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Linear Abstract Integro-Differential Equations
of Hyperbolic Type in Hilbert Spaces.

G. DA PrATO - M. TANNELLI (*)

Introduction.

This paper is concerned with the study of the problem:

w'(t) = A@)u(t) + (K *u)(t) + f(2)
u(0) =z

where for t>0, A(?) is the infinitesimal generator of a strongly con-
tinuous semi-group in a Hilbert space H and K is of the form

1

K(t) = [exp [~ t£1B(®) ¢

0

where B(§) is self-adjoint and semi-bounded; K is then a vectorial
generalization of a completely positive kernel.

We study this problem with the same methods of sum of linear
operators as in [8]. We are able, under suitable hypotheses, to show
existence and uniqueness of a continuous strong solution # for every
feLx0,T; H) and xe H; moreover % is a classical solution if
fe L0, T; K), where K is a Hilbert space densely and continuously
embedded in H and x € K.

(*) Indirizzo degli AA.: Dipartimento di Matematica, University di Trento -
Povo.
Lavoro svolto nell’ambito del G.N.A.F.A.
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Similar problems have been studied by several authors by different
methods, in the autonomous case. We remark that we do not assume
that the domains of A(f) and B(£) are constant.

For the proofs we need an «energy equality » (see formula (21))
that we think will be useful to study asymptotic properties of w.

1. Notations.

We note by H a real Hilbert space (!) (inner product (,), norm
(+) and by L2(0,T; H) the Hilbert space of the measurables map-
pings w: [0, T]— H such that |u|? is integrable in [0, T'], endowed
with the inner product:

(4, v) :f(u(t), ot))dt  w,vel0, T; H)

0

We put:

Ww([0, T]; H) = {uELz(O, T; H); %GIF(O, T; H)} .

It is well known that every » e W*([0, T]; H) can be identified with
a continuous function (2); in the following we always make such an
identification.

We note also by C([0, T]; H) (resp. C*([0, T]; H)) the set of map-
pings [0, 7] — H continuous (resp. continuously derivable); it is
w([o, T1; H) c O([0, T]; H).

Finally we put:

Wi([0, T1; H) = {ue W*([0, T]; H); u(0) = 0} .
We write, for brevity, L:(H), Wi(H), Wi(H), C(H), C1(H). We study
the problem:

P) {u’(t) = Au(t) + (Bkxu)(t) + f(t) te[0,T], T>0

u(0) =

(*) We suppose H real for simplicity.
(?) See for exemple [3].
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We assume:

a) dwseR such that o(4) D Jw,, + oo (3) and
(A, ) <w4lw|? VeeD, (4,

b) B is self-adjoint and Jws € R such that B — wp<0,
H
(H) ¢) de: [0, 1] — R, measurable and bounded such that

1

K(t) = [exp [— t€1(&) d& () -

[}

We write (P) in the following form:

(1) vort = {f, @}
where {f, #} is given in L*(H)@® H and y, is defined by:

vo: WYH)N L¥D,) N L} D) ~ LXH)D H (),
U =9, = {u' — Au— Bk xu, u(0)} .

We consider also the approximating problem:
w, = AU, + B kxu, -+ f.
(Pa) {

U,(0) = 2

where B, = n?R(n, B)—n. It is well known ([8]) that (P,) has a
unique strong solution u, e C(H); moreover if fe Wi(H) and x€ D,
it is:

(2) u, € Wi(H) N L2(D,) Vie WYH)

because ke ([0, T1]).

(%) If L: D,c H — H is a linear operator we note by o(L) (resp. o(L))
the resolvent set (resp. the spectrum) of L and by R(4, L) the resolvent
operator of L.

(%) It is known that D, is dense in H.

(5) This hypothesis implies that the operator Lu = k % u is completely
positive in L2(0, T'; H); for the existence of a solution of (P) it will be suf-
ficient to assume I positive.

(°) D, and Dy are endowed with the graph norm.
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2. A priori bound.

ProprosITION 1. Assume (H) and let u, be the solution of (P,), then
it s:
1 i
lua(t)[* <exp [(2(e + e)][@* + 5~ | exp [2(w + &)t — 8)]1f(s)[*ds
[

0= w, + IkIL'(O,T‘IwBl Ve>0.

3)

ProoF. Choose fe WY(H), x € D,; put exp [— t&] % U, = v, it is
Uy = Vpe + £v,e; multiply (P,) by u,(t) then it is:

1d

2 dt ua(®)[* = (Aun(t)y un(t)) +

+ f S(E) (B — wa) vas(t), ielt) + Evas(t)) dE +-

+ wp((k%ua)(2), %a(t) + (F(2); wal?)) <alwa(®)]* +

o+ (50, 0a(0) + 5 5 [((Ba = 00) 00t o) o) 2+

[}
1

i f ((Bo— a) 0as(t), 225(0)) E €(€) A& +- (), ualt)

0

integrating from 0 to ¢ we get:

@ luat)P< |2+ 2(0n + [Elpanlod) f fua(s) |2 ds +

t

42 f (F(5), als)) ds < |22 + 2(es + [Klon]os] + €)-

]

[inpas + 2 [irras
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and the conclusion follows from the Gronwall lemma for fe W((H);
in the general case we use the density of WY(H) in L*(H).

COROLLARY 2. Under the hypotheses of the Proposition 1, if u is
a classical solution of (P) (7) it is:

() bl <exp (20 + e + 5 [exp (o + o) ¢ — i) ds
® o <E(]+ 1f)

where K is a suitable constant.

Proor. It is:
u'— Au— B, kxu=(B—B,)kkxu-+f

using (3) we obtain

< exp 200 + )t + 5 [exp (20 + e — )
{[(B —B,) (K*u)s) + f(5)]7} ds

and the conclusion follows by dominated convergence.

3. Strong solutions.

PROPOSITION 3. Assume (H) and suppose DyN Dy dense in H;
then y, is pre-closed.

Proor. Let {u;}c D, such that:
u; >0 in L*H),

7’0'“i:{fn“z‘}_>{fam} in IXH)®H,

(") That is u € D(y,).
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we have to show that f = 0, « = 0. From (5) it follows

[ur(8) — ua(t) |* <exp [2(w + &) t]|ar — @ |* +

t

+ o [exp 200 + )t — 9)Ifuls) — fale) s

]

therefore {u;} is a Cauchy sequence in C(H) and furthermore u;— 0
in C(H); then # = lim u,(0) = 0. We, now, go to show that f = 0.

Remark that, since A —w,, (B — wg)k% are positive operators in
L(H) it is:

(1) (A—)hl2<} B(O)[*+ (h, Ah+ B — Ah—BEk*h), heD(y,).

Choose g in Wi(H) N L*D,) N L*(Dg), which is dense in L2(H), from
(7) it follows

(8) lg — Au,|2<

1
< = (Bladft + (g — dui, Ag+ g'— Ag — Bhxg — Atu,— 2f.) -

Then for 7 — oo

9) lglzﬂiw(g, g+ 9 — Ag — Bk kg — f)
and

(10) 9= |4 — 1)+ g'— Ag — Bk #g].
Finally for 4 — oo

(11) lgl<lg—1l, Vge Wo(H) N L¥(D,) N L*(Dy)

which implies f = 0.
In the following we denote by y the closure of y,. We call u € L*H)
a strong solution of (P) if it is:

(12) yu = {f, x}
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i.e. if there exists {u,}e Wi(H)N LxD,) N L*D;) such that

w;— Au; — Bk %u, —f in L*H),
(13)

u(0) — @ in H.

It is not easy in general to characterize the domain D(y) of y; how-
ever we can show that D(y)c C(H) and that if w e D(y), y-u = {f, #}
then #(0) = .

The following proposition is straightforward:

PROPOSITION 4. Under the hypotheses of the Proposition 3 if u € D(y)
and y-u = {f, x} then (5) and (6) hold.

Moreover y is one-to-one and has a closed range; consequently (P)
has, at most, one strong solution.

PROPOSITION 5. Assume that the hypotheses of Proposition 3 are
fulfilled. Let we D(y), y-u = {f, x}; then we C(H) and it is:

(14) Uy —>U in C(H).

Proor. Let {v,}c D(y,) such that

vi > u in L¥H)
(15) fi =v;— Av,— Bk %v, —f in L:(H)
@ = 0,(0) > in H

from (6) it follows
[v4(t) — oa(8) | < K (|@;— 2| + [fi—fal) -

Thus {v;} is a Cauchy sequence in C(H) which implies u € C(H), v, —>u
in C(H). Finally put 2 = u,—v,; then 2z is a strong solution of the
problem:

d—Az—B,kkz=f—f,+ (B,—B)k*xv,,

2(0)=2—u,,
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from (5) it follows
un(t) —0:(8) | <E(|x — | + |[(Ba— B)k v, + |f— 1)

and u, —u in O(H). #

4. Existence.

If L: D,c H — H is a linear mapping and K a sub-space of H we
denote by Ly the following mapping in K:

16) {D(Lx)z{weDLr\K; Lze K},

Lyrx=L-x VzeD(Lg).

It is easy to see that if A€ o(L) N o(Lg) then it is R(A, L) (K)c K
and Rg(A, L) = R(A, Lg) (8).

THEOREM 6. Assume that the hypothesis (H) holds and that there
ewists a Hilbert space K (inner product ((,)), morm | ||) densely em-
bedded in H such that:

a) K<>Dy, KN D, is dense in H (?),
(H,) b) InieR such that o(Ag) D Ins, + ool and (Axy, y)<na|y|?

¢) By is self-adjoint and InzeR such that By —np<0.

Then Vfe L*H), Vo€ H, the problem (P) has a unique strong solu-
tion u such that ue€ C(H), u(0) = x.
Moreover Vfe WYK) and x € KN D, the solution w belongs to
ONH) N L=(Dy) N L¥(D,)
i.e. it is a classical solution.

(®) Rg(A, L) is the restriction of E(4, L) to K.
(®°) K <>Djy means that K is continuously and densely embedded in Dj.
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Proor. By virtue of the closed graph theorem it is B € £(H, H)
put

(17) |Blﬁ(x,m =p.

It is clear that D, N Dy is dense in H, therefore y, is pre-closed
(Proposition 3). Finally, due to the Corollary 4, to show existence
it is sufficient to prove that y has a range dense in L*}(H)® H.

Take fe WY{(K), e K and let u, be the classical solution in H
of the problem (1°):

u, — Au,— B, kku,=f,
u,,(O) =7,
from Proposition 1 there exists N > 0 such that

1) )] < ¥ (o] + [7])

it follows

ng

n—aw

|Batal < —— |Buta| < —— [u]

due to (18) AN’ > 0 such that

{ |Buttal - <N'([] +[1])
<

(19) |Bukosu| < N'(] + [£]) -

It is
Yo' Un—{f, ®} = {(B,— B)k % u,, 0}

then if ¢ € L3(Djp) it is
((Bi—B)k %y, ¢) = (k*u,, (B,—B)p) -0 .
By virtue of (19) {(B,— B)k % wu,} is bounded in L(H), it follows
Vo Un —{f, 2} (11) v{f, v} W(K)D K
because L2(Dg) is dense in L2(H).

(1%) See inclusion (2).
(1) — means weak convergence.
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Consequently the range of y, is weakly dense in L*(H)® H and
y is onto.

We prove now the regularity result. Recall that , — » in L2(H)
(Proposition 5); moreover due to (19) 3 a sub-sequence {w,} such
that {Bu,} is weakly Cauchy; consequently e D, and by virtue
of (18) ue L*(K).

Consider now the problem:

v'— Av— Bl %v = k(t)Bz + f',
{0(0) = Az + {(0),
and the approximating one
v, — Av,— B,k *v,= K{t)B,x +f',
{vn(o) = Az +{(0) .
It is v, = u, and v, —v (Proposition 5); it follows » = u’ and
u € C(H) because v € C(H).

Finally it is easy to see that ue D, and Au =u'—f—Bkxuc
e L*(H). #

5. Generalizations.

We generalize now the problem (P). We consider two families
# = {A)} 0,019 B = {B(E)}sero,n of linear operators in H. We put:

E(t) = [exp [—1£1B(&) df ,
K, () = f exp [— 1B, (£)dE,  B.(£) =n2R(n, B() —n,
and the study the problem:

(P")

w'(t) = A@) w(t) + (K %)) + 1),
w0) =a.
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We write (P') in the following form:

74,) = {f ’ ﬂb‘}
where y, is defined by:

©0) {D(y{,) = {ue L*H); u', Au, Kxu e L*H)},

yo(u) = {u'— Au — K xu, u(0)}.
We consider also the approximating problem:

) {%’. = A(t) ua(t) + (Ka % u,)() + f(1),

Un(0) = @ .

If » € D(y,), multiplying (P’) for u(¢) and putting Ve = exp [—t&] % u
we get the energy equality:

(21)

|-

d 1
& (1m0 = (B e, wet0) ) — (4, ) +

— f £(B(E)ve(t), vs(0)) dE = 0 .

We prove the theorem:

THEOREM 7. Assume that:

a) 3 a Hilbert space K —> D(A(t)) N D(B(§)), Vte[0,T], &€
€[0,1] and B4, fr>0 such that:

IA (t) Iﬁ(H,K) </34 9 IB(S) |E(E,x) < .BB .

) b) dws, ni€R such that o(A(t)) D Jwsy + oo, o(Ax(t)) D 4,
(H') + oof, (A@)x, ) <walw|?, (Aclt)®, x)<niz|* and R(2,
A(-)) (resp. R(A, Aw(*))) is strongly measurable in H
(resp. K).

¢) B(&) is self-adjoint and Jws, nz €R such that B — wz<0,
Byx—ns<0 and R(A,B()) (resp. R(A, Bg(+))) is strongly
measurable in H (resp. K).
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Then VYue L*(H), x € H, da unique strong solution u e C(H). More-
over if weL*(K), v € K then it is u e WY(H)N L*(K).
We can write the problem (P,) in the following form:

(22) Un(t) = Z(t, 0)2 —I—fZ(t, $)[(Kn % ua)(s) + f(s)] ds

where Z(t, s) are the evolutions operators attached to the family .
If ze K, fe L*(K) we can solve (22) by the contraction principle (32);
therefore K, % u, + f € L*K) which implies u, € W(H) N L>(K) ([8]).
Using the energy equality in the K space we get:

@3)  Jualt)|* <exp (207 + ) al* + [exp (20 + &)t — )] |1 (5)]2s ,

Vfe L¥K), x€ K, ¢> 0; where 1 = 1,4 -+ 5.
Proceeding as in previous sections we are able to show:

a) 7, is preclosed and its closure p' is one-to-one and with a
closed range.

b) AN’ > 0 such that
(24) [Bata|<N'(||]| + [7]) zeK, fe L¥K).

¢) It is
Vé'uné {.f7 w} .

It follows that ' is onto and 3 a unique strong solution # of (P’) for
every « € H, fe L*(H); moreover u, —u in L2(H).

Concerning regularity we remark that if x € K, f € L*(K), then by
virtue of (24) Bu belongs to L2(H) and recalling (23) u e L*(K),
consequently Au e L2(H) and ' e L*(H).

REMARK 8. For sake of simplicity we have assumed K c D(A(t)) N
N D(B(&)) instead of K c D(B(£)) as in previous section; actually
similar results can be proved with this latter assumption.

(*2) In fact Z is strongly measurable and bounded in K [8].
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6. Resolvent family.

Assume that the hypotheses either (H') or (H) and (Hj) hold.
Consider the problem:

(®)

w' () = Au(t) + K *u(t) tel[s, T]
u(s) =«

where K = Bk if (H) and (H,) hold.

Due to Theorem 7 (P) has a unique strong solution. Moreover
if (H') (resp. (H) and (H,)) hold and e K (resp. KN D,) then »
is classical. Put:

(25) u(t) = G(t, s)x
it is G(t, s) € £(H). The mapping:
(26) G: A,={{#, s)el0, T]*; t>s} > L(H), (t, 8) > G, s)

is called the evolution operator for the problem (P,) and the family
{G(t, $)}.00ca, the resolvent family.
Congsider also the approximating problem:

(P...) uy = Au+ Kok,  un(s) =2, te[s, T]

8,

and put u,(f) = G,(t, s)x.

PRrROPOSITION 9. For every x € H it is:

(27) lim G,(t, ) = G(t, 8)x  uniformly in Ay .

Therefore G(-,-)xeC(4,; H).

Proor. It is sufficient to prove (27) for € K (resp. D,N K).
Put v = v —u,, then it is:

vV—Av—Kxv=(K—K,)*u,

v(s) =0,
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from which

|G(t, )& — Gu(t, 8)@|* =

t

= |v()2 < —2:—12 fexp [2(w + &)t — 2)]|(K — K,) % u|*dz

s

and the thesis follows from dominated convergence. #

PrOPOSITION 10. Assume that the hypotheses (H') (resp. (H) and
(H;)) hold. If xe H, fe L*H) and u is the strong solution of (P’)
(resp. (P)) it 4s:

i
(28) u(t) = G(t, 0) +fG(t, 8)(s) ds
0
ProOF. Go to the limit in the equality:
i
Ua(t) = Galt, 0)2 + [Ga(t, 8)f(s) ds
REMARK 11. By similar arguments we can study the problem:

w(t) = Ay u(®) + [K(t, 9)u(s)ds + 11

")
u(0) =
‘where
(29) K(t, s) = [exp [—[p(s, & dz] B(&) a¢

and p: [0, T1X[0,1] =R, is continuous.
The energy equality is in this case:

60 55 (o) —f £)0u(t), 1) 4€) — (A () (0, ) +

— p(t, §)(B(&) ve(t), vs(1)) d& + (f(2), u(?))

[}
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where

(1) v(t) = f exp [— f P £) 4] u(s) ds

is the solution of the problem
(32) v + p(t, E)v,=u, v(0)=0.

ExAMpLE 12. Let H = L*R), ¢ € 7 (R2, R) and

33 D(A(t)) = {u € L*(R); (¢, -)u e L*R)},
(33) Ayu = plt, @), ,

B&)u= 2 (a(x, &) ou a continue, a(z, &) >a>0
(34) ow 12 ox P s !

D(B(&)) = W*R).
Then (P') is equivalent to
: 0
w = glt, ), + [ o (o, ) expE— t6] % w)df + 18, ),

(35)
u(0, &) = up() .
If u, € L*R) and f € L*([0, T]XR) then (35) has a unique strong solu-

tion u € C([0, T1; L*(R)); if moreover f,, € L*([0, T1XR) and u, € W*(R)
then u is classical and it is

we L*([0, T]; W2(R)) N W([0, T1; L*R)) .
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