RENDICONTI del SEMINARIO MATEMATICO della UNIVERSITÀ DI PADOVA

ALBERTO FACCHINI

On the ring of quotients of a noetherian commutative ring with respect to the Dickson topology

Rendiconti del Seminario Matematico della Università di Padova, tome 62 (1980), p. 233-243

http://www.numdam.org/item?id=RSMUP_1980 62 233 0>

© Rendiconti del Seminario Matematico della Università di Padova, 1980, tous droits réservés.

L'accès aux archives de la revue « Rendiconti del Seminario Matematico della Università di Padova » (http://rendiconti.math.unipd.it/) implique l'accord avec les conditions générales d'utilisation (http://www.numdam.org/conditions). Toute utilisation commerciale ou impression systématique est constitutive d'une infraction pénale. Toute copie ou impression de ce fichier doit contenir la présente mention de copyright.

NUMDAM

Article numérisé dans le cadre du programme Numérisation de documents anciens mathématiques http://www.numdam.org/

On the Ring of Quotients of a Noetherian Commutative Ring with Respect to the Dickson Topology.

ALBERTO FACCHINI

The aim of this paper is to investigate the structure of the ring of quotients $R_{\mathfrak{D}}$ of a commutative Noetherian ring R with respect to the Dickson topology \mathfrak{D} . In particular we study under which conditions $R = R_{\mathfrak{D}}$ or $R_{\mathfrak{D}}$ is the total ring of fractions of R (§ 2), the structure of $R_{\mathfrak{D}}$ when R is a GCD-domain and when R is local and satisfies condition S_2 (§ 3), and the endomorphism ring of the R-module $R_{\mathfrak{D}}/R$ (§ 4).

1. Preliminaries.

The symbol R will be used consistently to denote a commutative Noetherian ring with an identity element.

Let $\mathfrak D$ be the Dickson topology on R, that is the Gabriel topology on R consisting of the ideals I of R such that R/I is an Artinian ring, *i.e.* the ideals I of R which contain the product of a finite number of maximal ideals of R (see [12], Chap. VIII, § 2). For every R-module M we put $X(M) = \{x \in M | Ix = 0 \text{ for some } I \in \mathfrak D\}$. X(M) is a submodule of M said the $\mathfrak D$ -torsion submodule of M. The functor X has been studied by E. Matlis ([6]). Let us define

$$M_{\mathfrak{D}} = \varinjlim_{I \in \mathfrak{D}} \operatorname{Hom}_{R} (I, M/X(M)),$$

(*) Indirizzo dell'A.: Istituto di Algebra e Geometria - Via Belzoni 7 - 35100 Padoya.

where the direct limit is taken over the downwards directed family \mathfrak{D} . $M_{\mathfrak{D}}$ is called the module of quotients of M with respect to the topology \mathfrak{D} . It is known that $R_{\mathfrak{D}}$ becomes a ring in a natural way and that $M_{\mathfrak{D}}$ becomes an $R_{\mathfrak{D}}$ -module.

We shall always suppose that R has no $\mathfrak D$ -torsion. This is equivalent to request that every maximal ideal of R be dense, that is to request that (since R is Noetherian) every maximal ideal of R contain a regular element. Under such a hypothesis R is a subring of $R_{\mathfrak D}$ and $R_{\mathfrak D}$ is a subring of Q, the total ring of fractions of R. A more convenient description of $R_{\mathfrak D}$ is that $R_{\mathfrak D} = \{x \in Q | xI \subseteq R \text{ for some } I \in \mathfrak D\}$. More precisely we have that

1.1. LEMMA. If R possesses maximal ideals of grade 1, then $R_{\mathfrak{D}} = \{x \in Q \mid \text{there exist maximal ideals } \mathcal{M}_1, ..., \mathcal{M}_n \text{ in } R \text{ of grade 1 such that } x\mathcal{M}_1 ... \mathcal{M}_n \subseteq R\}.$ Otherwise $R_{\mathfrak{D}} = R$.

PROOF. It is clear that the products of a finite number of maximal ideals of R form a basis for \mathfrak{D} . Therefore $R_{\mathfrak{D}} = \{x \in Q \mid \text{ there exist maximal ideals } \mathcal{M}_1, ..., \mathcal{M}_n \text{ in } R \text{ such that } x\mathcal{M}_1 ... \mathcal{M}_n \subseteq R\}$. Hence it is sufficient to prove that if $x \in Q$, $\mathcal{M}_1, ..., \mathcal{M}_n$ are maximal ideals of R, $x\mathcal{M}_1 ... \mathcal{M}_n \subseteq R$ and $\operatorname{gr}(\mathcal{M}_n) \neq 1$, then $x\mathcal{M}_1 ... \mathcal{M}_{n-1} \subseteq R$. For this it is enough to show that if $y \in Q$, \mathcal{M} is a maximal ideal of R, $\operatorname{gr}(\mathcal{M}) \neq 1$ and $y \mathcal{M} \subseteq R$, then $y \in R$. Now $y = s^{-1}r$ for some $r, s \in R$, s regular. Hence from $y\mathcal{M} \subseteq R$ it follows that $r\mathcal{M} \subseteq Rs$, that is $\mathcal{M} \subseteq (Rs:r)$. By the maximality of \mathcal{M} , $\mathcal{M} = (Rs:r)$ or (Rs:r) = R. In the first case $\operatorname{gr}(\mathcal{M}) = 1$. Therefore R = (Rs:r), i.e. $y = s^{-1}r \in R$.

From lemma 1.1 we immediately have a complete description of the grade of all ideals in a local ring R such that $R \neq R_{\mathbb{D}}$. For such a ring it is easy to prove that $\operatorname{gr}(I) = 1$ for every regular ideal I of R, and $\operatorname{gr}(J) = 0$ for every non-regular ideal J. From lemma 1.1 it is also clear that the study of $R_{\mathbb{D}}$ is equivalent to the study of the maximal ideals of grade 1 in R.

It is also easy to describe the elements of $R_{\mathfrak{D}}$ in relation to the primary decomposition in R. In fact let $x \in Q$. Then $x \in R_{\mathfrak{D}}$ if and only if x is of the form $s^{-1}r$, where s is a regular element of R, and if $Rs = Q_1 \cap ... \cap Q_n$ is a normal primary decomposition of the ideal Rs, where Q_i is associated to a prime non-maximal ideal for i = 1, ..., t and to a maximal ideal for i = t + 1, ..., n, then $r \in Q_1 \cap ... \cap Q_t$.

Now let us « count » the number of the generators of the ideals in the localization $R_{\mathfrak{D}}$. We have always supposed that the ring R is Noetherian. Of course we cannot hope that this implies the ring

of quotients $R_{\mathfrak{D}}$ is Noetherian. There exist rings R such that $R_{\mathfrak{D}}$ possesses ideals which cannot be generated by a finite number of elements. Nevertheless there exists an upper bound for the number of elements needed to generate any ideal of $R_{\mathfrak{D}}$.

1.2. Proposition. Let R be a ring, $\operatorname{Max}^{(1)}(R)$ the set of all maximal ideals in R of grade 1, ξ the cardinality of $\operatorname{Max}^{(1)}(R)$. Then $R_{\mathfrak{D}}$ is the union of a directed family, of cardinality $\leq \aleph_0 \cdot \xi + 1$, of Noetherian subrings of Q. Every ideal of $R_{\mathfrak{D}}$ can be generated by at most $\aleph_0(\xi+1)$ elements. In particular if R is local, every ideal of $R_{\mathfrak{D}}$ is countably generated.

PROOF. If $Max^{(1)}(R) = \emptyset$, by lemma 1.1 $\{R\}$ is the requested family. Hence let us suppose $Max^{(1)}(R) \neq \emptyset$.

Let I be a regular ideal of R and set $R_{(I)} = R[\{x \in Q | xI \subseteq R\}]$. $R_{(I)}$ is a subring of Q. Let $s \in I$ be a regular element. Then if $x \in Q$, we have that $xI \subseteq R$ if and only if $xs \in R$ and $xs \in (Rs:I)$. Let r_1, \ldots, r_n be a set of generators of the ideal (Rs:I) in R. It follows that $xI \subseteq R$ if and only if x is a linear combination of $s^{-1}r_1, \ldots, s^{-1}r_n$ with coefficients in R. Therefore $R_{(I)} = R[s^{-1}r_1, \ldots, s^{-1}r_n]$ is a Noetherian ring. Now let us consider the family \mathcal{F} of the rings $R_{(I)}$ where I ranges over the set of all products of a finite number of elements of $\max^{(1)}(R)$. The cardinality of \mathcal{F} is $s \in \mathfrak{F}_0$. \mathcal{F} is directed because $R_{(I)} \cup R_{(I)} \subseteq R_{(II)}$ and by lemma 1.1 its union is $R_{\mathfrak{D}}$. Finally if \mathcal{A} is an ideal of $R_{\mathfrak{D}}$, $\mathcal{A} = \bigcup_{R_{(I)} \in \mathcal{F}} (R_{(I)} \cap \mathcal{A})$ and hence there exists a set of generators of \mathcal{A} of cardinality $s \in \mathfrak{F}_0 \setminus \mathcal{F} = \mathfrak{F}_0 \setminus \mathcal{F}_0 \setminus \mathcal{F}_0 \setminus \mathcal{F}_0$.

If R and S are Noetherian rings and $R \subseteq S \subseteq R_{\mathfrak{D}}$, it may happen that $S_{\mathfrak{D}} \neq R_{\mathfrak{D}}$. This is not the case if S is integral over R.

1.3. Proposition. Let R, S be Noetherian rings, $R \subseteq S \subseteq R_{\mathfrak{D}}$, S integral over R. Then $R_{\mathfrak{D}} = S_{\mathfrak{D}}$.

PROOF. First of all note that R and S have the same total ring of fractions Q. Furthermore if \mathcal{N} is any maximal ideal in S, $\mathcal{N} \cap R$ is a maximal ideal in R and therefore it contains a regular element of R. Hence \mathcal{N} contains a regular element (of S).

Let us show that $R_{\mathfrak{D}} \subseteq S_{\mathfrak{D}}$. Let $x \in R_{\mathfrak{D}}$. Then $x \in Q$ and $x\mathcal{M}_1 \dots \mathcal{M}_n \subseteq R$ for suitable maximal ideals \mathcal{M}_i of R. Hence $x\mathcal{M}_1 \dots \mathcal{M}_n S \subseteq S$. To show that $x \in S_{\mathfrak{D}}$ it is then sufficient to show that $\mathcal{M}_1 \dots \mathcal{M}_n S = (\mathcal{M}_1 S) \dots (\mathcal{M}_n S)$ belongs to the Dickson topology of S. Hence it is

enough to prove that $\mathcal{M}_i S$ belongs to the Dickson topology of S, and this is obvious because S is integral over R and hence every minimal prime ideal of $\mathcal{M}S$ is a maximal ideal of S.

Vice versa let us show that $S_{\mathfrak{D}} \subseteq R_{\mathfrak{D}}$. Let $x \in S_{\mathfrak{D}}$. Then $x \mathcal{N}_1 \dots$ \dots $\mathcal{N}_n \subseteq S$ for suitable maximal ideals \mathcal{N}_i of S. It follows that $x(\mathcal{N}_1 \cap R) \dots (\mathcal{N}_n \cap R) \subseteq S \subseteq R_{\mathfrak{D}}$. Now every $\mathcal{N}_i \cap R$ is maximal in R because S is integral over R; let r_1, \dots, r_t be a set of generators of the ideal $(\mathcal{N}_1 \cap R) \dots (\mathcal{N}_n \cap R)$ of R. Then $xr_i \in R_{\mathfrak{D}}$, so that there exists an ideal A_i belonging to the Dickson topology of R such that $xr_i \not A_i \subseteq R$. From this we have that $x(\mathcal{N}_1 \cap R) \dots (\mathcal{N}_n \cap R) \not A_1 \dots \not A_t \subseteq R$ and the ideal $(\mathcal{N}_1 \cap R) \dots (\mathcal{N}_n \cap R) \not A_1 \dots \not A_t$ belongs to the Dickson topology of R. Hence $x \in R_{\mathfrak{D}}$.

The preceding proposition may seem somewhat heavy due to the many hypotheses on R and S. However after proposition 2.2 we shall be able to prove that

1.4. PROPOSITION. Let R be a local ring. If $R_{\mathfrak{D}} \neq R$ and $R_{\mathfrak{D}} \neq Q$, then there always exists a Noetherian ring $S \subseteq R_{\mathfrak{D}}$, properly containing R and integral over R

2. The two cases $R_{\mathfrak{D}} = R$ and $R_{\mathfrak{D}} = Q$.

Under our hypotheses (R is a Noetherian ring in which every maximal ideal contains a regular element) we know that $R \subseteq R_{\mathfrak{D}} \subseteq Q$. The first problem which naturally arises is studying under what conditions on R $R_{\mathfrak{D}}$ coincides with R and Q respectively. The case $R_{\mathfrak{D}} = Q$ is handled in theorem 2.1 and the case $R_{\mathfrak{D}} = R$ in theorem 2.2.

- 2.1. Theorem. The following statements are equivalent:
 - i) $R_{\mathfrak{D}} = Q$;
 - ii) every maximal ideal of R has height 1;
 - iii) no proper ideal of R_{Ω} is dense in R_{Ω} ;
 - iv) R satisfies Stenström's D-inv condition (see [11]);
 - v) D is a 1-topology (see [12], Chap. VI, § 6, 1).

Furthermore if R is a reduced ring the preceding statements are also equivalent to:

- vi) $R_{\mathfrak{D}}$ is a (Von Neumann-) regular ring;
- vii) $R_{\mathfrak{D}}$ is a semisimple ring.

PROOF. i) \Rightarrow ii). Let \mathcal{M} be a maximal ideal of R. Let $s \in \mathcal{M}$, s regular. Then by i), $s^{-1} \in R_{\mathfrak{D}}$. It follows that $s^{-1} \cdot I \subseteq R$ for some $I \in \mathfrak{D}$, that is $I \subseteq Rs$. But then R/Rs is Artinian and \mathcal{M}/Rs is a prime ideal in R/Rs, hence a minimal prime ideal. Therefore \mathcal{M} is a minimal prime ideal of Rs in R. Since s is regular, \mathcal{M} has height 1.

- ii) \Rightarrow i). Let us suppose $R_{\mathfrak{D}} \neq Q$. Then there exists some regular element $s \in R$ non invertible in $R_{\mathfrak{D}}$, *i.e.* such that $s^{-1} \cdot I \notin R$ for every ideal $I \in \mathfrak{D}$, that is $Rs \notin \mathfrak{D}$. Therefore R/Rs is not Artinian, and hence it has a maximal ideal of height $\geqslant 1$. It follows that R has a maximal ideal of height $\geqslant 2$.
 - i) ⇒ iii). Obvious.
- iii) \Rightarrow i). Suppose iii) holds and let us show that if $s \in R$ is regular in R then it is invertible in $R_{\mathfrak{D}}$ (this will prove i)).

Now if $s \in R$ is regular in R, s is invertible in Q and hence regular in $R_{\mathfrak{D}}$. Therefore $R_{\mathfrak{D}} \cdot s$ is a dense ideal of $R_{\mathfrak{D}}$. By iii) $R_{\mathfrak{D}} s = R_{\mathfrak{D}}$, that is s is invertible in $R_{\mathfrak{D}}$.

- ii) \Rightarrow v). Let s be a regular element of R. Then every minimal prime ideal of Rs has height 1, and hence by ii) it is maximal. Therefore $Rs \in \mathfrak{D}$. It follows that the filter of all regular ideals is contained in \mathfrak{D} Since every ideal of \mathfrak{D} is regular, \mathfrak{D} is exactly the filter of all regular ideals of R. Hence \mathfrak{D} is a 1-topology.
 - $v) \Rightarrow iv$). Trivial.
- iv) \Rightarrow ii). Suppose R satisfies Stenstrom's \mathfrak{D} -inv condition. Let \mathcal{M} be a maximal ideal of R. Then $\mathcal{M} \in \mathfrak{D}$ and therefore there exists $I \in \mathfrak{D}$ such that $I \subseteq \mathcal{M}$ and I is a projective ideal. Let $I = Q_1 \cap \ldots \cap Q_n$ be a normal primary decomposition of I. Since $I \in \mathfrak{D}$ the minimal prime ideals of I are exactly the maximal ideals of R containing I. Let Q_1 be the \mathcal{M} -primary component of I. Localize with respect to the ideal \mathcal{M} . Then $IR_{\mathcal{M}}$ is a projective ideal (and hence it is principal generated by a regular element of $R_{\mathcal{M}}$), and $IR_{\mathcal{M}} = Q_1 R_{\mathcal{M}}$. Hence $IR_{\mathcal{M}}$ is a $\mathcal{M}R_{\mathcal{M}}$ -primary principal ideal. From this it follows that the height of the ideal $\mathcal{M}R_{\mathcal{M}}$ in $R_{\mathcal{M}}$ is 1. Hence the height of \mathcal{M} is 1.

Now suppose R is reduced, i.e. without non-zero nilpotent elements. Then

- i) \Rightarrow vii). Trivial, because the total ring of fractions of a reduced Noetherian ring is always semisimple.
 - $vii) \Rightarrow vi$). Obvious.

- vi) \Rightarrow i). Let s be any regular element of R. Then $s=s^2x$ for some element $x \in R_{\mathfrak{D}}$. It follows that $1=sx, \ i.e. \ x=s^{-1}$. Therefore $s^{-1} \in R_{\mathfrak{D}}$. Hence $Q=R_{\mathfrak{D}}$.
 - 2.2. Theorem. The following statements are equivalent:
 - i) $R=R_{\mathfrak{D}}$;
 - ii) $X(\bigoplus_{s\in\Sigma}R/Rs)=0$, where Σ is the set of all regular elements of R;
 - iii) No maximal ideal of R is R-reflexive (see [8], § 7);
 - iv) No maximal ideal of R is associated to an ideal Rs with s regular element of R;
 - v) No maximal ideal of R has grade 1.
- PROOF. i) \Rightarrow ii). Suppose $X(\bigoplus_{s\in\Sigma}R/Rs)\neq 0$. Then there exists $s\in\Sigma$ such that $X(R/Rs)\neq 0$, that is such that R/Rs has a simple submodule. Let r+Rs be a generator of such a submodule. Then $r\notin Rs$ and $(Rr+Rs)/Rs\cong R/\mathcal{M}$ for some maximal ideal \mathcal{M} of R, and hence $r\mathcal{M}\subseteq Rs$, that is $s^{-1}r\mathcal{M}\subseteq R$. From this it follows that $s^{-1}r\in R_{\mathbb{D}}$. But $s^{-1}r\notin R$, for otherwise $r\in Rs$. Hence $R\neq R_{\mathbb{D}}$.
- ii) \Rightarrow iii). Let $\mathcal M$ be a R-reflexive maximal ideal of R. Then $\mathcal M=(Rs\,:\,r)$ for some $r,s\in R$, with s regular (see [3], theorem 1.5). Then $(Rr+Rs)/Rs\cong R/(Rs\,:\,r)\cong R/\mathcal M$ is a simple submodule of R/Rs. It follows that $X(\bigoplus_{s\in \Sigma}R/Rs)\neq 0$.
- iii) \Rightarrow iv). Let \mathcal{M} be a maximal ideal of R associated to the ideal Rs with s a regular element of R. Then $\mathcal{M} = \operatorname{rad}(Rs;r)$ for some $r \in R$ (see [1], theorem 4.5), and hence $\mathcal{M}^n \subseteq (Rs;r)$ for some natural number n. Suppose n is the least for which such relation holds. Then $n \geqslant 1$. Let $t \in \mathcal{M}^{n-1}$, $t \notin (Rs;r)$. Then from $\mathcal{M}^n \subseteq (Rs;r)$ it follows that $t\mathcal{M} \subseteq (Rs;r)$, i.e. $\mathcal{M} \subseteq (Rs;rt)$, and from $t \notin (Rs;r)$ it follows that $1 \notin (Rs;rt)$. Hence $\mathcal{M} = (Rs;rt)$ and so \mathcal{M} is R-reflexive ([3], theorem 1.5).
- iv) \Rightarrow v). Obvious, because a maximal ideal of grade 1 is associated to an ideal Rs, with s a regular element of R.
 - $v) \Rightarrow i$). By lemma 1.1.

Now we are ready to prove proposition 1.4:

Let \mathcal{M} be the maximal ideal of R. Since $R_{\mathfrak{D}} \neq Q$, by theorem 2.1 the height of \mathcal{M} is ≥ 2 , and since $R_{\mathfrak{D}} \neq R$ \mathcal{M} is R-reflexive by theorem 2.2.

Therefore there exists $y \in Q$ such that $y\mathcal{M} \subseteq R$, $y \notin R$. From this it follows that $R_{(\mathcal{M})}$, the Noetherian subring of $R_{\mathfrak{D}}$ defined in the proof of proposition 1.2, properly contains R. In order to show that $S = R_{(\mathcal{M})}$ satisfies the thesis of the proposition it is sufficient to show that if $x \in Q$ and $x\mathcal{M} \subseteq R$, then x is integral over R. Since the height of \mathcal{M} is $\geqslant 2$, there exists a regular prime ideal \mathfrak{T} in R properly contained in \mathcal{M} . Now if $x \in Q$ and $x\mathcal{M} \subseteq R$, then $x\mathcal{M} \subseteq \mathfrak{T}$. Let us show that $x\mathfrak{T} \subseteq \mathfrak{T}$. If $x\mathfrak{T} \nsubseteq \mathfrak{T}$, there would exist $p \in \mathfrak{T}$ such that $xp \notin \mathfrak{T}$. But $xp \in R$, because $p \in \mathcal{M}$. Let $m \in \mathcal{M} \setminus \mathfrak{T}$. Then $xpm \notin \mathfrak{T}$, a contradiction because $x\mathfrak{T}\mathcal{M} \subseteq \mathfrak{T}$. Therefore $x\mathfrak{T} \subseteq \mathfrak{T}$. Furthermore \mathfrak{T} is a faithful R-module (because \mathfrak{T} is regular in R) and finitely generated. From this it follows that x is integral over R.

3. The structure of $R_{\mathfrak{D}}$ for some classes of rings R.

One of the classes of rings for which it is possible to give a complete description of the Dickson localization is the class of GCD-domains, that is of integral domains R such that for every $a, b \in R$ there exists a greatest common divisor $[a, b] \in R$ (see [4], page 32).

3.1. THEOREM. Let R be a GCD-domain. Let S be the multiplicatively closed subset of R generated by all elements $s \in R$ such that Rs is a maximal ideal of R. Then $R_{\Omega} = S^{-1}R$.

PROOF. Let us show that in a GCD-domain R every maximal ideal \mathcal{M} of grade 1 is principal. If \mathcal{M} has grade 1, there exists $y \in Q$ such that $y\mathcal{M} \subseteq R$ and $y \notin R$. Let $y = s^{-1}r$ with $r, s \in R, r, s \neq 0$, and let m_1, \ldots, m_n be a set of generators of \mathcal{M} . Then from $y\mathcal{M} \subseteq R$ it follows that $rm_i \in Rs$ for every $i = 1, \ldots, n$. Therefore s divides rm_i for every i, and hence s divides their greatest common divisor $[rm_1, \ldots, rm_n] = r$ $[m_1, \ldots, m_n]$. Let $d = [m_1, \ldots, m_n]$. Then $\mathcal{M} \subseteq Rd$. Now if Rd = R, d would be a unit in R and hence from s|rd it would follow s|r in R, i.e. $y \in R$, a contradiction. Since \mathcal{M} is maximal, $\mathcal{M} = Rd$, i.e. \mathcal{M} is principal.

By lemma 1.1, $R_{\mathfrak{D}} = \{x \in Q | \text{ there exist maximal ideals } \mathcal{M}_1, ..., \mathcal{M}_r \text{ of grade 1 such that } x\mathcal{M}_1 ... \mathcal{M}_r \subseteq R\}$, from which $R_{\mathfrak{D}} = \{x \in Q | \text{ there exist principal maximal ideals } Rs_1, ..., Rs_r \text{ such that } xs_1 ... s_r \in R\} = \{x \in Q | xs \in R \text{ for some } s \in S\} = S^{-1}R.$

- 3.2. Proposition. Let R be a local ring and suppose that at least one of the following four conditions holds:
 - i) there exists a regular non invertible element $s \in R$ such that the ideal Rs is a radical of R;
 - ii) R satisfies condition S_2 (see [12], Ch. VII, § 6);
 - iii) R is a Macaulay ring;
 - iv) R is an integrally closed domain.

Then if dim R=1, $R_{\mathfrak{D}}=Q$, and if dim R>1, $R_{\mathfrak{D}}=R$.

PROOF. Suppose that in R there exists a regular non-invertible element s such that the ideal Rs is a radical in R. If $R_{\mathbb{D}} \neq R$, there exists $x \in R_{\mathbb{D}}$ such that $x \notin R$ and $x \mathcal{M} \subseteq R$, where \mathcal{M} is the maximal ideal of R. Then $xs \in R$, and hence $x = s^{-1}r$ for some $r \in R$. From this we have that $r\mathcal{M} \subseteq Rs$ and $r \notin Rs$. Therefore in the ring R/Rs the maximal ideal \mathcal{M}/Rs contains only zero-divisors, and since the ring R/Rs is reduced, \mathcal{M}/Rs is contained in the union of the minimal prime ideals of 0 in R/Rs, and hence \mathcal{M}/Rs itself is a minimal prime ideal of 0 in R/Rs. Therefore \mathcal{M} is a minimal prime ideal of Rs in R and hence it has height 1. Thus we have proved that if dim R > 1, then $R_{\mathbb{D}} = R$.

If dim R=1, then $R_{\mathfrak{D}}=Q$ by theorem 2.1.

Next if R satisfies S_2 , the prime ideals of height ≥ 2 have grade ≥ 2 , from which the thesis follows by theorem 2.1 and 2.2.

Finally if R is a Macaulay ring or an integrally closed domain, R satisfies S_2 .

4. The endomorphism ring of $R_{\mathfrak{D}}/R$.

We shall now study the R-module $K = R_{\mathfrak{D}}/R$. It is a \mathfrak{D} -torsion R-module (it is the \mathfrak{D} -torsion submodule of Q/R). Therefore (see [6], theorem 1), it splits in its \mathcal{M} -primary components:

$$K = \bigoplus_{\mathcal{M} \in \operatorname{Max}(R)} X_{\mathcal{M}}(K)$$
.

 $X_{\mathcal{M}}(K)$ is the submodule of K consisting of all elements $x \in K$ such that $\operatorname{Ann}_{R}(x)$ contains a power of \mathcal{M} .

Now let I be a regular ideal. Set $I^{-1} = \{q \in Q | qI \subseteq R\}$ and $I^{-1-1} = \{q \in Q | qI^{-1} \subseteq R\}$. It is known that I^{-1-1} is an ideal of R canonically

isomorphic to $\operatorname{Hom}_R(\operatorname{Hom}_R(I,R),R)$, the R-bidual of I. Let ${\mathfrak B}$ be a basis of the filter of neighborhoods of zero for a ring topology over R consisting of regular ideals of R. Let us define the bidual topology over R as the topology having ${\mathfrak B}^{-1-1}=\{I^{-1-1}|I\in{\mathfrak B}\}$ as basis of the filter of neighborhoods of zero. The original topology is finer than the bidual topology.

- 4.1. THEOREM (see [5], theorem 3.4). Let R be a ring, M a maximal ideal of R. For every natural number n let $A_{(\mathcal{M}),n} = \{x \in K | \mathcal{M}^n x = 0\}$. Then
 - i) $A_{(\mathcal{M}),n}$ is a submodule of $X_{\mathcal{M}}(K)$, $A_{(\mathcal{M}),n} \subseteq A_{(\mathcal{M}),n+1}$, $X_{\mathcal{M}}(K) = \bigcup_{n=1}^{\infty} A_{(\mathcal{M}),n}$ and $A_{(\mathcal{M}),n} \cong \operatorname{Ext}^1_{\mathbb{R}}(R/\mathcal{M}^n,R)$;
 - ii) $\operatorname{Ann}_R A_{(\mathcal{M}),n} = (\mathcal{M}^n)^{-1-1} \cong \operatorname{Hom}_R (\operatorname{Hom}_R (\mathcal{M}^n, R), R);$
 - iii) The non-zero elements of $A_{(\mathcal{M}),n+1}/A_{(\mathcal{M}),n}$ are exactly the elements of $K/A_{(\mathcal{M}),n}$ having annihilator \mathcal{M} ;
 - iv) $A_{(\mathcal{M}),n+1}/A_{(\mathcal{M}),n}$ is in a natural way a finite dimensional vector space over the field R/\mathcal{M} ;
 - v) $X_{\mathcal{M}_{i}}(K)$ is countably generated.

PROOF. i) The only non obvious statement is that $A_{(\mathcal{M}),n} \cong \operatorname{Ext}^1_R(R/\mathcal{M}^n,R)$; this is proved by observing that $A_{(\mathcal{M}),n} = (\mathcal{M}^n)^{-1}/R$ and applying the functor $\operatorname{Hom}_R(-,R)$ to the short exact sequence

$$0 \to \mathcal{M}^n \to R \to R/\mathcal{M}^n \to 0$$
.

- ii) $\operatorname{Ann}_R A_{(\mathcal{M}),n} = \{ r \in R | r(\mathcal{M}^n)^{-1} \subseteq R \} = (\mathcal{M}^n)^{-1-1}.$
- iii) Obvious.
- iv) and v) From iii) it follows that $A_{(\mathcal{M}),n+1}/A_{(\mathcal{M}),n}$ is a vector space over the field R/\mathcal{M} . In order to show that it is finite dimensional it is enough to prove that $A_{(\mathcal{M}),n}$ is a finitely generated R-module (and this with i) immediately gives v)). To this end we only have to show that the R-submodule $(\mathcal{M}^n)^{-1}$ of Q is finitely generated.

Let $s \in \mathcal{M}^n$, s regular and let $q \in (\mathcal{M}^n)^{-1}$. Then $qs \in R$, whence $q = s^{-1}r$ for some $r \in R$. From this we have that

$$(\mathcal{M}^n)^{-1} = \{s^{-1}r|r \in R, \ r\mathcal{M}^n \subseteq Rs\} = \{s^{-1}r|r \in (Rs:\mathcal{M}^n)\}$$
.

Since the ideal $(Rs:\mathcal{M}^n)$ of R is finitely generated, it follows that $(\mathcal{M}^n)^{-1}$ is finitely generated.

Let us consider $\operatorname{End}_R(X_{\mathcal{M}}(K))$. For every positive integer n set $H_{(\mathcal{M}),n} = \{ f \in \operatorname{End}_R(X_{\mathcal{M}}(K)) | f(A_{(\mathcal{M}),n}) = 0 \}$. Let $\operatorname{End}_R(X_{\mathcal{M}}(K))$ have the topology defined by the filtration $\{H_{(\mathcal{M}),n}\}_{n \in \mathbb{N}}$ and let $\operatorname{End}_R(K) \cong \prod_{\mathcal{M}} \operatorname{End}_R(X_{\mathcal{M}}(K))$ have the product topology. Let us call this topology the natural topology of $\operatorname{End}_R(K)$.

4.2. Proposition. $\operatorname{End}_R(K)$ endowed with its natural topology is a Hausdorff complete topological ring.

PROOF. It is enough to prove that every $\operatorname{End}_R\left(X_{\mathcal{M}}(K)\right)$ is complete and Hausdorff. Clearly it is Hausdorff. Now if $(f_n)_{n\in\mathbb{N}}$ is a Cauchy sequence in $\operatorname{End}_R\left(X_{\mathcal{M}}(K)\right)$ let us define $f\in\operatorname{End}_R\left(X_{\mathcal{M}}(K)\right)$ in the following way: if $x\in A_{(\mathcal{M}),n}$, there exists $r\in\mathbb{N}$ such that for every $r',\,r''\in\mathbb{N}$, $r',\,r''\geqslant r$, we have $f_{r'}-f_{r'}\in H_{(\mathcal{M}),n}$; let $f(x)=f_r(x)$. The proof that this f is a well-defined homomorphism and that it is limit of the sequence (f_n) is routine.

Now let R be a local ring, \mathcal{M} its maximal ideal. Consider the canonical homomorphism $\varphi \colon R \to \operatorname{End}_R(K)$ which to every element of R associates the multiplication over K by that element. If $\operatorname{End}_R(K)$ has its natural topology and R has the bidual topology of the \mathcal{M} -adic topology, it is easy to prove that φ is a continuous ring homomorphism whose kernel is the closure of 0 in R. Therefore φ induces a continuous monomorphism $\tilde{\varphi} \colon R' \to \operatorname{End}_R(K)$, where R' is the «Hausdorffized» of R, that is R modulo the closure of 0 in R with the quotient topology. It is easy to see that $\tilde{\varphi}$ is a topological embedding. Therefore we have proved the following

4.3. Proposition. Let R be a local ring, \mathcal{M} its maximal ideal and let R have the bidual of the \mathcal{M} -adic topology. Then R modulo the closure of zero with the quotient topology is in a natural way a topological subring of $\operatorname{End}_R(K)$ endowed with its natural topology.

Therefore $\operatorname{End}_R(K)$ contains the Hausdorff completion of R. The following theorem gives a sufficient condition for $\operatorname{End}_R(K)$ to be the Hausdorff completion of R (see [7]).

4.4. Theorem. Let R be a local ring, \mathcal{M} its maximal ideal. Suppose that \mathcal{M}^{-1} can be generated by two elements. Then $\operatorname{End}_R(K)$ is the Hausdorff completion of R with the bidual topology of the \mathcal{M} -adic topology.

PROOF: If $\mathcal{M}^{-1} = R$, then $(\mathcal{M}^n)^{-1} = R$ for every n. Hence the closure of 0 in R is R and K = 0.

Therefore we may suppose $\mathcal{M}^{-1} \neq R$. Then $A_{(\mathcal{M}),1} = \mathcal{M}^{-1}/R \cong R/\mathcal{M}$ (see [7], lemma 2.3, true also when R is not an integral domain). Thus $E(K) \cong E(A_{(\mathcal{M}),1}) \cong E(R/\mathcal{M})$. It follows that if $f \in \operatorname{End}_R(K)$ and $n \in \mathbb{N}$, then f extends to a endomorphism of $E(R/\mathcal{M})$ and $A_{(\mathcal{M}),n} \subseteq B_n$, where B_n is the submodule of $E(R/\mathcal{M})$ consisting of all elements of $E(R/\mathcal{M})$ annihilated by \mathcal{M}^n . But f coincides over B_n with the multiplication by an element of R (see [10], lemma 5.11). It follows that $f|A_{(\mathcal{M}),n}$ is the multiplication by an element of R. Hence $\varphi(R)$ is dense in $\operatorname{End}_R(K)$. We conclude by proposition 4.2 and 4.3.

REFERENCES

- M. F. ATIYAH I. G. MACDONALD, Introduction to commutative algebra, Addison-Wesley, 1969.
- [2] N. Bourbaki, Algèbre commutative, Hermann, 1965.
- [3] A. FACCHINI, Reflexive rings, Symposia Math., 23 (1979), pp. 415-449.
- [4] I. KAPLANSKY, Commutative rings, Allyn and Bacon, 1970.
- [5] E. Matlis, Injective modules over Noetherian rings, Pacific J. Math., 8 (1958), pp. 511-528.
- [6] E. Matlis, Modules with descending chain condition, Trans. A.M.S., 97 (1960), pp. 495-508.
- [7] E. Matlis, Reflexive domains, J. of Algebra, 8 (1968), pp. 1-33.
- [8] C. Menini A. Orsatti, Duality over a quasi-injective module and commutative F-reflexive rings, Symposia Math., 23 (1979), pp. 145-179.
- [9] C. NASTASESCU, Teorie della torsione, Ist. Mat. dell'Univ. di Ferrara, 1974.
- [10] D. W. Sharpe P. Vamos, Injective modules, Cambridge University Press, 1972.
- [11] B. Stenström, On the completion of modules in an additive topology, J. of Algebra, 16 (1970), pp. 523-540.
- [12] B. Stenström, Rings of quotients, Springer-Verlag, 1975.

Manoscritto pervenuto in redazione il 22 giugno 1979.