RENDICONTI del SEMINARIO MATEMATICO della UNIVERSITÀ DI PADOVA

JINDŘICH BEČVÁŘ

Abelian groups in which every pure subgroup is an isotype subgroup

Rendiconti del Seminario Matematico della Università di Padova, tome 62 (1980), p. 129-136

http://www.numdam.org/item?id=RSMUP_1980_62_129_0

© Rendiconti del Seminario Matematico della Università di Padova, 1980, tous droits réservés.

L'accès aux archives de la revue « Rendiconti del Seminario Matematico della Università di Padova » (http://rendiconti.math.unipd.it/) implique l'accord avec les conditions générales d'utilisation (http://www.numdam.org/conditions). Toute utilisation commerciale ou impression systématique est constitutive d'une infraction pénale. Toute copie ou impression de ce fichier doit contenir la présente mention de copyright.

NUMDAM

Article numérisé dans le cadre du programme Numérisation de documents anciens mathématiques http://www.numdam.org/

Abelian Groups in which Every Pure Subgroup is an Isotype Subgroup.

JINDŘICH BEČVÁŘ (*)

All groups in this paper are assumed to be abelian groups. Concerning the terminology and notation we refer to [2]. In addition, if G is a group then G_t and G_p are the torsion part and the p-component of G_t respectively. Let G be a group and p a prime. Following Rangaswamy [11], a subgroup H of G is said to be p-absorbing, resp. absorbing in G if $(G/H)_p = 0$, resp. $(G/H)_t = 0$. Obviously, every p-absorbing subgroup of G is p-pure in G. Recall that a subgroup H of G is isotype in G if $H \cap p^\alpha G = p^\alpha H$ for all primes p and all ordinals G. For example, G_t and every G_p are isotype in G_t , every basic subgroup of G_t is isotype in G_t . If G_t is an isotype subgroup of G_t and G_t as a subgroup G_t ontaining G_t then G_t is isotype in G_t . Each absorbing subgroup of G_t is isotype in G_t (see lemma 103.1, [2]).

The notion of isotype subgroups has been introduced by Kulikov [7] and investigated by Irwin and Walker [4]. It is well-known that there are groups in which not every pure subgroup is isotype (see e.g. [4] or ex. 6, 7, § 80, [2]).

The purpose of this paper is to describe the classes of all groups in which every pure subgroup is an isotype subgroup, every isotype subgroup is a direct summand, every isotype subgroup is an absolute direct summand, every neat subgroup is an isotype subgroup and every isotype subgroup is an absorbing subgroup.

^(*) Indirizzo dell'A.: Matematicko-Fyzikální Fakulta, Sokolovská 83, 18600 Praha 8 (Cecoslovacchia).

Note that the classes of all groups in which every subgroup is a neat, resp. a pure subgroup, resp. a direct summand, resp. an absolute direct summand have been described in [12] and [5], resp. [3], resp. [6], resp. [12]; these classes coincide with the class of all elementary groups. The classes of all groups in which every neat subgroup is a pure subgroup, resp. a direct summand, resp. an absolute direct summand have been described in [9], [12] and [14] (see theorem 4), resp. [12] and [8], resp. [12] (see theorem 3). The classes of all groups in which every pure subgroup is a direct summand, resp. an absolute direct summand have been described in [15] and [3] (see theorem 2), resp. [12] (see theorem 3). The class A of all groups in which every direct summand is an absolute direct summand has been described in [12]: $G \in \mathcal{A}$ iff either G is a torsion group in which each p-component is either divisible or a direct sum of cyclic groups of the same order or Gis divisible or $G = G_t \oplus R$, where G_t is divisible and R is indecomposable. The class B of all groups in which every absorbing subgroup is a direct summand has been described in [11] and [12]; $G \in \mathcal{B}$ iff $G = T \oplus D \oplus N$, where T is torsion, D is divisible and N is a direct sum of a finite number mutually isomorphic rank one torsion free groups. Finally, in [12] have been described the classes of all groups in which every neat, resp. pure subgroup is an absorbing subgroup (see theorem 6).

DEFINITION. Let C be the class of all groups in which every pure subgroup is an isotype subgroup.

LEMMA 1. The class C is closed under pure subgroups.

Proof. Obvious.

LEMMA 2. Let G be a group, p a prime and S a p-pure subgroup of G. If G_p is a direct sum of a divisible and a bounded group then $p^{\alpha}S = S \cap p^{\alpha}G$ for every ordinal α .

PROOF. Let S be a p-pure subgroup of G. Since S_p is pure in G_p , $S_p = D \oplus B$, where D is divisible and B is bounded (see e.g. lemma 4.2, [1]). Now, $S = S_p \oplus H$, $p^{\omega}S = p^{\omega}S_p \oplus p^{\omega}H = D \oplus p^{\omega}H$ and obviously $p^{\omega}S$ is p-divisible. Consequently, $p^{\alpha}S = S \cap p^{\alpha}G$ for every ordinal α .

LEMMA 3. Let G be a group, p a prime and k a natural number. If $p^{\omega+k}G_p$ is not essential in $p^{\omega}G_p$ and either $p^{\omega+k+1}G_p$ is nonzero or $p^{\omega+k+1}G$ is not torsion then $G \notin \mathbb{C}$.

PROOF. There is a nonzero element $n \in p^{\omega}G[p]$ such that $\langle n \rangle \cap p^{\omega+k}G_p = 0$. Let $g \in p^{\omega+k}G$ and either $0 \neq pg \in G_p$ or $o(g) = \infty$. Write $X = \langle p^{\omega+k}G[p], pg, n+g \rangle$. Now, $\langle n \rangle \cap X = 0$. For, if n = x + apg + b(n+g), where a, b are integers and $x \in p^{\omega+k}G[p]$, then

$$(1-b)n = x + apg + bg \in \langle n \rangle \cap p^{\omega+k}G = 0$$
.

Hence p|1-b, (ap+b)pg=0—a contradiction. Let H be an $\langle n \rangle$ -high subgroup of G containing X. Since $\langle n \rangle \subset p^\omega G$, H is pure in G (see [10]). Now, $pg \in p^{\omega+k+1}G \cap H \setminus p^{\omega+k+1}H$. For, if pg=ph for some $h \in p^{\omega+k}H$ then $g-h \in p^{\omega+k}G[p] \subset H$, $g \in H$ and $n \in H$ —a contradiction. Consequently, $G \notin \mathbb{C}$.

LEMMA 4. If G is a p-group then $G \in \mathbb{C}$ iff either G is a direct sum of a divisible and a bounded group or G^1 is elementary.

PROOF. If G is a direct sum of a divisible and a bounded group then $G \in \mathbb{C}$ by lemma 2. If G^1 is elementary and S is a pure subgroup of G then $p^{\omega}S = S \cap p^{\omega}G$ and $p^{\omega+1}S = S \cap p^{\omega+1}G = 0$. Hence $G \in \mathbb{C}$.

Conversely, let $G \in \mathbb{C}$. Let $G^1 = D \oplus R$, where D is divisible and R is reduced. If both D and R are nonzero then write $R = \langle a \rangle \oplus R'$, where $o(a) = p^k$, k > 0. Now, $p^k G^1$ is not essential in G^1 , $p^{k+1} G^1 \neq 0$ and lemma 3 implies a contradiction. If G^1 is reduced and not bounded then $G^1 = \langle a \rangle \oplus \langle b \rangle \oplus R'$, where $o(a) = p^k$, $o(b) = p^j$, $j - k \geqslant 2$. Now, $p^k G^1$ is not essential in G^1 , $p^{k+1} G^1 \neq 0$ and lemma 3 implies a contradiction. Consequently, G^1 is either divisible or bounded. Let G^1 be nonzero divisible, write $G = G^1 \oplus H$. By [13], if H is not bounded then for any nonzero element $a \in G^1[p]$ there is a pure subgroup P of G such that $P \cap G^1 = \langle a \rangle$. Obviously, P is not isotype in G. Hence in this case, G is a direct sum of a divisible and a bounded group. Let G^1 be bounded; suppose that $pG^1 \neq 0$. If H is any high subgroup of G then H is not bounded. By [13], if G is a nonzero element of G then G is not isotype in G. Hence in this case, G is not isotype in G. Obviously, G is not isotype in G. Hence in this case, G is elementary.

LEMMA 5. Let G be a torsion group. Then $G \in \mathbb{C}$ iff $G_p \in \mathbb{C}$ for every prime p.

Proof. Obvious.

LEMMA 6. Let G be a group, p a prime and a an element of G such that $o(a) = \infty$ or p|o(a). If H is a subgroup of G maximal with respect to the conditions $pa \in H$, $a \notin H$, then H is q-absorbing in G for each prime $q \neq p$.

PROOF. Let $g \in G \setminus H$ and $qg \in H$, where q is a prime, $q \neq p$. Evidently, $a \in \langle H, g \rangle$, i.e. a = h + ng, where $h \in H$ and n is an integer, (n, q) = 1. Now, pa = ph + png and hence $png \in H$. Therefore q/pn—a contradiction. Consequently, H is g-absorbing in G.

THEOREM 1. Let G be a group. The following are equivalent:

- (i) Every pure subgroup of G is isotype in G (i.e. $G \in \mathbb{C}$).
- (ii) For every prime p either G_p is a direct sum of a divisible and a bounded group or G_p is unbounded, $(G_p)^1$ is elementary and $p^{\omega}G$ is torsion.

PROOF. Suppose that (ii) holds. Let S be a pure subgroup of G. By lemmas 1, 4 and 5, S_t is isotype in G_t . Let p be any prime. If $p^{\omega}G$ is torsion and α an ordinal, $\alpha \geqslant \omega$, then

$$p^{\alpha}S = p^{\alpha}S_t = S_t \cap p^{\alpha}G_t = S \cap p^{\alpha}G_t = S \cap p^{\alpha}G$$
.

If G_p is a direct sum of a divisible and a bounded group then by lemma 2, $p^{\alpha}S = S \cap p^{\alpha}G$ for every ordinal α . Consequently, the subgroup S is isotype in G.

Conversely suppose that $G \in \mathbb{C}$. By lemmas 1 and 4, for every prime p either G_p is a direct sum of a divisible and a bounded group or $(G_p)^1$ is elementary. If for some prime p $(G_p)^1$ is a nonzero elementary group and $p^{\omega}G$ is not torsion then $p(G_p)^1$ is not essential in $(G_p)^1$, $p^{\omega+2}G$ is not torsion and lemma 3 implies a contradiction. Consequently, if $(G_p)^1$ is a nonzero elementary group then $p^{\omega}G$ is torsion.

To finish the proof it is sufficient to show that if G_p is unbounded, $(G_p)^1 = 0$ and $p^{\omega}G$ is not torsion then $G \notin \mathbb{C}$. In this case, there is a linearly independent set $\{b_1, b_2, ...\}$ in G such that $o(b_i) = p^i$. Let $g \in p^{\omega}G$ be an element of infinite order; there are elements $g_1, g_2, g_3, ...$ such that $p^{i-1}g_i = g$ for every i = 1, 2, 3, Put $X = \langle pg, g_1 + b_1, g_2 + b_2, ... \rangle$. We show that $g \notin X$. Suppose $g \in X$, i.e.

$$g = z_0 p g + z_1 (g_1 + b_1) + ... + z_k (g_k + b_k)$$
,

where $z_0, ..., z_k$ are integers. Then

$$(*) -(z_1b_1+...+z_kb_k)=z_0pg-g+z_1g_1+...+z_kg_k.$$

From (*) follows

$$-p^{k-1}z_kb_k=p^{k-1}(z_0pg-g+z_1g_1+...+z_kg_k)\in G_p\cap p^{\omega}G=0$$

and hence $p|z_k$. From (*) follows

$$-p^{k-2}z_{k-1}b_{k-1}-p^{k-2}z_kb_k=p^{k-2}(z_0pg-g+...+z_kg_k)\in G_p\cap p^\omega G=0$$

and hence $p|z_{k-1}$ and $p^2|z_k$. Finally we have $p^{k-1}|z_k$, $p^{k-2}|z_{k-1}$, ..., $p|z_2$. Now, from (*) follows

$$z_1b_1+\ldots+z_kb_k\in G_n\cap p^\omega G=0$$

and hence $p^k|z_k, \ldots, p|z_1$. Write $z_2 = pz'_2, \ldots, z_k = p^{k-1}z'_k$; from (*) follows

$$(z_0 p - 1 + z_1 + z_2' + ... + z_k')q = 0$$

—a contradiction, since $p|z_1, p|z'_2, ..., p|z'_k$.

Let H be a subgroup of G maximal with respect to the properties $X \subset H$, $g \notin H$. By lemma 6, H is q-pure in G for every prime $q \neq p$. Moreover, H is p-pure in G. For, the inclusion $p^iG \cap H \subset p^iH$ holds for i=0, suppose that holds for i. Let $p^{i+1}a \in H$ for some $a \in G$, we may suppose that $p^ia \notin H$. Now, $g \in \langle p^ia, H \rangle$, i.e. $g = rp^ia + h$, where $h \in H$ and r is an integer, and evidently, (r, p) = 1. Further, $rp^ia \in \langle g, H \rangle$, $pp^ia \in H$ and therefore $p^ia \in \langle g, H \rangle$, i.e. $p^ia = kg + h'$ for some $h' \in H$ and some integer k. Hence

$$p^i a - k p^i g_{i+1} = h' \in p^i G \cap H$$
.

By induction hypothesis, $h' = p^i h''$ for some $h'' \in H$. Now,

$$p^{i+1}a = pkg + p^{i+1}h'' = p^{i+1}(kg_{i+1} + kb_{i+1} + h'')$$

and hence $p^{i+1}a \in p^{i+1}H$. Finally, the subgroup H is not isotype in G. For, if pg = ph for some $h \in p^{\omega}H$ then $g - h \in G_p \cap p^{\omega}G = 0$ —a contradiction; hence $pg \in H \cap p^{\omega+1}G \setminus p^{\omega+1}H$. Consequently, $G \notin C$.

Theorem 2. Let G be a group. The following statements are equivalent:

- (i) Every isotype subgroup of G is a direct summand of G.
- (ii) Every pure subgroup of G is a direct summand of G.
- (iii) $G = T \oplus D \oplus N$, where T is a torsion group in which each p-component is bounded, D is divisible and N is a direct sum of a finite number mutually isomorphic torsion-free rank one groups.

Proof. Obviously, (ii) implies (i). Assume (i). Since every absorbing subgroup of G is isotype in G, every absorbing subgroup of G is a direct summand of G. By [11], $G = T \oplus D \oplus N$, where T is torsion reduced, D divisible and N is a direct sum of a finite number mutually isomorphic torsion free groups of rank one. Moreover, T_p is bounded for every prime p. Otherwise, T_p contains a proper basic subgroup B, B is isotype in T_p and hence in G. Consequently, $T_p = B \oplus C$, where C is divisible—a contradiction. By theorem 1, every pure subgroup of G is isotype in G and hence a direct summand of G. Consequently, (ii) holds. The equivalence (ii) \leftrightarrow (iii) is proved in [15].

THEOREM 3. Let G be a group. Then the following are equivalent:

- (i) Every isotype subgroup of G is an absolute direct summand of G.
- (ii) Every pure (neat) subgroup of G is an absolute direct summand of G.
- (iii) Either G is a torsion group each p-component in which is either divisible or a direct sum of cyclic groups of the same order or $G = G_t \oplus R$, where G_t is divisible and R is a group of rank one or G is divisible.

PROOF. The equivalence (ii) \leftrightarrow (iii) is proved in [12]. Obviously, (ii) implies (i). If every isotype subgroup of G is an absolute direct summand of G then each isotype subgroup of G is a direct summand of G and every direct summand of G is an absolute direct summand of G. Now, theorem 2 and [12] imply (iii).

Theorem 4. Let G be a group. The following are equivalent:

- (i) Every neat subgroup of G is isotype in G.
- (ii) Every neat subgroup of G is pure in G.
- (iii) Either G is a torsion group in which every p-component is either divisible or a direct sum of cyclic groups of orders p^i and p^{i+1} or G_t is divisible.

PROOF. The equivalence (ii) \leftrightarrow (iii) is proved in [9], the implication (i) \leftrightarrow (ii) is trivial. Suppose that every neat subgroup of G is pure in G; hence (iii) holds. By theorem 1, every pure subgroup of G is isotype in G. Consequently, (i) holds.

Theorem 5. Let G be a group. The following are equivelent:

- (i) Every subgroup of G is isotype in G.
- (ii) G is elementary.

PROOF. It follows from [3] and [6].

THEOREM 6. Let G be a group. The following statements are equivalent:

- (i) Every isotype subgroup of G is an absorbing subgroup of G.
- (ii) Every pure (neat) subgroup of ${\cal G}$ is an absorbing subgroup of ${\cal G}$.
 - (iii) Either G is torsion free or G is cocyclic.

Proof. Since the equivalence (ii) \leftrightarrow (iii) is proved in [12], it is sufficient to show that (i) implies (iii). If G is torsion then G is indecomposable and hence cocyclic. If G is mixed then G_t is cocyclic, G splits—a contradiction.

REFERENCES

- [1] K. Benabdallah J. M. Irwin, On quasi-essential subgroups of primary abelian groups, Can. J. Math., 22 (1970), pp. 1176-1184.
- [2] L. Fuchs, Infinite Abelian Groups I, II, Acad. Press, 1970, 1973.
- [3] L. Fuchs A. Kertész T. Szele, Abelian groups in which every serving subgroup is a direct summand, Publ. Math. Debrecen, 3 (1953), pp. 95-105. Errata ibidem.

- [4] J. M. IRWIN E. A. WALKER, On isotype subgroups of abelian groups, Bull. Soc. Math. France, 89 (1961), pp. 451-460.
- [5] K. Katô, On abelian groups every subgroup of which is a neat subgroup, Comment. Math. Univ. St. Pauli, 15 (1967), pp. 117-118.
- [6] A. Kertész, On groups every subgroup of which is a direct summand, Publ. Math. Debrecen, 2 (1951), pp. 74-75.
- [7] L. Ja. Kulikov, Obobščennye primarnye gruppy, Trudy Moskov. Mat. Obšč., 1 (1952), pp. 247-326.
- [8] R. C. Linton, Abelian groups in which every neat subgroup is a direct summand, Publ. Math. Debrecen, 20 (1973), pp. 157-160.
- [9] C. MEGIBBEN, Kernels of purity in abelian groups, Publ. Math. Debrecen, 11 (1964), pp. 160-164.
- [10] R. S. PIERCE, Centers of purity in abelian groups, Pacific J. Math., 13 (1963), pp. 215-219.
- [11] K. M. RANGASWAMY, Full subgroups of abelian groups, Indian J. Math., 6 (1964), pp. 21-27.
- [12] K. M. RANGASWAMY, Groups with special properties, Proc. Nat. Inst. Sci. India, A 31 (1965), pp. 513-526.
- [13] F. RICHMAN C. P. WALKER, On a certain purification problem for primary abelian groups, Bull. Soc. Math. France, 94 (1966), pp. 207-210.
- [14] K. Simauti, On abelian groups in which every neat subgroup is a pure subgroup, Comment. Math. Univ. St. Pauli, 17 (1969), pp. 105-110.
- [15] S. N. ČERNIKOV, Gruppy s sistemami dopolnjaemych podgrupp, Mat. Sb., 35 (1954), pp. 93-128.

Manoscritto pervenuto in redazione il 27 aprile 1979.