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Linear Abstract Integro-Differential Equations
of Hyperbolic Type in Hilbert Spaces.

G. DA PRATO - M. IANNELLI (*)

Introduction.

This paper is concerned with the study of the problem:

where for t:&#x3E;O, A(t) is the infinitesimal generator of a strongly con-
tinuous semi-group in a Hilbert space H and X is of the form

where B(~) is self-adjoint and semi-bounded; K is then a vectorial
generalization of a completely positive kernel.

We study this problem with the same methods of sum of linear
operators as in [8]. We are able, under suitable hypotheses, y to show
existence and uniqueness of a continuous strong solution u for every

and x E g; moreover u is a classical solution if

T; K), where K is a Hilbert space densely and continuously
embedded in H and x E K.

(*) Indirizzo degli AA.: Dipartimento di Matematica, Universita di Trento -
Povo.

Lavoro svolto nell’ambito del G.N.A.F.A.
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Similar problems have been studied by several authors by different
methods, in the autonomous case. We remark that we do not assume
that the domains of A(t) and B(~) are constant.

For the proofs we need an « energy equality » (see formula (21))
that we think will be useful to study asymptotic properties of u.

1. Notations.

We note by H a real Hilbert space (1) (inner product ( , ), norm
(.) and by L2(o, T; H) the Hilbert space of the measurables map-
pings ~c : [0, T] - H such that JU 12 is integrable in [0, T], endowed
with the inner product:

We put:

It is well known that every u E T] ; H) can be identified with
a continuous function (2); in the following we always make such an
identification.

We note also by 0([0, T]; H) (resp. 01([0, T]; H)) the set of map-
pings continuous (resp. continuously derivable); it is

~’] ~ H) c C( Co, z’] ~ .g) .
Finally we put:

We write, for brevity, L2(g), 7 Wo(.t1), C(H), 01(H). We study
the problem:

(1) We suppose H real for simplicity.
(2) See for exemple [3].
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We assume:

B is and 3WB E R such that B - WB  0, 7

~ c : [0, l ] -~ measurable and bounded such that

We write (P) in the following form:

x} is given in and yo is defined by:

We consider also the approximating problem:

where Bn = n2R(n, B) - n. It is well known ([8]) that (Pn) has a

unique strong solution un E C(.8’) ; moreover if f E and x e j9~
it is:

because 7~ E 01([0, T] ~ .

(3) If L: is a linear operator we note by (resp. 
the resolvent set (resp. the spectrum) of L and by L) the resolvent
operator of L.

(4) It is known that DA is dense in H.
(5) This hypothesis implies that the operator Lu = k * u is completely

positive in L2(0, T; H); for the existence of a solution of (P) it will be suf-
ficient to assume L positive.

(s ) D~ and D, are endowed with the graph norm.
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2. A priori bound.

PROPOSITION 1. Assume (H) and let Un be the solution of (Pn), then
it is :

PROOF. Choose f E E D,4; put exp [- t~~ ~ ~cn = it is

u~ = vn~ -E- multiply by then it is :

integrating from 0 to t we get:
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and the conclusion follows from the Gronwall lemma for f E W((H);
in the general case we use the density of w’1(g) in L2(H).

COROLLARY 2. Under the hypotheses of the Proposition 1, if u is

a classical solution of (P) (7) it is :

where K is a suitable constant.

PROOF. It is :

using (3) we obtain

and the conclusion follows by dominated convergence.

3. Strong solutions.

PROPOSITION 3. Assume (H) and suppose DA n DB dense in H;
then yo is pre-closed.

PROOF. Let c DYo such that :
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we have to show that f = 0, x = 0. From (5) it follows

therefore is a Cauchy sequence in O(H) and furthermore Ui -+ 0
in C(H); then .r = == 0. We, now, go to show that f = 0.

i - oo

Remark that, since A - WA, I (B - CùB) k * are positive operators in
L2(H) it is:

Choose g in n which is dense in L2(H), from
(7) it follows

Then f or i - o0

and

Finally for 

which implies f = 0.
In the following we denote by y the closure of yo. We call u E L2(H)

a strong solution of (P) if it is :
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i.e. if there exists E r1 r1 L2(DB) such that

It is not easy in general to characterize the domain D(y) of y; how-
ever we can show that D(y) c C(H) and that if u E D(y), y - u = ff, t x}
then n ( o ) = x.

The following proposition is straightforward:

PROPOSITION 4. Under the hypotheses of the Proposition 3 if u E D(y~.
and = (f, x~ then (5) and (6) hold.

Moreover y is one-to-one and has a closed range; consequently (P)
has, at most, one strong solution.

PROPOSITION 5. Assume that the hypotheses of Proposition 3 are
fulfilled. Let u E D(y), = (f, xl; then u E O(H) and it is:

PROOF. Let c D(yo) such that

from (6) it follows

Thus is a Cauchy sequence in C(H) which implies vi -’7- U

in C(H). Finally put then z is a strong solution of the
problem:
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from (5) it follows

and in C(H).

4. Existence.

If Z : is a linear mapping and g a sub-space of H we
denote by LK the following mapping in K:

It is easy to see that if A E e(L) r1 e(LK) then it is R(A, L)(K) c K
and RK(Â, L) = R(A, LK) (8).

THEOREM 6. Assume that the hypothesis (H) holds and that there
,exists a Hilbert space K (inner products ((,)), norm II densely em-
bedded in H such that:

a) K n DA is dense in H (9),

b) such that + cxJ[ ((A. y, 2

c) BK is self -adjoint and such that 

Then b’ f E L2(.H), b’x E H, the problem (P) has a unique strong solu-
tion u such that u E C(H), u(O) = x.

lVloreover ’BIf E Wi(K) and x E K r1 DA the solution u belongs to

i.e. it is a classical solution.

(8) L) is the restriction of L) to K.
(9) K4DB means that .K is continuously and densely embedded in DB,
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PROOF. By virtue of the closed graph theorem it is B E H)
put

It is clear that DAn DB is dense in 1~, therefore yo is pre-closed
(Proposition 3). Finally, due to the Corollary 4, to show existence
it is sufficient to prove that y has a range dense in L2 (H) O H.

Take and let un be the classical solution in H

of the problem ( lo ) :

from Proposition 1 there exists N &#x3E; 0 such that

it follows

due to (18) ~N’ &#x3E; 0 such that

It is

then if T E L2(DB) it is

By virtue of (19) is bounded in L2(H), it follows

because L2(DB) is dense in L2(g).

(lo) See inclusion (2).
(11) - means weak convergence.
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Consequently the range of y, is weakly dense in 
y is onto.

We prove now the regularity result. Recall that Un - u in 

(Proposition 5); moreover due to (19) 3 a sub-sequence such
that is weakly Cauchy; consequently u E DB and by virtue
of (18) u E LOO(K).

Consider now the problem:

and the approximating one

It is in = ~n and vn 2013~ (Proposition 5); it follows v = u’ and

because 

Finally it is easy to see that u E DA and Au = u’ - f - E

E L2(H). ~

5. Generalizations.

We generalize now the problem (P). We consider two families
A = &#x3E; of linear operators in H. We put:

and the study the problem:
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We write ( P ‘ ) in the following form:

where yo is defined by:

We consider also the approximating problem:

If u E multiplying (P’ ) for u(t) and putting v~ = exp [- t~] ~ u
we get the energy equality:

We prove the theorem:

THEOREM 7. Assume that:
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Then E L2(H), x E H, 3a unique strong solution C(H). More-

over if U E _L2(.g), x E K then it is u E W1(.g) f1 
We can write the problem (P[) in the following f orm :

where Z(t,8) are the evolutions operators attached to the family A.
If we can solve (22) by the contraction principle (1~) ~
therefore + f E L2(K) which implies Un E n ([8]).
Using the energy equality in the I~ space we get:

Via e L2(K), x c- &#x3E; 0; 
Proceeding as in previous sections we are able to show:

a) yo is preclosed and its closure y’ is one-to-one and with a
closed range.

b ) 3N’ &#x3E; 0 such that

c)Itis

It follows that y’ is onto and 3 a unique strong solution u of (P’ ) for
every f c-L2 (H); moreover u in L2(H).

Concerning regularity we remark that if x E K, f E L2(g), then by
virtue of (24) Bu belongs to L2(H) and recalling (23) u E L°°(.K),
consequently Au E L2(H) and 

REMARK 8. For sake of simplicity we have assumed K c D(A(t)) r)
r1 D(B(~)) instead of K c D(B($)) as in previous section; actually
similar results can be proved with this latter assumption.

(12) In fact Z is strongly measurable and bounded in .K [8].
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6. Resolvent family.

Assume that the hypotheses either (H’ ) or (H) and (HE) hold.
Consider the problem:

where K = Bk if (H) and (HE) hold.
Due to Theorem 7 (PS ) has a unique strong solution. Moreover

if (H’) (resp. (H) and (HE)) hold and x c K (resp. then u

is classical. Put:

it is G(t, s) E C(H). The mapping:

is called the evolution operator for the problem (P~) and the family
~G(t, the resolvent family.

Consider also the approximating problem:

and put Un(t) = Gn(t, s) x.

PROPOSITION 9. For every x E H it is :

Therefore (7( -, -) .r E H).

PROOF. It is sufhcient to prove (27) for (resp. DA r1 ~)~
Put v = ~ - un, then it is:
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from which

and the thesis follows from dominated convergence. #

PROPOSITION 10. Assume that the hypotheses (H’) (resp. (H) and
(H~)) hold. If strong solution of (P’)
(resp. (P)) it is:

PROOF. Go to the limit in the equality:

REMARK 11. By similar arguments we can study the problem:

where

and p : [0, T]x[0,1] - R+ is continuous.
The energy equality is in this case:
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where

is the solution of the problem

EXAMPLE 12. Let H = L2(R), 99 E Co (R2 , R) and

Then (P’ ) is equivalent to

If U, E L2(R) and f E .L2 ( [o, T] X R) then (35) has a unique strong solu-
tion T]; .L2(ll~)) ; if moreover T] X R) and Uo E W2(R)
then u is classical and it is
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