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On the Ring of Quotients of a Noetherian Commutative
Ring with Respect to the Dickson Topology.

ALBERTO FACCHINI

The aim of this paper is to investigate the structure of the ring
of quotients ~3) of a commutative Noetherian ring .R with respect to
the Dickson topology Ð. In particular we study under which condi-
tions R = Ra) or R’J) is the total ring of fractions of R (§ 2), the structure
of Ren when .R is a GCD-domain and when .I~ is local and satisfies con-
dition S2 (§ 3), and the endomorphism ring of the R-module (~ 4).

1. Preliminaries.

The symbol .R will be used consistently to denote a commutative
Noetherian ring with an identity element.

Let Ð be the Dickson topology on I~, that is the Gabriel topology
on I~ consisting of the ideals I of R such that is an Artinian ring,
i.e. the ideals I of .R which contain the product of a finite number of
maximal ideals of R (see [12], Chap. VIII, §2). For every R-module
~VI we put X(M) = (z E = 0 for some I E ~~. X(lVl) is a sub-
module of M said the D-torsion submodule of M. The functor X has
been studied by E. Matlis ([6]). Let us define

(*) Indirizzo dell’A. : Istituto di Algebra e Geometria - Via Belzoni 7 -
35100 Padova.
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where the direct limit is taken over the downwards directed family 1‘~.

M5) is called the module of quotients of .lVl with respect to the topo-
logy D. It is known that RÐ becomes a ring in a natural way and
that. MU) becomes an RD-module.

We shall always suppose that R has no D-torsion. This is equivalent
to request that every maximal ideal of R be dense, that is to request
that (since R is Noetherian) every maximal ideal of R contain a regular
element. Under such a hypothesis R is a subring of Rp and 1~~ is a
subring of Q, the total ring of fractions of .R. A more convenient descrip-
tion of Rp is that Ra) _ Ix E Q IxI ç R for some I E More precisely
we have that

1.1. LEMMA. If R possesses maximal ideals o f grade 1, then =

- ~x I there exist maximal ideals ... , in R of grade 1 such
that ... A,, C 1~~. Otherwise RÐ = R.

PROOF. It is clear that the products of a finite number of maximal
ideals of .R form a basis for ~. Therefore I there exist
maximal ideals vtL1,..., vtLn in .R such that 1~~. Hence
it is sufficient to prove that if ... , 7 A,,, are maximal ideals
of R, gr (~~) ~ 1, then zfli ... For

this it is enough to show that if y E Q, is a maximal ideal of R,
gr ( ~ ) ~ 1 and y vtL ç R, then y E R. Now y = s-lr for some r, s E R,
s regular. Hence from it follows that that is A C r).
By the maximality of (Rs:r) or = R. In the first
case gr (fl) = ~. Therefore R _ i.e. y = s-1r ER.

From lemma 1.1 we immediately have a complete description of
the grade of all ideals in a local ring R such that .R ~ For such
a ring it is easy to prove that gr (I) = 1 for every regular ideal I of R,
and gr(J) = 0 for every non-regular ideal J. From lemma 1.1 it is
also clear that the study of R5) is equivalent to the study of the maximal
ideals of grade 1 in R.

It is also easy to describe the elements of 1~~ in relation to the
primary decomposition in .Z~. In fact let x E Q. Then x E Rp if and
only if x is of the form s-lr, where s is a regular element of R, and if
Rs = ... r1 Q~ is a normal primary decomposition of the ideal Rs,
where Qi is associated to a prime non-maximal ideal for i = 1, ..., t
and to a maximal ideal for i = t + 1, ... , n, ... r1 Qt .

Now let us « count» the number of the generators of the ideals
in the localization Rp. We have always supposed that the ring R
is Noetherian. Of course we cannot hope that this implies the ring
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of quotients Rp is Noetherian. There exist rings R such that Rp pos-
sesses ideals which cannot be generated by a finite number of elements.
Nevertheless there exists an upper bound for the number of elements
needed to generate any ideal of R5).

1.2. PROPOSITION. Let R be a ring, Max(l)(B) the set o f all maximal
ideals in R of grade 1, ~ the cardinality of Max(l)(R). Then is the
union of a directed family, of cardinality  ~o ~ ~ -f- 1, of Noetherian
subrings of Q. Every ideal of can be generated by at most -~--1)
elements,. In local, every ideal of is countably gen-
erated.

PROOF. If 0, by lemma 1.1 ~.R~ is the requested family..
Hence let us suppose 0.

Let I be a regular ideal of R and set R(I) = E Q lxl c ..R~~ .
is a subring of Q. Let s E I be a regular element. Then if x E Q,

we have that xI C R if and only if xs E R and xs E (is :1). Let rl, ... , r,,
be a set of generators of the ideal (I~s :1 ) in R. It follows that if

and only if x is a linear combination of s-lr1, ... , s-1rn with coefhcients
in .R. Therefore R(,) = ... , is a Noetherian ring. Now let us
consider the family of the rings R(j) where I ranges over the set of
all products of a finite number of elements of The cardinality
of Y is  ~ 0 . $. Y is directed because u ~ and by lemma 1.1
its union is Finally if A is an ideal of = U (.R(I~ r1 A) and

hence there exists a set of generators of A of cardinality 
 -~- 1).

If R and S are Noetherian rings and it may happen
that S’J) ~ This is not the case if ~’ is integral over R.

1.3. PROPOSITION. Let Noetherian rings, S in-

tegral over R. Then R’J) = 

PROOF. First of all note that R and S have the same total ring of
fractions Q. Furthermore if JY’ is any maximal ideal in S, N r1 R is a
maximal ideal in .R and therefore it contains a regular element of R.
Hence X contains a regular element (of S).

Let us show that Let x E R’J). Then x E Q and 
for suitable maximal ideals ~i of R. Hence flns C S.

To show that x E Sp it is then sufficient to show that =

= (Jt1S) ... belongs to the Dickson topology of ~’. Hence it is.
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enough to prove that belongs to the Dickson topology of S, and
this is obvious because ~’ is integral over R and hence every minimal
prime ideal of AS is a maximal ideal of S.

Vice versa let us show that Stj) ç Let x E SD. Then xN1 ...
... JY’n ~ ~’ for suitable maximal ideals Xi of ~’. It follows that

Now every Xif1R is maximal in
R because ~’ is integral over R; let rl, ... , rt be a set of generators of
the ideal (JY’1 f1 R) ... (Xn f1 R) of R. Then xrj ER’J), so that there
exists an ideal Aj belonging to the Dickson topology of 1~ such that
xr; Aj C R. From this we have that x( JY’1 f1 R) ... (Xn f1 ... A, C R
and the ideal f1 .R) ... f1 R) At belongs to the Dickson
topology of R. Hence x E 

The preceding proposition may seem somewhat heavy due to the
many hypotheses on R and S. However after proposition 2.2 we shall
be able to prove that

1.4. PROPOSITION. Let R be a local ring. I f =1= R’J) =1= Q,
then there always exists a Noetherian ring S ~ R5), properly containing R
and integral over R

2. The two cases R’J) == R and Q.

Under our hypotheses (I~ is a Noetherian ring in which every maximal
ideal contains a regular element) we know that RU) C Q. The first
problem which naturally arises is studying under what conditions
on R coincides with R and Q respectively. The case Q is
handled in theorem 2.1 and the case R’J) = R in theorem 2.2.

2 .1. THEOREM. The f ollowing statements are equivalent :
i ) = Q; .

ii) every maximal ideal of R has height 1;
iii) no proper ideal of is dense in RI);
iv) R satisfies 0-inv condition (see [I1]) ;

is a 1-topology (see [12], Chap. VI, § 6, 1).
Furthermore if R is a reduced ring the preceding statements are also

equivalente to :

vi ) is a ( V on Neumann- ) regular ring;
vii) R’J) is a semisimple ring.
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PROOF. i) =&#x3E; ii). Let A be a maximal ideal of .I~. Let s e fl, s
regular. Then by i), E RD. It follows that for some I E D,
that is I C But then is Artinian and AIR.- is a prime ideal
in hence a minimal prime ideal. Therefore fl is a minimal prime
ideal of Rs in R. Since 8 is regular, fl has height 1.

ii) =&#x3E; i). Let us suppose Then there exists some regular
element s E .R non invertible in RTJ, i. e. such that for every
ideal I E ~, that is Rs 0 ~. Therefore is not Artinian, and hence
it has a maximal ideal of height ~ 1. It follows that R has a maximal
ideal of height &#x3E; 2.

i) ~ iii). Obvious.

iii) ~ i). Suppose iii) holds and let us show that if s E R is regular
in R then it is invertible in (this will prove i)).

Now if s is regular in R, s is, invertible in Q and hence regular
in Therefore Rb - s is a dense ideal of By iii) = RTJ,
that is s is invertible in Rp.

ii) ~ v). Let s be a regular element of 1~. Then every minimal

prime ideal of Rs has height l, and hence by ii) it is maximal. Therefore
Rs E D. It follows that the filter of all regular ideals is contained in D
Since every ideal of D is regular, D is exactly the filter of all regular
ideals of .R. Hence is a 1-topology.

v) ~ iv). Trivial.

iv) =&#x3E; ii). Suppose R satisfies Stenstrom’s D-inv condition. Let A
be a maximal ideal of R. Then M E D and therefore there exists I E D
such that I C A and I is a projective ideal. Let I = ... r1 Qn
be a normal primary decomposition of I. Since I c- 5) the minimal

prime ideals of I are exactly the maximal ideals of .1~ containing I.
Let Ql be the ~-primary component of I. Localize with respect to
the ideal A. Then is a projective ideal (and hence it is principal
generated by a regular element of RX), and = Hence

is a M-primary principal ideal. From this it follows that the
height of the ideal in RA is 1. Hence the height of A is 1.

Now suppose R is reduced, i.e. without non-zero nilpotent elements.
Then

i) ~ vii). Trivial, because the total ring of fractions of a reduced
Noetherian ring is always semisimple.

vii) =&#x3E; vi). Obvious.



238

vi) =&#x3E; i). Let s be any regular element of 1~. Then s = s2x for some
element It follows that 1 = sx, i. e. x = s-1. Therefore s-1 
Hence Q = R’J).

2.2. THEOREM. The following statements are equivalent :

i) R = Rp ;

ii) = 0, where. E is the set of all regular elements of R;’ ’

iii) No maximal ideal of R is (see [8], § 7);
iv) No maximal ideal of R is associated to an ideal Rs with s regular

element of R; .

v) No maximal ideal of R has grade 1.

PROOF. i) ~ ii). Suppose # 0. Then there exists
sEE 

’

s e 27 such that X(RlRs) 0 0, that is such that Rjlts has a simple sub-
module. Let r --E- Rs be a generator of such a submodule. Then Rs
and (Rr -~-- B/A for some maximal ideal of R, and hence
rfl c that is R. From this it follows that s-1r E But

s-lr tt R, for otherwise r e Rs. Hence R =F 

ii) =&#x3E; iii). Let ~ be a R-reflexive maximal ideal of I~. Then
for some with s regular (see [3], theorem 1.5).

Then (Rr + Rjfl is a simple submodule of 
It follows that 0.

’

iii) ~ iv). Let u1L be a maximal ideal of .R associated to the ideal R8
with s a regular element of Z~. Then A = rad (Rs : r) for some 
(see [1], theorem 4.5), and hence A, C for some natural num-
ber n. Suppose n is the least for which such relation holds. Then 
Let 7 t ~ (I~s : r). Then from it follows that

i.e. and from it follows that
and so ~ is R-reflexive ([3], the-

orem 1.5).
iv) =&#x3E; v). Obvious, because a maximal ideal of grade 1 is associated

to an ideal with s a regular element of R.

v) =&#x3E; i). By lemma 1.1.

Now we are ready to prove proposition 1.4:
Let u1L be the maximal ideal of .1~. Since R’J) =F Q, by theorem 2.1

the height of ~ is ~ 2, and since is R-reflexive by theorem 2.2.
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Therefore there exists y E Q such that yA C R, y 0 1~. From this it

follows that I~(,~,~ , the Noetherian subring of defined in the proof
of proposition 1.2, properly contains I~. In order to show that S = 
satisfies the thesis of the proposition it is sufficient to show that if x E Q
and xA C: R , then x is integral over R. Since the height of M is &#x3E;2, 7
there exists a regular prime ideal P in R properly contained in fl.
Now if x E Q and xA C: R, then Let us show that (p.
If there would exist p e S such that xp 0 S. But xp E .1~, because
p E A. Let m E Then xpm 0’5, a contradiction because 
Therefore Furthermore P is a faithful R-module (because P is.
regular in and finitely generated. From this it follows that x is
integral over R.

3. The structure of R5) for some classes of rings R.

One of the classes of rings for which it is possible to give a complete
description of the Dickson localization is the class of GCD-domains,
that is of integral domains R such that for every a, b there exists
a greatest common divisor [a, (see [4], page 32).

3.1. THEOREM. Let R be a be the multiplicatively
closed subset of R generated by all elements s E R such that Rs is ac maximal
ideal of R. 8-1 R.

PROOF. Let us show that in a GCD-domain R every maximal ideal

~ of grade 1 is principal. If A has grade 1, there exists y E Q such
that yfl C R and y 0 R. Let y = with r, s e .R, r, s ~ 0, and let
ml , ... , mn be a set of generators of A. Then from it follows

that rm for every i = 1, ... , n. Theref ore s divides rm for every i,
and hence s divides their greatest common divisor [rm1, ... , 

[ml, ..., mn]. Let d = [ml, ..., mn]. Then Jtt C Rd. Now if d

would be a unit in R and hence from it would follow sir in .R, i.e.
y E R, a contradiction. Since jKj is maximal, A - Rd, i.e. Jtt is prin-
cipal.

By lemma 1.1, ~x there exist maximal ideals 
of grade 1 such that xM1 ... RI, from which {x E Q| I there
exist principal maximal ideals Rsi, Rs,, such that xsl ... Sr E R) ==
- {x E E R for some 8 E ~’~ = S-1.~.
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3.2. PROPOSITION. be a local ring and suppose that at least
one of the following four conditions holds :

i) there exists a regular non invertible element s E R such that the
ideal Rs is a radical of R;

ii) R satis f ies condition 82 (see [12 ], Ch. VII, § 6 ) ;
iii) R is a Macaulay ring;

iv) R is an integrally closed domain.

Then if dim R = 1, R~ = Q, and i f dim R &#x3E; 1, Rp = R.

PROOF. Suppose that in .1~ there exists a regular non-invertible
element s such that the ideal Rs is a radical in _R. If RI) 0 R, there
exists x E R5) such that R and xA c R, where A is the maximal
ideal of .R. Then xs E l~, and hence x = s-1r for some r E R. From this
we have that rA 9 Rs and r 0 Rs. Therefore in the ring the max-
imal ideal contains only zero-divisors, and since the ring is

reduced, AIRs is contained in the union of the minimal prime ideals
of 0 in RlRs, and hence AIRs itself is a minimal prime ideal of 0 in

Therefore ~ is a minimal prime ideal of I~s in R and hence it
has height 1. Thus we have proved that if dim R &#x3E; 1, then Rg) = R.

If dim R = 1, then Rp = Q by theorem 2.1.
Next if R satisfies ~2 , the prime ideals of height &#x3E;2 have grade &#x3E;2,

from which the thesis follows by theorem 2.1 and 2.2.
Finally if R is a Macaulay ring or an integrally closed domain, R

satisfies ~2’

4. The endonzorphism ring of 

We shall now study the R-module .g = It is a D-torsion
R-module (it is the D-torsion submodule of Therefore (see [6],
theorem 1), it splits in its A-primary components:

is the submodule of K consisting of all elements x E K such
that AnnR(x) contains a power of ~.

Now let I be a regular ideal. Set I-1= {q E Q Iql ç I~~ and -

- It is known that is an ideal of R canonically
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isomorphic to HomR (HomR (I, R), R), the .R-bidual of I. Let 93 be
a basis of the filter of neighborhoods of zero for a ring topology over
consisting of regular ideals of .R. Let us define the bidual topology over R
as the topology having $-1-1 = E 93~ as basis of the filter of

neighborhoods of zero. The original topology is finer than the bidual
topology.

4.1. THEOREM (see [5], theorem 3.4). Let R be a ring, maximal
ideal of R. For every natural number n let {x E KIA-X = 0}.
Then

iii) The non-zero elements of are exactly the elements
of having annihilator ~;

iv) A(~,),n + 1 /A(,~~,),~ is in a natural way a f inite dimensional vector
space over the field RIA;

v) is countably generated.

PROOF. i) The only non obvious statement is that A(A),n -
Ext’ (R/An, .R) ; this is proved by observing that A(~,~,~, = 
and applying the functor HomR (-, .R) to the short exact sequence

iii) Obvious.

iv) and v) From iii) it follows that is a vector

space over the field In order to show that it is finite dimensional
it is enough to prove that is a finitely generated R-module (and
this with i) immediately gives v)). To this end we only have to show
that the R-submodule of Q is finitely generated.

Let s E cÂ(;n, S regular and let q E (~At~~)-1. Then qs E 1~, whence q = s- ir
for some r E R. From this we have that

Since the ideal (Rs: of R is finitely generated, it follows that 
is finitely generated.
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Let us consider End., (.~~, (K) ) . For every positive integer n set
= {f EEndR If (A(,X),.) = 0}. Let EndR have

the topology defined by the filtration and let End, (K) gz
End, have the product topology. Let us call this topo-

logy the natural topology of End,, (K).

4.2. PROPOSITION. endowed with its natural topology
is a Hausdorff complete topological ring.

PROOF. It is enough to prove that every EndR (XtÂt(K)) is complete
and Hausdorff. Clearly it is Hausdorff. Now if is a Cauchy
sequence in EndR let us define f E EndR in the fol-

lowing way: if x E A~ jj,~ , there exists r e N such that for every r’, r" E N,
-r’, r" ~ r, we have - fr,, E H(.Jt),n; let I(x) = fr(x). The proof that this
f is a well-defined homomorphism and that it is limit of the sequence (In)
is routine.

Now let .R be a local ring, J1L its maximal ideal. Consider the canon-
ical homomorphism q~ : R - EndR (.g) which to every element of R
associates the multiplication over K by that element. If EndR (g) has
its natural topology and .I~ has the bidual topology of the J1L-adic topo-
logy, it is easy to prove that g~ is a continuous ring homomorphism
whose kernel is the closure of 0 in R. Therefore 99 induces a continuous

EndR (K), y where R’ is the « Hausdorffized »
of R, that is .R modulo the closure of 0 in 1~ with the quotient topology.
It is easy to see that p is a topological embedding. Therefore we have

proved the following

4.3. PROPOSITION. local ring, f1 its maximal ideal and
let R have the bidual of the A-adic topology. Then R modulo the closure

of zero with the quotient topology is in a natural way a topological ,subring
,of EndR (K) endowed with its natural topology.

Therefore EndR (_K) contains the Hausdorff completion of R.
The following theorem gives a sufficient condition for EndR (I~) to

be the Hausdorff completion of I~ (see [7]).

4.4. THEOREM. Let R be a local ring, ~ its maximal ideal. Sup-
pose that can be generated by two elements. Then EndR (K) is the
Hausdorff completion of R with the bidual topology of the J1L-adic

topology.
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PROOF: If A-’ = .R, then = Z~ for every n. Hence the

closure of 0 in .R is R and K = 0.

Therefore we may suppose X-1 =A R. Then A(A)., == 
(see [7], lemma 2.3, true also when R is not an integral domain). Thus

It follows that if f E EndR (K) and n E N,
then f extends to a endomorphism of and .ae(vtt),n ç Bn, where
Bn is the submodule of consisting of all elements of 
annihilated by A,. But f coincides over Bn with the multiplication
by an element of R (see [10], lemma 5.11). It follows that is
the multiplication by an element of R. Hence q(R) is dense in 
We conclude by proposition 4.2 and 4.3.
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