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Linear Integro-Differential Equations in Banach Spaces.

G. DA PRATO - M. IANNELLI (*)

1. Introduction.

Let X be a Banach space (by 1, 1 we denote the norm in X). Let

a linear operator in a real function.

Throughout the paper, the following properties are supposed to be
verified:

(1) A is a closed operator with domain DA dense in X

(2 ) K E -~- c&#x3E;J) ; is absolutely Laplace transformable in
the half plane Re 2 &#x3E; a

From (2) we put:

Consider the following integro-differential problem:

(*) Indirizzo degliAA.: Dipartimento di Matematica, Universita di Trento -
Povo.

Lavoro svolto nell’ambito del G.N.A.F.A.
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DEFINITION 1. be a f amily of linear operators Z7(t) E
(1). It is said to be an (M, co)-re8olvent family for (P) if the fol-

lowing properties are verz f ied :

and problem (P) is verified

such that

The existence of a resolvent family for (P) allows to solve, in a strong
sense the inhomogeneous problem:

for f e C([0, T]; X). In f aet, if U(t) is a resolvent family
for (P) then:

is a strong solution of (Q ) in the sense of the following definition:

DEFINITION 2. u E C( [o, T]; X) is a strong solution of Q if there
exist a sequence UnE C1( [o, T] ; X) r1 C( [o, T]; DA) such that :

(1) £(X) is the space of linear bounded operators T : X --~ X endowed
"with the norm II ~~ .
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In fact we can choose x. c DA I such that 

f n -~ f in C( [o, ~‘] ; Then defining the sequence un in the follow-
ing way:

it is easy to check that i) and ii) are verified with respect to u defined
in (6).

In the present paper we mainly consider the following hypothesis:

or the following one (for simplicity we suppose a = 0)

where 

We remark that (H, ii) makes a sense because the mapping
~, --~ ~~, - $(~,) A )-1 is analytic in the half plane Moreover

we remark that (H, i) (resp. (.K, ii)) implies k(1 ) # 0 if 

(resp. 2 E 
Our main results are

THEOREM 3. Let (H) be verified, then problem (P) has one and only
one (M, f amily.

THEOREM 4. Let (K) be verified, then problem (P) has one and only
one (M, 0)-resolvent family such that:

(7) U(t) has an analytic extension to 
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The proofs of theorem 3 and theorem 4 are given in section 2 and
section 4 respectively; the other sections are devoted to the necessity
of condition (H) and to some remarks on the Hilbert space case.

The same results hold for the following problem:

where iq; [0, + oo) - R has bounded variation and is Laplace tras-
formable. Moreover we remark that the same method can be used
to study the problem:

Actually suitable conditions on A (t) are to be imposed in order that
the various steps in the proofs can be repeated with slight changes.

If 27 is the Heaviside function, then problem (Pl) is the well known
abstract Cauchy problem and the semi-group theory is available.

Actually our results look like a generalization of the methods of this
theory, in fact our conditions (H) and (g) generalize the well known
conditions for A to be the infinitesimal generator of a strongly con-
tinuous or respectively analytical semigroup.

Moreover if K = 1, then problem (P) reduce to the abstract wave
equation;

and is the abstract cosine function generated by A (see [4]).
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Also in this case, condition (H) generalizes the necessary and suffi-
cient condition for A to be the generator of an abstract cosine function.

Integral and integro differential equations of Volterra type have
been studied by several authors, by other methods (see [1]-[3], [6]-[11]).
We remark that, as in the Hille Yosida theorem, our condition (H)
is somewhat theoretical and difficult to use in the applications. On
the contrary condition (.g) is easy to handle, moreover condition (H)
applies well in the Hilbert space case, when dealing with positive
operators and positive kernels (see section 5); we have studied this
latter case, by other methods in a forthcoming paper ([5]).

2. The proof of theorem 3.

Let us suppose (H) verified and in order to simplify the formulas
assume m --- 0; no essential change occurs in the general case.

Put for 

we soon have:

LEMMA 5. For any natural number k and any x E X . it is

consequently D Ak is dense in X.

PGOOF. Let x E DA then it is

so that, thanks to (H, ii) and to the fact that lim 1t(n)/n == 0, we have:

As it is

and DA is dense, (10) is true for any Finally (12) is true still

owing to (14).
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Our goal is to define as the strong limit of an approximate
sequence. To this aim let us define:

In fact from (H, ii) it follows that the series is convergent in 
uniformly for t in any bounded interval. It also follows:

so that is absolutely Laplace transformable in t(X). Moreover

TJn(t) is derivable in t(X), so that putting:

it is

then we have

PROPOSITION 6. Vz E X it there exists the 

PROOF. Owing to (16) it is sufficient to prove the thesis for any x
in the, dense set D AI. Now if the following identity is true:

so that the integral:
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makes a sense. In fact the first two terms in (19) are standard Laplace
transforms while the last one is absolutely integrable.

We want to show that:

Now from (17) and (15) it easily follows:

so that for and 

which yelds (see (19))

Finally (24) allows going to the limit in (18) to get (21). The thesis
is proved.

By means of Proposition 6 we are able to define the 
U(t) E C(X) putting

From (16) it follows:

Thus is absolutely transformable in £(X), moreover from (17) by
(16), (22), (25) it follows:
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REMARK 7. From the proof of proposition 4 it follows that if

x E DA2 is is 

i.e. (27) can be inverted on Actually we can claim that (28) is
true for any x E X such that the integral on the right of (28) is con-
vergent. In fact if the integral converges, putting 
-ive have:

and (28) follows going to the limit.

PROPOSITION 8. The defined zn (25) is an (M, 0)-
resolvent f amily for problem (P).

PROOF. (3) follows from (25) and (5) has been stated in (26). Let

from (15) it follows;

in fact it can be easily shown by induction that:

’Then we have:

Finally :
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so that the integral converges, and by Remark 7:

and the thesis is proved.
VVe remark that in the proof of Proposition 8 we have also proved

that (28) is true for 

We conclude the proof of theorem 3 by uniqueness.

PROPOSITION 9. Let V(t) an (M’, family for problem (P)
then it is Y(t) = U(t) 

PROOF. V(t) is Laplace transformable in C(X). Put:

For it is:

so that for 

that is

which implies:

and the thesis follows.
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3. Necessity of (H).

We want to clear in what sense condition (.H) is necessary to have
existence of an (M, w)-resolvent family for problem (P).

PROPOSITION 10. Condition (H) is necessary for problem (P) to

have an (M, w)-resolvent family such that:

PROOF. Put for 

where the integral is absolutely convergent in C(X) thanks to (6).
Then it is:

If, x E DA from (29) we have F(A) Ax, moreover
from (P) it follows:

that is: O

This proves the thesis.

REMARK 11. If uniqueness of the solution of (P) occurs and A is
the infinitesimal generator of a strongly continuous semi-group, then
a possible resolvent family verifies (29). In fact, let (suppose
to semplify a~  0) and put:

It is: O O
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so that;

which implies (29) for z E DAI which is dense in X.

4. The Proof of theorem 4.

Let (X) be verified, then we may define:

where and

In fact (34) converges thanks to (g, iii). Obviously is analytic
in First of all we prove that verifies (8); to see this put
At == ~ then (we consider only the 0 ) :

where the change of contour is possible by the analyticity of

and (.H, iii ) . Thus (8) follows by an easy estimate of
the last integral. Let now x E DA it is:

On the other hand (8) implies that t- U(t) ; (0, + is

absolutely transformable, y and by (36):
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so that for we have that (9) holds for t &#x3E; 0 and:

Finally (8) allows extending (39) to any x E X, moreover (8) and the
closedness of A yeld (9).

In conclusion, U(t), continued in t = 0 by putting U(O) == I, is
an (M, 0)-resolvent family for problem (P), verifying (7), (8), (9).
Uniqueness follows as in Theorem 3.

EXEMPLE 12. Let xe(0yl) and suppose A : DA-~ .X
to be the infinitesimal generator of an analytic semi-group in 
with Then condition (.g) is fulfilled with 0 = - a)

5. Verifying condition (H).

When considering applications, condition (g) is more easy to handle
than condition (H). This latter is, in fact, very difficult to check

directly. However, when A is a self-adjoint operator in a Hilbert
space then condition (H) can be easily related to the properties of
the solution of the following scalar equation:

where E&#x3E;0.
Let us suppose that’

for some if&#x3E;0y then for it is:

Thus, via the spectral decomposition of A we get:
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PROPOSITION 13. Let X be an Hilbert space and A : a posi-
tive, sel f -adjoint operator. If K(t) is such that (41 ) is veri f ied, then con-
dition (H) is fulfilled.

EXAMPLE 14. If K(t) is such that that the operator:

in positive, then condition (41) is verified with .M = 1, ~ = 0.
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