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On the Ring of Quotients of a Noetherian Commutative
Ring with Respect to the Dickson Topology.

ALBERTO FACCHINI

The aim of this paper is to investigate the structure of the ring
of quotients Rq of a commutative Noetherian ring R with respect to
the Dickson topology 9. In particular we study under which condi-
tions B = Rq or Rq is the total ring of fractions of R (§ 2), the structure
of Rqy when R is a GCD-domain and when R is local and satisfies con-
dition 8, (§3), and the endomorphism ring of the E-module Rp/R (§4).

1. Preliminaries.

The symbol R will be used consistently to denote a commutative
Noetherian ring with an identity element.

Let D be the Dickson topology on R, that is the Gabriel topology
on R consisting of the ideals I of R such that R/I is an Artinian ring,
i.e. the ideals I of R which contain the product of a finite number of
maximal ideals of R (see [12], Chap. VIII, §2). For every R-module
M we put X(M) = {x € M|Ir = 0 for some I € D}. X(M) is a sub-
module of M said the D-torsion submodule of M. The functor X has
been studied by E. Matlis ([6]). Let us define

Mg = 11_@ Homp, (Iv M/X(M)) ’
IeD

(*) Indirizzo dell’A.: Istituto di Algebra e Geometria - Via Belzoni 7 -
35100 Padova.
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where the direct limit is taken over the downwards directed family D.
Mgy is called the module of quotients of M with respect to the topo-
logy D. It is known that Eq becomes a ring in a natural way and
that. Mq becomes an Rg-module.

We shall always suppose that I has no D-torsion. This is equivalent
to request that every maximal ideal of R be dense, that is to request
that (since R is Noetherian) every maximal ideal of R contain a regular
element. Under such a hypothesis E is a subring of Rq and Rq is a
subring of @, the total ring of fractions of E. A more convenient descrip-
tion of Rq) is that Rqy = {x € @[xI C R for some I € D}. More precisely
we have that

1.1. LeMMA. If R possesses maximal ideals of grade 1, then Rq =
= {we Q| there exist maximal ideals My, ..., Mo, in R of grade 1 such
that xMy ... Mo, C R}. Otherwise Rqy = R.

Proor. It is clear that the products of a finite number of maximal
ideals of R form a basis for D. Therefore Rq = {x €@| there exist
maximal ideals Ay, ..., Mo, in R such that Al ... A, C R}. Hence
it is sufficient to prove that if x €@, M,, ..., M, are maximal ideals
of R, xM;... M, CR and gr (M,)7# 1, then xAM, ... M,_, CR. For
this it is enough to show that if ye @, A is a maximal ideal of R,
gr (M) #1 and y M C R, then ye R. Now y = s™'r for some r, s € R,
sregular. Hence from y A C R it follows that A C Rs, that is M. C (Rs:7).
By the maximality of A, M = (Rs:r) or (Rs:r) = R. In the first
case gr (M) = 1. Therefore R = (Rs:.r), i.e. y = s 'r € R.

From lemma 1.1 we immediately have a complete description of
the grade of all ideals in a local ring R such that R = Rq. For such
a ring it is easy to prove that gr (I) =1 for every regular ideal I of R,
and gr(J) = 0 for every non-regular ideal J. From lemma 1.1 it is
also clear that the study of Rq) is equivalent to the study of the maximal
ideals of grade 1 in R.

It is also easy to describe the elements of Rq in relation to the
primary decomposition in R. In fact let x€@. Then x € Rq if and
only if « is of the form s™, where s is a regular element of R, and if
Rs =@, N ...NQ, is a normal primary decomposition of the ideal Rs,
where @, is associated to a prime non-maximal ideal for ¢ =1, ...,¢
and to a maximal ideal for ¢ =%+ 1, ...,n, then re@, N ...NQ,.

Now let us « count » the number of the generators of the ideals
in the localization Rq. We have always supposed that the ring R
is Noetherian. Of course we cannot hope that this implies the ring
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of quotients Rqy is Noetherian. There exist rings R such that Rq pos-
sesses ideals which cannot be generated by a finite number of elements.
Nevertheless there exists an upper bound for the number of elements
needed to generate any ideal of Rg.

1.2. PROPOSITION. Let R be a ring, Max‘V(R) the set of all maximal
ideals in R of grade 1, & the cardinality of MaxW(R). Then Rq) is the
union of a directed fomily, of cardinality <N,-& -+ 1, of Noetherian
subrings of Q. Every ideal of Rqy can be gemerated by at most No(& + 1)
elements. In particular if R is local, every ideal of Rqy is countably gen-
erated.

Proor. If Max®(R) = @, by lemma 1.1 {R} is the requested family..
Hence let us suppose Max®(R) = .

Let I be a regular ideal of R and set R, = R[{xecQ|svI C R}].
R, is a subring of . Let s €I be a regular element. Then if x €@,
we have that 2 C R if and only if xs€ R and xs € (Rs:I). Let ry, ..., r,
be a set of generators of the ideal (Rs:I) in R. It follows that I C R if
and only if x is a linear combination of s7'ry, ..., s7'r, with coefficients
in R. Therefore R, = R[s~'ry,...,8 'r,] is a Noetherian ring. Now let us
consider the family F of the rings R, where I ranges over the set of
all products of a finite number of elements of Max®(R). The cardinality
of Fis<N,'&. F is directed because R, U R, € R, and by lemma 1.1
its union is Rq. Finally if #£ is an ideal of Ry, £ = |J (£, N #A) and

Rn€e
hence there exists a set of generators of £ of cardinality < §,'|F|<

<No(§+1).

If R and S are Noetherian rings and R C 8§ C Rq, it may happen
that Sq # Rq. This is not the case if § is integral over R.

1.3. PRrOPOSITION. Let R, S be Noetherian rings, RCSC Rq), S in-
tegral over R. Then Rq = Sqy.

Proor. First of all note that R and S have the same total ring of
fractions . Furthermore if N is any maximal ideal in 8, N N R is a
maximal ideal in R and therefore it contains a regular element of K.
Hence N’ contains a regular element (of 8§).

Let us show that Rq C Sq. Let # € Rq. Then # €@ and oA, ...
... Mo, € R for suitable maximal ideals A; of . Hence xAG, ... M, SCS.
To show that x € 8q) it is then sufficient to show that AG, ... M, § =
= (M18) ... (M, S) belongs to the Dickson topology of §. Hence it is
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enough to prove that ;S belongs to the Dickson topology of 8, and
this is obvious because S is integral over B and hence every minimal
prime ideal of M8 is a maximal ideal of 8.

Vice versa let us show that Sq C Rq. Let v € S8q. Then zN ...
... N, C8 for suitable maximal ideals JN°; of 8. It follows that
2(N;NR)...(N,NR)CSC Rg. Now every N, N R is maximal in
R because S is integral over R; let r,..., 7, be a set of generators of
the ideal (N; N R)... (N, N R) of R. Then ar, € Ryg, so that there
exists an ideal #; belonging to the Dickson topology of R such that
or; A;C R. From this we have that (N; N R) ... (N, N R)A, ... £, C R
and the ideal (N, N R) ... (N, N R) £, ... &, belongs to the Dickson
topology of R. Hence x € Rqy.

The preceding proposition may seem somewhat heavy due to the
many hypotheses on R and S. However after proposition 2.2 we shall
be able to prove that

1.4. PROPOSITION. Let R be a local ring. If Rqy#+ R and Rq # Q,
then there always exists a Noetherian ring S C Rq, properly containing R
and integral over R

2. The two cases Ry = R and Rq = Q.

Under our hypotheses (R is a Noetherian ring in which every maximal
ideal contains a regular element) we know that R C Rq C Q. The first
problem which naturally arises is studying under what conditions
on R Rq coincides with R and @ respectively. The case Rqp = @ is
handled in theorem 2.1 and the case Rq = R in theorem 2.2.

2.1, THEOREM. The following statements are equivalent:
i) Rp=@q;
ii) every maximal ideal of R has height 1;
iii) no proper ideal of Rqy is dense in Rqy;
iv) R satisfies Stenstrom’s D-inv condition (see [11]);
v) D is a 1-topology (see [12], Chap. VI, §6,1).
Furthermore if R is a reduced ring the preceding statements are also
equivalent to:
vi) Rq is a (Von Neumann-) regular ring;
vii) Rq is a semisimple ring.
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ProOF. i) =- ii). Let M be a maximal ideal of R. Let se€ ., s
regular. Then by i), s € Rq. It follows that s7*-IC R for some I € D,
that is I € Rs. But then R/Rs is Artinian and AG/Rs is a prime ideal
in R/Rs, hence a minimal prime ideal. Therefore A is a minimal prime
ideal of Rs in R. Since s is regular, A has height 1.

ii) => i). Let us suppose Rq 7 ¢. Then there exists some regular
element s € R non invertible in Rq), ¢.e. such that s™*-1 ¢ R for every
ideal I € D, that is Rs ¢ D. Therefore E/Rs is not Artinian, and hence
it has a maximal ideal of height >1. It follows that R has a maximal
ideal of height >2.

i) = iii). Obvious.

iii) => i). Suppose iii) holds and let us show that if s € R is regular
in R then it is invertible in Rq, (this will prove i)).

Now if s € R is regular in R, s is invertible in ¢ and hence regular
in Rq. Therefore Rq-s is a dense ideal of Rq. By iii) Rgs = Ry,
that is s is invertible in Rg.

ii) = v). Let s be a regular element of B. Then every minimal
prime ideal of Rs has height 1, and hence by ii) it is maximal. Therefore
Rs e D. It follows that the filter of all regular ideals is contained in D
Since every ideal of D is regular, D is exactly the filter of all regular
ideals of R. Hence 9D is a 1-topology.

v) = iv). Trivial.

iv) = ii). Suppose R satisfies Stenstrom’s D-inv condition. Let A
be a maximal ideal of R. Then A€ D and therefore there exists I € D
such that I C A6 and I is a projective ideal. Let I =@, N ...NQ,
be a normal primary decomposition of I. Since I € D the minimal
prime ideals of I are exactly the maximal ideals of R containing I.
Let @, be the M-primary component of I. Localize with respect to
the ideal M. Then IRy, is a projective ideal (and hence it is principal
generated by a regular element of Ry,), and IRy = @,Rx. Hence
IRy, is a MR y,-primary principal ideal. From this it follows that the
height of the ideal ARy, in Ry, is 1. Hence the height of AG is 1.

Now suppose R is reduced, ¢.e. without non-zero nilpotent elements.
Then

i) = wvii). Trivial, because the total ring of fractions of a reduced
Noetherian ring is always semisimple.

vii) = vi). Obvious.
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vi) = i). Let s be any regular element of E. Then s = s%x for some
element x € Rqy. It follows that 1 = s, ¢.e. # = s™. Therefore s~ € Ry,.
Hence @ = Eq.

2.2. THEOREM. The following statements are equivalent:
i) B = Rg;
i) X (@R/Rs) = 0, where X' is the set of all regular elements of R;

seX
iii) No maximal ideal of R is R-reflewive (see [8], §7);
iv) No mawximal ideal of R is associated to an ideal Rs with s reqular
element of R;

v) No maximal ideal of R has grade 1.

ProoOF. i) = ii). Suppose X(@R/Rs)#o. Then there exists

sex
s € X' such that X(R/Rs) # 0, that is such that R/Rs has a simple sub-
module. Let r - Es be a generator of such a submodule. Then r ¢ Rs
and (Rr + Rs)/Rs ~ R/M for some maximal ideal A( of R, and hence
rM C Rs, that is s7vAM C R. From this it follows that s™r € Bq. But
s7'r ¢ R, for otherwise r € Bs. Hence R # Rq.

ii) = iii). Let 4G be a R-reflexive maximal ideal of R. Then
Mo = (Rs:r) for some r, s € R, with s regular (see [3], theorem 1.5).
Then (Rr 4 Rs)/Rs ~ R|(Rs.r) >~ R|AM is a simple submodule of R/Rs.
It follows that X(CP R/Rs) 0.

seX

iili) = iv). Let 4 be a maximal ideal of R associated to the ideal Rs
with s a regular element of B. Then A, = rad (Rs.r) for some re B
(see [1], theorem 4.5), and hence AG" C (Rs:7) for some natural num-
ber n. Suppose n is the least for which such relation holds. Then n>1.
Let te M1, t¢ (Rs:r). Then from J"C (Rs:r) it follows that
tMC(Rs:r), i.e. M C(Rs:.rt), and from ¢¢ (Rs:r) it follows that
1¢ (Rs:rt). Hence M = (Rs:rt) and so A is R-reflexive ([3], the-
orem 1.5).

iv) == v). Obvious, because a maximal ideal of grade 1 is associated
to an ideal Rs, with s a regular element of E.

v) = i). By lemma 1.1.

Now we are ready to prove proposition 1.4:

Let AG be the maximal ideal of E. Since Rq) = @, by theorem 2.1
the height of A is >2, and since Rq 7%= R M is R-reflexive by theorem 2.2.
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Therefore there exists y €@ such that yM C R, y¢ R. From this it
follows that E y,, the Noetherian subring of Eq defined in the proof
of proposition 1.2, properly contains E. In order to show that § = Ry,
satisfies the thesis of the proposition it is sufficient to show that if z € @
and M C R, then « is integral over R. Since the height of A is >2,
there exists a regular prime ideal T in R properly contained in (.
Now if x€Q and aAM C R, then aMT C T. Let us show that 2T C 7.
If 3 ¢ T, there would exist p €  such that zp ¢ §. But ap € R, because
p € M. Let me MNT. Then xpm ¢ T, a contradiction because 2T C .
Therefore 3 C §. Furthermore & is a faithful R-module (because & is
regular in R) and finitely generated. From this it follows that x is
integral over R.

3. The structure of Rq for some classes of rings R.

One of the classes of rings for which it is possible to give a complete
description of the Dickson localization is the class of GCD-domains,
that is of integral domains R such that for every a, b € R there exists
a greatest common divisor [a, b]€ R (see [4], page 32).

3.1. THEOREM. Let R be a GCD-domain. Let S be the multiplicatively
closed subset of R generated by all elements s € R such that Rs is a maximal
ideal of R. Then Rq = S7'R.

Proor. Let us show that in a GCD-domain R every maximal ideal
A6 of grade 1 is principal. If A has grade 1, there exists y €@ such
that yM C R and y¢ R. Let y = s with r,se R, r, s % 0, and let
My, ..., M, be a set of generators of M. Then from yAM C R it follows
that rm, e Rs for every ¢ =1, ..., n. Therefore s divides rm, for every ¢,
and hence s divides their greatest common divisor [rm,, ..., rm,] =1
[myy ..., m,]. Let d = [m,, ..., m,]. Then M C Rd. Now if Rd =R, d
would be a unit in R and hence from s|rd it would follow s|r in R, i.e.
ye R, a contradiction. Since A is maximal, M = Rd, i.e. A is prin-
cipal.

By lemma 1.1, Rqy = {x € Q| there exist maximal ideals G, ..., A,
of grade 1 such that @A(, ... A, C R}, from which Rq = {x € Q| there
exist principal maximal ideals Rs,, ..., Rs, such that xs,...s, € R} =
= {reQ|rs € R for some s e S8} = S'R.
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3.2. ProPoSITION. Let R be a local ring and suppose that at least
one of the following four conditions holds:

i) there exists a regular non invertible element s € R such that the
ideal Rs is a radical of R;

il) R satisfies condition 8, (see [12], Ch. VII, §6);
iii) R is a Macaulay ring;
iv) R is an integrally closed domain.

Then if dim R =1, Rqy= @, and if dim R>1, Rq = R.

Proor. Suppose that in R there exists a regular non-invertible
element s such that the ideal Rs is a radical in R. If Rq = R, there
exigts x € Rq such that # ¢ R and oM C R, where J( is the maximal
ideal of R. Then xs € R, and hence x = s7'r for some r € B. From this
we have that rA C Rs and r ¢ Rs. Therefore in the ring B/Rs the max-
imal ideal M/Rs contains only zero-divisors, and since the ring R/Rs is
reduced, A/Rs is contained in the union of the minimal prime ideals
of 0 in R/Rs, and hence M/Rs itself is a minimal prime ideal of 0 in
R/Rs. Therefore M is a minimal prime ideal of Rs in R and hence it
has height 1. Thus we have proved that if dim R > 1, then Rq = R.

If dim R =1, then Rq = @ by theorem 2.1.

Next if R satisfies S,, the prime ideals of height >2 have grade >2,
from which the thesis follows by theorem 2.1 and 2.2.

Finally if R is a Macaulay ring or an integrally closed domain, R
satisfies S,.

4. The endomorphism ring of Rg/R.

We shall now study the E-module K = Rq/R. It is a D-torsion
R-module (it is the D-torsion submodule of @/R). Therefore (see [6],
theorem 1), it splits in its AC-primary components:

K= @ XyK).
MeMax(R)

X 4, (K) is the submodule of K consisting of all elements « € K such
that Anng(x) contains a power of (.

Now let I be a regular ideal. Set I-*= {ge€Q|¢l C R} and I-"! =
= {geQ|gI-* C R}. It is known that I-'-! is an ideal of R canonically
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isomorphic to Hom, (Homg (I, R), R), the R-bidual of I. Let 3B be
a basis of the filter of neighborhoods of zero for a ring topology over B
consisting of regular ideals of R. Let us define the bidual topology over R
as the topology having $-1-1 = {I-"!|] € $} as basis of the filter of
neighborhoods of zero. The original topology is finer than the bidual
topology.

4.1. THEOREM (see [5], theorem 3.4). Let R be a ring, M a mazimal
ideal of R. For every natural number n let Ay, ,= {x € K|M "z = 0}.
Then

i) Ap)q ts a submodule of X y4(K), A pynC Aoyni1r Xa(K) =
= U A(J{));n and A('JK,)’" o~ Extr)le (R/;M)n, .R);
n

ii) Anng Ay, = (M) =~ Hom, (Homg (A", R), R);

iii) The non-zero elements of Ay n+1/A(M)n are €xactly the elements
of K|Ay,q having annihilator M;

iv) Aoy n+1/A ) 18 i a natural way a finite dimensional vector
space over the field R|AM;

v) X 4 (K) is countably generated.

Proor. i) The only non obvious statement is that A y,,==
~ Ext, (R/M", R); this is proved by observing that 4y, , = (M")"1/R
and applying the functor Homj (—, R) to the short exact sequence

0—> M >R —>R/M—>0.

ii) Anng Ay, = {r € Rjr(M")"1 C R} = (M")—1

iii) Obvious.

iv) and v) From iii) it follows that Ay u+1/A(u),» 18 & Vector
space over the field R/A.. In order to show that it is finite dimensional
it is enough to prove that A, is a finitely generated R-module (and
this with i) immediately gives v)). To this end we only have to show
that the R-submodule (A")-! of @ is finitely generated.

Let s € M7, s regular and let g € (M")-1. Then ¢s € R, whence ¢ = s~
for some r€ R. From this we have that

(M)t = {s71r|r e R, rM"C Rs} = {s~'r|r € (Rs:M")} .

Since the ideal (Rs: M") of R is finitely generated, it follows that (")~
is finitely generated.
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Let us consider Endg (X #(K)). For every positive integer n set
Hp)n= {f €Endg (X 4(K))|f(Ap),n) = 0}. Let Endg (X (K)) have
the topology defined by the filtration {H . .}nen and let Endy (K) ~
=~ []| Endz (X 4,(K)) have the product topology. Let us call this topo-

M

logy the natural topology of Endg (K).

4.2. ProposITION. Endgp(K) endowed with its natural topology
is a Hausdorff complete topological ring.

ProOF. It is enough to prove that every Endg (X 4, (K))is complete
and Hausdorff. Clearly it is Hausdorff. Now if (f,),«v is a Cauchy
sequence in Endg (X 4,(K)) let us define f € Endg (X 4 (K)) in the fol-
lowing way: if x € Ay, ,, there exists r € N such that for every ', »" €N,
7'y " >r, we have f, — fr€ H g, n; let f(x) = f,(x). The proof that this
f is a well-defined homomorphism and that it is limit of the sequence (f,)
is routine.

Now let R be a local ring, A its maximal ideal. Consider the canon-
ical homomorphism ¢. R — End, (K) which to every element of R
associates the multiplication over K by that element. If Endg (K) has
its natural topology and R has the bidual topology of the A-adic topo-
logy, it is easy to prove that ¢ is a continuous ring homomorphism
whose kernel is the closure of 0 in E. Therefore ¢ induces a continuous
monomorphism @: B’ — Endy (K), where R’ is the « Hausdorffized »
of R, that is E modulo the closure of 0 in R with the quotient topology.
It is easy to see that ¢ is a topological embedding. Therefore we have
proved the following

4.3. PROPOSITION. Let R be a local ring, M its maximal ideal and
let R have the bidual of the M-adic topology. Then R modulo the closure
of zero with the quotient topology is in a natural way a topological subring
of Endg (K) endowed with its natural topology.

Therefore Endg (K) contains the Hausdorff completion of R.
The following theorem gives a sufficient condition for Endy (K) to
be the Hausdorff completion of R (see [7]).

4.4, THEOREM. Let R be a local ring, M its maximal ideal. Sup-
pose that M~ can be generated by two elements. Then Endy (K) is the
Hausdorff completion of R with the bidual topology of the M-adic

topology.
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Proor: If Mt = R, then (M")"! = R for every ». Hence the
closure of 0 in R is R and K= 0.

Therefore we may suppose A1 7 R. Then 4y, ;= MR ~ R[N
(see [7], lemma 2.3, true also when R is not an integral domain). Thus
E(K) ~ E(A 1) = B(R|AM). It follows that if f e End, (K) and n €N,
then f extends to a endomorphism of E(R/AM) and Ay, S B,, Where
B, is the submodule of E(R/AM) consisting of all elements of E(R/AM)
annihilated by AG”. But f coincides over B, with the multiplication
by an element of R (see [10], lemma 5.11). It follows that f|A 4, is
the multiplication by an element of R. Hence ¢(R) is dense in End,(K).
We conclude by proposition 4.2 and 4.3.
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