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Existence Theorems

for Moving Boundary Optimization Problems.

OTTAVIO CALIGARIS - PIETRO OLIVA (*)

SUMMARY - We prove the existence of a minimum for an integral functional
whose domain of integration varies in the class of closed convex subsets
of a bounded closed convex set in R".

1. Introduction.

Let Rn be the usual n-dimensional euclidean space; we are given T,
a bounded closed convex subset of 

a normal proper integrand and l, an extended real valued function
defined on the space K(T) of all closed convex subsets of T, which
is lower semicontinuous with respect to a suitable sort of convergence
in K(T).

For any Q E K(T) we denote by Sz° the interior of S~ and we consider
the usual Sobolev space of real valued functions.

For any given pair (Q, x), S~ E x E we define

and if u E is a fixed function and Yn is the trace operator in

(*) Indirizzo degli AA.: Istituto di Matematica dell’Universita di Genova -
Via L. B. Alberti 4 - 16132 Genova.

This work was supported in part by the « Laboratorio per la Matematica
Applicata f&#x3E;.



222

we consider the problem

In this paper we shall prove a theorem which assures that it has
at least one solution.

Our problem has been already treated by Ioffe in [10] in the one-
dimensional case, while the problem to minimize x(t), dt

is also treated in [8] when S2 is a fixed set in Rn. D
We also recall that one-dimensional case in a fixed interval is studied

in [1-2-3-4-5] also when the arcs take values in an infinite dimensional
space and when the integrand depends upon higher order derivatives.

We wish to express our thanks to Professor J. P. Cecconi for his
interest in this work.

2. Notations.

Throughout all of this work’R" is the usual n-dimensional euclidean
space with norm /. / and inner product  ~ , ~ ~ ; T is a fixed bounded
closed convex subset of Rn and K(T) is the set of all closed convex
subsets of T, equipped with the Kuratowski convergence [12].

For any fixed SZ E Q° is the interior of ,5~, is the space
of all real functions x E such that ax/ata, in the sense of distribu-
tions, is in for every i = 1, 2, ... , n, while is the closure
in of the space of all real functions, which have compact
support contained in DO and derivatives of any order in the vector

will be indicated briefly by ~x.
Since DO is a bounded convex set, we may assert that there is a

linear continuous trace operator:

and it can be proved, [13-141, that
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L: R u {+ oo} is a normal proper integrand, [15-16-
17-18], such that L(t, 0153, .) is convex for every (t, x) E 

is defined as

and is usually called the Hamiltonian function associated to L.

I:K(T) - R U 1+ oo} is a lower semicontinuous function .

is a well defined real extended valued functional, as soon as we adopt
the usual conventions about infinite values [1-2-3-4-5].

To avoid trivial cases we always suppose that there is at least one,
pair (f2,, such that zi) is a real number.

3. Statement of the problem.

The problem we are dealing with can be posed in the following form:
let and let

Are there such that and

F(Q0, x0) = B?
Here we prove an existence theorem which gives an adfirmative

answer to this question as soon as the following conditions are satisfied :

(2) there is a normal integrand g: lt~ such that g(., p)
is summable for every p and there is a such that
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REMARKS. We may always suppose, with no loss of generality, y
that g assumes positive values.

Let if we choose

úur problem reduces to an usual fixed boundary problem.
We wish to remark that, in this case, we give an existence result

which is better than the ones proved in [8]. In particular condition (2)
is weaker than the « growth condition » used in [8] (for instance
-L(t7 x, v) = v2 - Ix I satisfies ((2) and does not satisfies the growth
condition of [8] ) .

-4. Some preliminar results.

We begin recalling the 6oncept of Kuratowski convergence.

DEFINITION 1. Let Qn E K(T), we say that Qn converges to Q in the
sense of Kuratowski and we simply write Qn - Q when the following
facts -are veri f ied :

(i) for every x E f2 there is xn E Qn such that xn - x;

(ii) let xn E for any subsequence Xnk - x, we have x E S2.

PROPOSITION 2. Let E Qn --* S2, then S~ E 
The proof is an easy verification.
For every subset Q we write 8Q for the boundary of Q and S2-’

for RnBQ.

DEFINITION 3. Let Q E K(T), 7 8 E R+, we define

PROPOSITION 4. Let Qn E then f or every E E there

is ne E ~T such that, f or 
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PROOF. Suppose that (i) is not true, then there are x,~ E Qn and
Eo E R+ such that d(xn, Q) &#x3E; Since we may suppose x,, we

have zo e Q and d(xo, which is absurd.
To prove (ii) let B(xi, e/2) = then we may

find a finite subset N such that

Since S~n ~- S~, there is such that d(xi, Qn) c E/2 for every
i E N and f or n &#x3E; ne. So, if there is io E N such that

PROOF. Let if inf (SZ~+)~~ C ~ there is xo c 0
such that and so we have xo E (S2,.) c and xo E this
is absurd.

So d(x, (.~~+)~) ~ ~ and x E 
Conversely let then there is Xo E Q such that 0  Ix - xol, s

x - xo = v, where v is in the cone of the normals to S~ at xo .
Now two cases are possible:

In the first case d(x, Q) == Ix - xol = s ; so x tt i.e. x E 

and, since d(x, (Qe+ )c) = 0, 
In the second case let k = s + and yo = zo + we have :

d(yo, Q) = )yo - = I &#x3E; s and yo E So

THEOREM 6. Let Qn E K(T), Qn - Q, then for every 8 E R+ there is
n, E such that

PROOF. It follows from proposition 4 and lemma 5 as soon as we
observe that if SZl , [22 E lt~( T ) , [21 c ,5~2 then c ( S~2 ) ~- . 0
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When Q2 E we define the symmetric difference between
ill and S~2 as

THEOREM 7. Let Qn E K(T), Qn - Q, then

PROOF. We have for n &#x3E; ne; so it is enough
to prove that meas - 0 as E -~ 0.

Fixed any real positive number 3, there is an open set G D Q and
a closed set 1J’ c Qo such that meas (GBS~)  3j2 and meas (Q%F) =
- meas  ~/2.

Since it is easily seen that there is so E l!~+ such that when E  eo
and we may assert that

meas meas (GB.~2) + meas (f2BF)  6 . 0

COROLLARY 8..Let E lf~( T) ~ - then

lim lim meas = 0 .
e n

PROOF. When n is sufficiently large we have

and so

5. Main theorem.

In this part we state and prove the existence result for our problem.

THEOREM 9. Suppose that conditions (1) and (2) are satisfied and
let u E Hl,l(TO) be a f ixed function; then there is Do E and there is
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~;o E such that = YDo(U) and

PROOF. Unless to substitute L(t, x, v) with L(t, x + u(t), v + Vu(t)),
we may reduce ourselves to prove that there is K(T) and there
is xo E such that

(Observe that L(t, x + + Vu(t)) satisfies condition (2) as soon
as it holds for L(t, x, v)).

For any x E we define :

Obviously it results 
Now, let Xn E be a minimizing sequence. Since

T is a bounded set, we may suppose, [9], that Qn -+ and S2o E K(T)
(see also proposition 2); moreover, for some constant M, we have,
for every A 

Now, by Poincaré’s inequality [10-11], we deduce that:

and
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So, since A may be chosen arbitrarily large, we conclude that

If we put

by (3) we have

So using (2) and [14], we deduce that is weakly compact in
and in particular we obtain that

Now, since is bounded in while Vy,, is weakly compact
in we may find a subsequence, which we call y~ again, such
that yn weakly in 

Let t E T°BSZ°, then, since Do, for n sufficiently large t ~ S2,,
and yn(t) = 0; so by [8], xo(t) = 0 for almost every t E Moreover

and we have x,,

Finally let

we have:
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for every s E R+, as soon as we remember the semicontinuity result
of [11].

Now, by monotone convergence theorem, as L(t, xo(t), is
minorated by a summable function (see (2)),

on the other hand, using corollary 8 and the Dunford-Pettis theorem,
we deduce that

So when s --3- 0 we obtain

6. Some particular cases.

Let’s now briefly consider some possible forms for 1, which are of
particular interest.

Let SZ E K(T) and let

be its characteristic function.
Let moreover as? be the vector valued measure defined on Borel

sets in R" as the distributional derivative of zn.
It is well known that the perimeter of Q may be defined as

where InQ I denotes the total variation of np in Rn, [6-7-9].
Using the results of [6-7] and taking into account theorem 7 we

may also state the following
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PROPOSITION 10. E then lim inf p(Qn) &#x3E; p(lil) ;
n

-moreover if k, for some k E ll~+, then for every function f E Co we

.have

Therefore we may assert that if we define

where k E R+ and f E then li, i = 1, 2, 3, is lower semicontinuous
in K(T) and satisfies condition (1). This fact allows us to apply theorem 9
with such functions.
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