theorem G fails in both directions. Notice that Q is abelian by
finite here, so Theorem G does not hold for nilpotent by finite groups.
Similar examples demonstrate that there is no theorem for Q nilpotent
by finite even in the torsion and torsion-free cases.

"7e now apply Theorem G to give information about (co)homology.

THEOREM H. Let Q be a finite by nilpotent group and let A be
a Q-module which has finite total rank as an abelian group. Assume
that AQ (or equivalently that AQ) is finite. Then Hn(Q, A) and Hn(Q, A)
have finite exponent for all n.

PROOF. There exists a finite normal subgroup F such that Q = 
is nilpotent. Consider the Lyndon-Hochschild-Serre spectral sequence
for cohomology associated with the extension F» Q ~ Q and the
module A :

If j &#x3E; 0, it is clear that Eil 9 has finite exponent. We claim that
A’) also has finite exponent. Set .~ = A-: then 

is finite.
Denote by T the torsion subgroup of M. Then there exists a finite

submodule L such that TIL is divisible. Now M-4 is finite, so that

(M/T)Q is finite and 0, by Theorem G. For similar reasons

(T/L)Q = 0. We now apply Theorems C and D of [7] to the modules
TIL and respectively to show that

have finite exponent for all i : of course L) also has finite exponent
We now invoke the cohomology sequence to show that Hi(Ql ~~}
has finite exponent for all i.

It follows from the convergence of the spectral sequence that
Hn(Q, A) has finite exponent. The proof for homology is analogous.

The following result may be compared with Theorems C and D.

COROLLARY. Suppose that G is a group with a normal abelian sub-
group B of finite total rank such that is finite by nilpotent. Then
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there exist a normal subgroup A of G contained in B and a nilpotent
,subgroup X such that I G: XA I and I are finite.

PROOF. Since B has finite total rank, there is an integer r such
that [B, r+1GJ is finite. We set A = [B, rGJ. It follows from
theorems of Baer and Hall ([5], § 4.2) that Q = G/A is finite by nil-
potent. Regarding A as a Q-module in the obvious way, we have AQ
finite. Theorem H now shows that H2(Q, A) has finite exponent.

We conclude that there exists a subgroup Y of G with the prop-
erties G : YA  oo and T m A C oo. Here Y is finite by nilpotent,
so it contains a nilpotent subgroup X of finite index. Clearly [
and .X r1 A are finite.

As a consequence of these results we are now in a position to prove
Theorem F.

PROOF OF THEOREM F. Just as in the above Corollary we can find
a normal abelian subgroup A such that H2(Q, A) has finite exponent,
where Q = GIA. Let L1 be the cohomology class of the extension

Then there is a positive integer m such that mZl - 0. Consequently
we may form the push-out diagram

where the left hand map is The index = is
finite. Now G splits over A, while Q has some term of its upper central
series of finite index. Hence G is a product of pairwise permutable
nilpotent subgroups. Let F = Ker y ; then F is clearly finite. If G
has no quasicyclic subgroups, we could assume in the first place that A
is torsion free, so that I’ = 1.

6. Counterexamples.

EXAMPLE 1. There exists a polycyclic group of Hirsch length 2
that is not a product of pairwise permutable nilpotent subgroups.

Let A = (6~ be a free abelian group of rank 2. Let Q = (r, y~
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be a dihedral group of order 8, where r4 = 1 = y2 and xy = x-1. If we

allow Q to act on A by means of the assignments .

then A becomes a Q-module. Now there is a non-split extension of A
by Q realizing the given module structure which, with a slight abuse
of notation, we may write as

(In fact this is the only non-split extension because H2(Q, Z2)
Clearly G is polycyclic and h(G) = 2.

Suppose that N is a nilpotent subgroup of G such that N 6 A
and N r1 A is non-trivial. Now the group c) is not nilpotent if
d E A and so It follows that N must be a sub-

group of one of the following types

are elements and R, S, T, U are subgroups of A. In

particular it is not hard to see that N is abelian.
It is easy to prove that if the dihedral group of order 8 is expressed

as a product of permutable subgroups, then it is a product of two of
them. Assuming that G is a product of permutable nilpotent sub-

groups, we deduce that there is such a factorization of the form

If G = AB, then A n B would be contained in the hypercentre of G,
which is obviously trivial; thus G would be a split extension, which
we know to be false. Hence C 6 A and for similar reasons B 6 A.
If neither B nor C is finite, they must have the forms specified above.
A check of the permutability of the four subgroups modulo A, that
is in the dihedral group, reveals just two possibilities:

or

However in neither case does ABC equal G.
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We may therefore assume that B is finite. If h(BC)  2, then
D = (BC) n A is infinite cyclic since G does not split over A. But D
is normal in G, whereas A contains no infinite cyclic normal subgroups
of G, a contradiction.

Hence h(BC) = 2 and, since B is finite, C is therefore of finite
index in G. Since C is nilpotent, there exist integers m, r such that
[Am, rC] = 1. Hence [A, C] = 1 and so C ~ A, a final contradiction.

REMARK. It is interesting to note that every proper homomorphic
image of G is a finite abelian by nilpotent group and as such splits
over some term of its lower central series by a well known theorem of
Gaschutz. Thus, every proper image of G is a product of two nil-
potent subgroups, y one of them normal.

EXAMPLE 2. There exists a supersoluble group of Hirsch length 3
that is not a product of pairwise permutable nilpotent subgroups.

’ 

Let A = e~ be a free abelian group, of rank 3 and
let Q = x, y&#x3E; be a 4-group. An action of Q on A is specified by

so A becomes a Q-module.
Let G be the non-split extension of A by Q given by 

’

We omit the verification that this is in fact a non-split extension.
Clearly G is supersoluble: its Hirsch length is 3.

Suppose that G is a product of pairwise permutable nilpotent sub-
groups. By looking at factorizations of the 4-group we conclude
that G has a factorization

where B and C are permutable nilpotent subgroups. If G were to equal
AC or AB, one can show that the extension would split. Hence

B 6 A and C 1; A.
A check of the nilpotent subgroups of G reveals the following pos-
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sibilities for B and C:

where r, s, t E A and Ro  So  CA(y), To  
Suppose, for example, that SR. Then

where azE C~(x) and ay E C~(y). Here i and j must be odd. It fol-

lows that

But the latter equals a, b, c2), in contradiction to [x, y] = 
By similar arguments ~ST = TS and TR = .RT are untenable. This

gives our final contradiction.

EXAMPLE 3. The exists a soluble group with finite total rank and
Hirsch length 2, having a normal series whose factors are locally
cyclic, which is not a product of pairwise permutable nilpotent
subgroups.

Denote by A the additive group of rational numbers of the form
(m, n E Z). Let Q = x~ x ~y~ where r has infinite order and y

has order 2. Make A into a Q-module via

for all a E A. Note that [A, Q] --- 2A. Choosing u from AB2A we
obtain a non-split extension

which is in fact unique.
Suppose that N is a nilpotent subgroup of G not contained in A.

Then it is easily seen that N r1 A = 1, so that in fact N is a finitely
generated abelian group. If G had a product decomposition of the
forbidden type, we could write G = XA, where X is a product of
pairwise permutable finitely generated abelian subgroups. It follows
from a theorem of Amberg [1], or from a more general theorem of
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Lennox and Roseblade [3], that X must be polycyclic. Now X r1 A
cannot be trivial since G does not split over A. Hence A is an

infinite cyclic normal subgroup of G contained in A. But this is clearly
impossible.

Notice that G is a finitely generated minimax group.

EXAMPLE 4. There exists a torsion-free polycyclic group having
no subgroup of finite index which is the split extension of one nil-
-potent group by another.

We begin with a torsion-free ( extra- special)) group with four

generators. This is the group N with generators which

is nilpotent of class 2 and satisfies in addition

-and

Thus N’ _ ~c~ is the centre of N, and N/N’ is free abelian of rank 4.
Two automorphisms x and y of N are defined by the following rules:

and

It is routine to check that x and y are indeed automorphisms.Moreover
they generate a free abelian group Q = (y). Thus K is a

,Q-module. Define

then is x&#x3E;-irreducible and is y&#x3E; -irreducible.
We now form the non-split extension of N by Q

’This is a torsion-free polycyclic group of Hirsch length 7.

Suppose that there exist nilpotent subgroups .M~ and H such that
M « HM and We shall obtain a con-

tradiction.
We claim first that .l~l’ ~ N. If this is not true, 1Vl contains some
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= where (r, s) ~ (o, 0 ) and Since C oo,
some Nt normalizes where t &#x3E; 0 . One concludes that [Nt, ~ iu] =1
for a suitable i; this is because M is nilpotent. It follows that

[At, 2xr] ~ A’. But A/A’ is rationally irreducible with respect to ~x~ ;
thus [A, and r = 0. In the same way s = 0, so we have a
contradiction.

The next point to establish is that has finite index in N, and
hence h ( ~tl ) _ ~ . Since IG:HMI ( is finite, there is a t &#x3E; 0 such that

(rt, Nt~ ~ H.M~. Since H is nilpotent, we have [N’7 for some i.
Now modulo N’ some powers ai, a2 , (j &#x3E; 0 ), 7 are contained in [Nt, ixt]
and hence in if. Forming commutators we conclude that if contains
non-trivial powers of a2 and c. Clearly the same holds for bl and b2 .
Consequently I is finite.

Comparing Hirsch lengths we see that

so that h(H) = 2. Moreover there is a positive integer t such that
H If = 1. Since G is torsion-free, this can only mean that
H n N -- 1 and H is abelian.

Since is finite, there exist r, a positive integer, and d, e,
elements of .Z1T, such that and It follows that

yre] = 1, which in turn implies that

Hence [xr, e] E N’, which must mean that e E B and e] = 1.
Similarly d E A and [yr, d] = 1. But [A, B] = 1, so [xr, yr] = 1. This

however is impossible because [xr, yr] = 1.

REMARK. It is worth observing that the group G cannot be iso-
morphic with a subgroup of finite index in a split extension of one
nilpotent group by another.
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