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Abelian Groups in which Every Pure Subgroup
is an Isotype Subgroup.

JINDRICH BE010DVÁ0159

All groups in this paper are assumed to be abelian groups. Con-

cerning the terminology and notation we refer to [2]. In addition,
if G is a group then G, and 6p are the torsion part and the p-component
of G, respectively. Let G be a group and p a prime. Following Ran-
gaswamy [11], a subgroup H of G is said to be p-absorbing, resp.
absorbing in G if (GjH)f) = 0, resp. (OjH)t = 0. Obviously, every
p-absorbing subgroup of G is p-pure in G. Recall that a subgroup H
of G is isotype in G if for all primes p and all
ordinals a. For example, G and every GD are isotype in G, every basic
subgroup of G~ is isotype in Gp . If H is an isotype subgroup of G and A
a subgroup of G containing H then H is isotype in A. If G is torsion
then a subgroup H of G is isotype in G iff every Hp is isotype in G~ .
Each absorbing subgroup of G is isotype in G (see lemma 103.1, [2]).

The notion of isotype subgroups has been introduced by Kulikov [7]
and investigated by Irwin and Walker [4]. It is well-known that there

are groups in which not every pure subgroup is isotype (see e.g. [4]
or ex. 6, 7, § 80, [2]).

The purpose of this paper is to describe the classes of all groups in
which every pure subgroup is an isotype subgroup, every isotype sub-
group is a direct summand, every isotype subgroup is an absolute
direct summand, every neat subgroup is an isotype subgroup and
every isotype subgroup is an absorbing subgroup.

(*) Indirizzo dell’ A. : Matematicko-Fyzikální Fakulta, Sokolovigk4 83,
18600 Praha 8 (Cecoslovacchia).
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Note that the classes of all groups in which every subgroup is a

neat, resp. a pure subgroup, resp. a direct summand, resp. an absolute
direct summand have been described in [12] and [5], resp. [3], resp. [6],
resp. [12]; these classes coincide with the class of all elementary groups.
The classes of all groups in which every neat subgroup is a pure sub-
group, resp. a direct summand, resp. an absolute direct summand

have been described in [9], [12] and [14] (see theorem 4), resp. [12]
and [8], resp. [12] (see theorem 3). The classes of all groups in which

every pure subgroup is a direct summand, resp. an absolute direct
summand have been described in [15] and [3] (see theorem 2), resp. [12]
(see theorem 3). The class A of all groups in which every direct sum-
mand is an absolute direct summand has been described in [12];
G e A iff either G is a torsion group in which each p-component is
either divisible or a direct sum of cyclic groups of the same order or G
is divisible or G = 1~, where G, is divisible and R is indecom-

posable. The class % of all groups in which every absorbing subgroup
is a direct summand has been described in [11] and [12]; G iff

G = T Q+ D© N, where T is torsion, D is divisible and N is a direct
sum of a finite number mutually isomorphic rank one torsion free
groups. Finally, in [12] have been described the classes of all groups
in which every neat, resp. pure subgroup is an absorbing subgroup
(see theorem 6).

DEFINITION. Let C be the class of all groups in which every pure
subgroup is an isotype subgroup.

LEMMA 1. The class C is closed under pure subgroups.

PROOF. Obvious.

LEMMA 2. Let G be a group, p a prime and S a p-pure subgroup
of G. If Gp is a direct sum of a divisible and a bounded group then
ptX S == for every ordinal oc.

PROOF. Let S be a p-pure subgroup of G. Since Sf) is pure in Gf)’
where D is divisible and B is bounded (see e.g. lem-

ma 4.2, [1]). Now, S = Sp(f)H, = D(f)proH and
obviously proS is p-divisible. Consequently, p"S = for every
ordinal oc.

LEMMA 3. Let G be a group, p a prime and k a natural number.
Lf pro+kGp is not essential in proGf) and either is nonzero or

is not torsion then 
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PROOF. There is a nonzero element n E such that n~ r1
npW+kGp== 0. and either 0 =l=-pgEGp or o(g) - 00. Write
X = pg, n + g). Now, n&#x3E; r1 x = 0. For, if n = x +
+ apg + b(n + g), where a, b are integers and x E pW+k G[p], then

Hence (ap + b ) pg = 0-a contradiction. Let H be an n&#x3E; -
high subgroup of G containing X. Since H is pure in G

(see [10] ). For, if pg = ph for some
contradic-

tion. Consequently, G 0 C.

LEMMA 4. If G is a p-group then G E C iff either G is a direct sum
of a divisible and a bounded group or G’ is elementary.

PROOF. If G is a direct sum of a divisible and a bounded group
then GEe by lemma 2. If Gi is elementary and S is a pure subgroup
of G then npwG and == 0. Hence G E C.

Conversely, let G E C. Let D QQ .1~, where D is divisible and R
is reduced. If both D and R are nonzero then write R = R’,
where o(a) --- pk, ~ &#x3E; 0. Now, is not essential in G’, 
and lemma 3 implies a contradiction. If G’ is reduced and not bounded
then G1= a&#x3E; G) b&#x3E; O R’, where o(a) = pk, o(b) = pj, j - k&#x3E;2. Now,

is not essential in G’, and lemma 3 implies a con-
tradiction. Consequently, G’ is either divisible or bounded. Let G1
be nonzero divisible, write G = H. By [13], if H is not bounded
then for any non-zero element E G1[p] there is a pure subgroup P
of G such that ~ac~. Obviously, P is not isotype in G.
Hence in this case, G is a direct sum of a divisible and a bounded group.
Let G1 be bounded; suppose that If H is any high sub-

group of G then H is not bounded. By [13], if a is a nonzero clement
of then there is a pure sugroup P of G such that P r1 

Obviously, P is not isotype in G. Hence in this case, G1 is elementary.

LEMMA 5. Let G be a torsion group. Then iff 6p e G for
every prime p.

PROOF. Obvious.
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LEMMA 6. Let G be a group, p a prime and a an element of G such
that = o0 or If H is a subgroup of G maximal with

respect to the conditions pa E H, a 0 g, then H is q-absorbing in G
for each prime q =1= p.

PROOF. Let and where q is a prime, 
Evidently, a E H, g), i.e. ac = h + ng, where h E H and n is an integer,
(n, q) = 1. Now, pa = ph + png and hence png E H. Therefore

q/pn a contradiction. Consequently, H is q-absorbing in G.

THEOREM 1. Let G be a group. The following are equivalent:

(i) Every pure subgroup of G is isotype in G (i.e. G E C).

(ii) For every prime p either Gj) is a direct sum of a divisible
and a bounded group or OJ) is unbounded, (Gj))1 is elementary and
pm G is torsion.

PROOF. Suppose that (ii) holds. Let S be a pure subgroup of G.
By lemmas 1, 4 and 5, St is isotype in Gt . Let p be any prime.
If po G is torsion and a an ordinal, a ~ c~, then

If G1’ is a direct sum of a divisible and a bounded group then by
lemma 2, p«S = for every ordinal a. Consequently, the sub-
group is isotype in G.

Conversely suppose that G E C. By lemmas 1 and 4, for every
prime p either Gf) is a direct sum of a divisible and a bounded group or
(G~)1 is elementary. If for some prime p (Gf))1 is a nonzero elementary
group and is not torsion then is not essential in (G1’)I,

. 

pW+2G is not torsion and lemma 3 implies a contradiction. Conse-

quently, if (Gf))1 is a nonzero elementary group then is torsion.
To finish the proof it is sufficient to show that if Gf) is unbounded,

(Gp) 1= 0 and pw G is not torsion then G 0 C. In this case, there is
a linearly independent set b2 , ...} in G such that o (b$ ) = p i. Let

be an element of infinite order; there are elements gl , g2 , g3 , .. ·
such that pi-lgi = g for every i = 1, 2, 3, .... Put X = pg, gl + bl,
g2 + b2 , ... ~ . We show that Suppose g E X, i.e.
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where are integers. Then

From (*) follows

and hence p From ( * ) follows

and hence plZk-l and p2lzk’ Finally we have
Now, from (*) follows

and hence pk ...yp~i. Write z2 = pz2 , ...~~==jp~~~; from (*) follows

a contradiction, since p IZ1’ p ... , p 

Let H be a subgroup of G maximal with respect to the properties
g ft H. By lemma 6, H is q-pure in G for every prime 

Moreover, H is p-pure in G. For, the inclusion holds
for ~===0~ suppose that holds for i. Let for some a E G,
we may suppose that Now, i. e. g = --I- h,
where and r is an integer, and evidently, (r, p ) = 1. Further,

and therefore i.e. pia = kg + h’
for some h’E H and some integer k. Hence

By induction hypothesis, h’ - p i h" for some h" E H. Now,

and Finally, the subgroup H is not isotype in G.
For, if pg = ph for some hE pw H then 0 a con-

tradiction ; hence pg E H n Consequently, GO C.
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THEOREM 2. Let G be a group. The following statements are

equivalent:

(i) Every isotype subgroup of G is a direct summand of G.

(ii) Every pure subgroup of G is a direct summand of G.

(iii) G = T Q+ N, where T is a torsion group in which each
p-component is bounded, D is divisible and N is a direct sum of a

finite number mutually isomorphic torsion-free rank one groups.

PROOF. Obviously, (ii) implies (i). Assume (i). Since every ab-

sorbing subgroup of G is isotype in G, every absorbing subgroup of G
is a direct summand of G. By [11], G == D0?; N, where T is tor-
sion reduced, D divisible and N is a direct sum of a finite number
mutually isomorphic torsion free groups of rank one. Moreover, Tp is
bounded for every prime p. Otherwise, Tp contains a proper basic
subgroup B, B is isotype in T p and hence in G. Consequently,

where C is divisible-a contradiction. By theorem 1,
every pure subgroup of G is isotype in G and hence a direct summand
of G. Consequently, (ii) holds. The equivalence (ii) ~ (iii) is

proved in [15].

THEOREM 3. Let G be a group. Then the following are equivalent:

(i) Every isotype subgroup of G is an absolute direct sum-

mand of G.

(ii) Every pure (neat) subgroup of G is an absolute direct sum-
mand of G.

(iii) Either G is a torsion group each p-component in which is
either divisible or a direct sum of cyclic groups of the same order or
G = where G, is divisible and R is a group of rank one or G
is divisible.

PROOF. The equivalence (ii) ~~ (iii) is proved in [12]. Obviously,
(ii) implies (i). If every isotype subgroup of G is an absolute direct
summand of G then each isotype subgroup of G is a direct summand
of G and every direct summand of G is an absolute direct summand of G.

Now, theorem 2 and [12] imply (iii). 
,

THEOREM 4. Let G be a group. The following are equivalent:



135

(i) Every neat subgroup of G is isotype in G.

(ii) Every neat subgroup of G is pure in G.

(iii) Either G is a torsion group in which every p-component is
either divisible or a direct sum of cyclic groups of orders pi i and 
or 6~ t is divisible.

PROOF. The equivalence (ii) - (iii) is proved in [9], the implica-
tion (i) -H- (ii) is trivial. Suppose that every neat subgroup of G is
pure in G; hence (iii) holds. By theorem 1, every pure subgroup of G
is isotype in G. Consequently, y (i) holds.

THEOREM 5. Let G be a group. The following are equivelent:

(i) Every subgroup of G is isotype in G.

(ii) G is elementary.

PROOF. It follows from [3] and [6].

THEOREM 6. Let G be a group. The following statements are

equivalent:

(i) Every isotype subgroup of G is an absorbing subgroup of G.

(ii) Every pure (neat) subgroup of G is an absorbing sub-

group of G.

(iii) Either G is torsion free or G is cocyclic.

PROOF. Since the equivalence (ii) ~--&#x3E; (iii) is proved in [12], it is

sufficient to show that (i) implies (iii). If G is torsion then G is in-

decomposable and hence cocyclic. If G is mixed then G, is cocyclic,
G splits-a contradiction.
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