# RENDICONTI del SEMINARIO MATEMATICO della UNIVERSITÀ DI PADOVA

# REINALDO E. GIUDICI CLAUDIO MARGAGLIO

# A geometric characterization of the generators in a quadratic extension of a finite field

Rendiconti del Seminario Matematico della Università di Padova, tome 62 (1980), p. 103-114

<a href="http://www.numdam.org/item?id=RSMUP\_1980\_\_62\_\_103\_0">http://www.numdam.org/item?id=RSMUP\_1980\_\_62\_\_103\_0</a>

© Rendiconti del Seminario Matematico della Università di Padova, 1980, tous droits réservés.

L'accès aux archives de la revue « Rendiconti del Seminario Matematico della Università di Padova » (http://rendiconti.math.unipd.it/) implique l'accord avec les conditions générales d'utilisation (http://www.numdam.org/conditions). Toute utilisation commerciale ou impression systématique est constitutive d'une infraction pénale. Toute copie ou impression de ce fichier doit contenir la présente mention de copyright.

# Numdam

Article numérisé dans le cadre du programme Numérisation de documents anciens mathématiques http://www.numdam.org/

# A Geometric Characterization of the Generators in a Quadratic Extension of a Finite Field.

REINALDO E. GIUDICI - CLAUDIO MARGAGLIO (\*)

Summary · Let  $K' = GF(p^{2n})$  be a quadratic extension of the Galois field  $K = GF(p^n)$ , where p is an odd prime. In this article we deal with a geometric characterization of the set of generators of the multiplicative cyclic group of K' in terms of a generator of the multiplicative cyclic group of K. With this characterization the set of generators of  $(K')^* = K' - \{0\}$  is just the intersection of two sets which are respectively the union of sets of certain lines through the origin and « conics with primitive norm ». As an application of the idea developed in this article we prove that for some special primes, like Fermat's primes, there exists a generator of  $GF^*(p^2)$  with any one of its coordinates  $(\neq 0)$  preassigned. It is also proved that the first component of a generator can be assigned = 1 for primes p such that  $p \equiv 1 \pmod{4}$  and  $p < (3.5) \cdot 10^{18}$ . At the same time we provide an alternative method for computing all of the generators of the quadratic extension  $GF^*(p^{2n})$ .

### 1. Introduction.

We consider a finite field, K, with  $q = p^n$  elements, p and odd prime. If g is a generator of the multiplicative cyclic group  $K^* = K - \{0\}$ ,

(\*) Indirizzo degli AA.: Department of Mathematics, Universidad Simon Bolivar - Caracas (Venezuela).

we consider the quadratic extension K' of K by  $X^2-g$ , so that

$$(1.1) K' = \{a + b\theta | a, b \in K\}, \theta^2 = g (\theta \text{ fixed}).$$

We denote by  $\Lambda$  the set of all generators of  $K^*$  and by  $\Lambda'$  the set of all generators of the multiplicative cyclic group  $(K')^* = K' - \{0\}$ .

Since  $K^*$  has q-1 elements and  $(K')^*$  has  $q^2-1$  elements,  $\Lambda$ ,  $\Lambda'$  will be, respectively, sets of  $\varphi(q-1)$ ,  $\varphi(q^2-1)=2\varphi(q-1)\varphi(q+1)$  elements where  $\varphi$  represents the «Euler function».

It will also be useful to consider the norm homomorphism,

$$N: (K')^* \rightarrow K^*$$

defined by

$$(1.2) N(a+b\theta) = (a+b\theta)^{q+1} = a^2 - b^2 g,$$

which is onto and partitions  $(K')^*$  into q-1 equivalence classes, each containing q+1 elements of equal norm.

In particular, the norm of any generator  $\lambda$  of  $(K')^*$  is a generator of  $K^*$ . That is,

(1.3) 
$$N(\lambda) = \lambda^{q+1} = g^s$$
, with  $(s, q-1) = 1$ .

This may be very useful for finding generators of  $(K')^*$  and in two particular cases it is sufficient to determine them:

- i) When  $q=p=2^m-1$  is a Mersenne prime, we have  $q+1=2^m$  elements in  $(K')^*$  with equal norm, and since there are  $\varphi(q-1)$  generators in  $K^*$ , we find  $2^m\varphi(q-1)$  elements of  $(K')^*$  whose norm is a generator of  $K^*$ . Among these elements we must find all of the generators of  $(K')^*$ . But since  $(K')^*$  has  $2\varphi(q+1)\varphi(q-1)=2^m\varphi(q-1)$  generators, the elements whose norm is a generator of  $K^*$  are just all of the generators of  $(K')^*$ .
- ii) When  $q=p^n=2p'-1$  (p' and odd prime) there are q+1=2p' elements having norm a generator g' of  $K^*$ , but two of them are of the form  $\pm b\theta$ , because in this case  $q\equiv 1\pmod 4$ , and therefore -1 is a square in K and there is an element  $b\in K$  such that  $gb^2=g'$ . Hence, the elements  $a+b\theta$  of  $(K')^*$  having norm a generator of  $K^*$  and  $a\neq 0$  are just all of the generators of  $(K')^*$ . This criterion is applied in several cases; for instance, if q=5,13,25, etc.

## 2. Geometric properties of $\Lambda'$ .

We identify the field K', defined in (1.1) with the cartesian product  $K \times K$  by associating the ordered pair (a, b) with  $a + b\theta$  and we think of it as the affine plane  $A^2(K)$  over K.

In this plane, we consider two distinguished types of subsets:

- i) «lines through the origin» and
- ii) « conics of constant norm ».

If  $\xi = a + b\theta$  is any element of K' (different from zero), we define the line through the origin that contains  $\xi$  by

$$(2.1) L(\xi) = \{(x, y) \in A^2(K) | bx - ay = 0, (a, b) \neq (0, 0) \},$$

and if h is any non-zero element of K, we define the «conic of norm h» to be

$$(2.2) C_h = \{(x, y) \in A^2(K) | x^2 - gy^2 = h, h \in K^* \}.$$

It is also convenient to define

(2.3) 
$$L^*(\xi) = L(\xi) \cap (K')^*.$$

It is easy to verify that every line  $L(\xi)$  contains exactly q points and, by again using the fact that the norm is a homomorfism of  $(K')^*$  onto  $K^*$ , that every conic  $C_h$  has exactly q+1 points.

Observe that whenever a conic  $C_h$  contains a generator  $\lambda \in A'$ , then the norm h is a generator of  $K^*$ . In this case we call  $C_h$  a « conic of primitive norm ». On the other hand, a line through the origin which contains a generator of  $(K')^*$  will be called a « generator line ».

THEOREM 1. Every non-zero element of a generator line has order of the form  $(q^2-1)/d$ , with d an odd divisor of q-1, and for every odd divisor d of q-1, there are exactly  $2\varphi((q-1)/d)$  elements in each generator line having order  $(q^2-1)/d$ .

PROOF: Let  $\lambda$  be any generator of  $(K')^*$ ,  $L(\lambda)$  the generator line which contains  $\lambda$ , and  $\alpha$  any element of  $L^*(\lambda)$ . Then  $\alpha = h\lambda$ ,  $h \in K^*$ ,

and if  $g_1 = \lambda^{q+1}$  is the norm of  $\lambda$ , we may write

$$(2.4) h = g_1^k = \lambda^{k(q+1)},$$

$$(2.5) \alpha = h \cdot \lambda = \lambda^{k(q+1)+1},$$

with a convenient exponent  $k \in [0, q-2]$ .

Then, the order of  $\alpha$  in the cyclic group  $(K')^*$  of order  $q^2-1$  will be

$$O(lpha) = rac{q^2-1}{(k(q+1)+1,\,q^2-1)} = rac{q^2-1}{(2k+1,\,q-1)}\,,$$

because

$$egin{aligned} ig(k(q+1)+1,q^2-1ig) &= ig(k(q+1)+1,q-1ig) = \ &= ig(k(q-1)+2k+1,q-1ig) = (2k+1,q-1). \end{aligned}$$

In this way we have that every element of  $L^*(\lambda)$  has order of the form  $(q^2-1)/d$ , where d=(2k+1,q-1) is and odd divisor of q-1.

To count the number of elements of order  $(q^2-1)/d$  contained in  $L^*(\lambda)$ , with fixed d, observe that we obtain all elements of  $L^*(\lambda)$  by using the formula  $\alpha = g_1^k \cdot \lambda$ , where k takes on all values in the interval of integers [0,q-2], or equivalently where 2k+1 takes on all odd values in the interval of integers [1,2q-2]. Now,  $g_1^k \cdot \lambda$  will have order  $(q^2-1)/d$  if and only if (2k+1,q-1)=d and this takes place  $\varphi((q-1)/d)$  times when 2k+1 is in [1,q-1] and the same number of times when 2k+1 is in [q,2(q-1)] because d,2k+1 are odd numbers and q-1 is even, and if  $s \in [q,2(q-1)]$  then (s,q-1)=(s-(q-1),q-1) and  $1 \leq s-(q-1) \leq q-1$ .

Therefore, there are  $2\varphi((q-1)/d)$  numbers of the form 2k+1 in [1,2(q-1)] such that (2k+1,q-1)=d, and we conclude that there are  $2\varphi((q-1)/d)$  elements of order  $(q^2-1)/d$  in our generator line  $L^*(\lambda)$ .

COROLLARY 1.1. There are  $\varphi(q+1)$  generator lines.

PROOF. Let M be the number of generator lines. There are  $2\varphi(q-1)\varphi(q+1)$  generators of  $(K')^*$  and each has order  $q^2-1$ .

Therefore, by Th. 1, there are  $2\varphi(q-1)$  generators in each generator line, and since (by definition of generator line) every generator

belongs to some generator line, it follows that

(2.6) 
$$2\varphi(q-1)\varphi(q+1) = M2\varphi(q-1)$$

and therefore  $M = \varphi(q+1)$ .

COROLLARY 1.2. An element  $\xi \in (K')^*$  belongs to some generator line if and only if it is order is of the form

(2.7) 
$$O(\xi) = \frac{q^2 - 1}{d}, \ d \text{ an odd divisor of } q - 1.$$

Moreover, if this holds, then

$$\frac{O(\xi)}{q+1} = O(N(\xi)),$$

so that an element  $\xi$  of a generator line is a generator of  $(K')^*$  if and only if its norm is a generator of  $K^*$ .

PROOF. By Th. 1, every element of a generator line has order of the form  $(q^2-1)/d$ , with d an odd divisor of q-1. We must therefore verify that all elements of such order belong to some generator line.

Observe that there are in  $(K')^*$ ,  $\varphi((q^2-1)/d)$  elements of order  $(q^2-1)/d$ , with fixed d. Since both q+1, (q-1)/d are even, we may write:

$$\varphi\left(\frac{q^2-1}{d}\right) = 2\varphi(q+1)\varphi\left(\frac{q-1}{d}\right)$$

and therefore, since  $\varphi(q+1)$  is the number of generator lines (cor. 1.1) and  $2\varphi((q-1)/d)$  is the number of elements of order  $(q^2-1)/d$  in each generator line, we see that generator lines contain all such elements.

Finally we have

$$O(N(\xi)) = O(\xi^{q+1}) = \frac{O(\xi)}{(q+1, (q^2-1)/d)} = \frac{O(\xi)}{q+1}.$$

COROLLARY 1.3. A conic of constant norm h intersects generator lines if and only if h is not a square in  $K^*$ . Moreover, if h is not a

square in  $K^*$  the conic of norm h intersects each generator line in exactly two points that are elements of maximal order on the conic. In particular, if the norm of the conic is a generator of  $K^*$  then the conic intersects every generator line in two points that are generators of  $(K')^*$ .

Proof. By cor. 1.2 all elements of a generator line have norms whose order is of the form

$$(2.9) \qquad \frac{q^2-1}{d(q+1)} = \frac{q-1}{d} \ (d \ \text{an odd divisor of} \ q-1) \ ,$$

and therefore, for any element  $\xi$  of a generator line,  $N(\xi)$  is not a square in  $K^*$ . The above argument indicates that no conic of square-norm intersects generator lines. On the other hand, if a conic intersects a generator line it intersects if in exactly two points (which are opposite elements) and since there are (q-1)/2 non-squares in  $K^*$  and every generator line has q-1 points different from (0,0), it follows that all conics of non-square norm must intersect all generator lines.

Now, let h be a non-square of order (q-1)/d in  $K^*$ . Then every element  $\xi$  of norm h has order which divides (q+1)O(h), since  $\xi^{(q+1)O(h)} = h^{O(h)} = 1$ , and on the other hand, its intersections with a generator line are elements whose orders are (q+1)O(h), by cor. 1.2, which is the greatest possible.

Corollary 1.4. The set of generators of  $(K')^*$  is just the intersection of the union of all generator lines with the union of all conics of primitive norm. In particular each conic of primitive norm contains  $2\varphi(q+1)$  generators and each generator line contains  $2\varphi(q-1)$  generators.

PROOF. By using cor. 1.2 or 1.3, any element of a generator line is a generator if and only if it has primitive norm and any element of a conic of primitive norm is a generator if and only if it belongs to some generator line. On the other hand every generator belongs to a generator line and to a conic of primitive norm.

Cor. 2.1 permits us to determine all generator lines in the following way: we take any non-square element h of  $K^*$  and search among the

elements of norm h for those that have maximal order (q + 1) times the order of h).

For instance, if  $q \equiv 3 \pmod{4}$  we may take h = -1 and search for all elements of norm -1 having order 2(q+1); if  $q \equiv 1 \pmod{4}$ , and if  $q-1=2^t m \pmod{6}$  we may search for all elements of norm  $g^m$   $(g \text{ a generator of } K^*)$  having order  $2^t(q+1)$ .

Observe that the second case is the general one, since if  $q \equiv 3 \pmod{4}$  then  $q-1=2^t m$  with t=1 and  $q^m=q^{(q-1)/2}=-1$ .

In order to verify that an element  $\lambda$  of norm  $g^m$  has order  $M = 2^t(q+1)$ , it is sufficient to check that  $(\lambda)^{(M)/p_i} \neq 1$  for all different odd prime factors  $p_i$  of q+1, since

$$(\lambda)^{2^{t-1}(q+1)} = (g^m)^{2^{t-1}} = g^{(q-1)/2} = -1$$
 .

The only cases in which it is not necessary to verify orders of elements are those mencioned at the end of section 1, that is, the cases when  $q + 1 = 2^s$  or q + 1 = 2p' (p' an odd prime).

# 3. An aplication to Giudici's conjecture.

R. Giudici made the following conjecture with respect to the generators of  $(K')^* = GF^*(p^2)$ , p an odd prime:

« For each  $a \in K^* = GF^*(p)$  there exists at least one  $\lambda \in \Lambda$  such that  $\lambda = a + b\theta$  and for each  $b \in GF^*(p)$  there exists at least one generator of  $GF^*(p^2)$  of the form  $a + b\theta$ ».

R. Frucht proved the validity of this conjecture for a = 1 and p a Fermat prime [1, thm. 6.1]. See also [2].

When p is a Fermat prime, one can also show that the number of generators with fixed a or fixed b is  $\varphi(p+1)$ . However, this is not true for an arbitrary prime p. For instance, for p=23 (not a Fermat prime) we obtain

$$n(1) = n(2) = n(5) = n(7) = n(8) = n(9) = n(10) = 4$$

and

$$n(3) = n(4) = n(6) = n(11) = 3$$

where we denote by n(a) the number of generators of  $GF^*(p^2)$  with given a.

| ĺ | p              | 3 | 5 | 17 | 257 | 65537 |
|---|----------------|---|---|----|-----|-------|
| ľ | $\varphi(p+1)$ | 2 | 2 | 6  | 84  | 19800 |

For the known Fermat primes we have

We next establish a sufficient condition which  $q = p^n$  may satisfy in order to comply with Giudici's conjecture in  $K' = GF(p^{2n})$ .

THEOREM 2. If the number  $q = p^n$  satisfies the inequality

(3.1) 
$$\frac{1}{2}\varphi(q+1) + \varphi(q-1) > \frac{1}{2}(q-1)$$

then it also satisfies Giudici's conjecture in  $GF^*(p^{2n})$ .

Proof. It is evident that in each of the  $\varphi(q+1)$  generator lines there is exactly one element with first (or second) component assigned Now, by Cor. 1.3, the norm of any non-zero element of a generator line must be a non-quadratic residue in  $GF^*(q)$ .

Then, if for a first component a (or second b) there does not exist  $\lambda \in A'$  such that  $\lambda = a + b\theta$  then the  $\varphi(q+1)/2$  different norms of the  $\varphi(q+1)$  elements with fixed a (or b) belonging to the generator lines must be the elements of  $(K')^*$  whose norm is neither a quadratic residue in  $K^*$  nor a generator of  $K^*$ .

Therefore, the number of such norms plus the number of primitive elements (generators) of  $K^*$  is less than or equal to the number of elements that are not quadratic residues in  $K^*$ ; that is,

$$\frac{1}{2}\varphi(q+1) + \varphi(q-1) \leq \frac{1}{2}(q-1)$$
.

It can easily be verified that a Fermat prime satisfies condition (3.1). There are 18 prime numbers less than 1000 that do not satisfy condition (3.1).

The 8 prime numbers less than 500 that do not satisfy condition (3.1) are: 139, 181, 211, 241, 331, 349, 379 and 421.

By direct verification, each of these satisfies Giudici's conjecture. Also primes of the form p = 2p' + 1, with p' an odd prime satisfy condition (3.1).

The following theorem gives a bound for primes of the form 4n + 1 that satisfy Giudiei's conjecture when a = 1.

THEOREM 3. For each prime p such that  $p \equiv 1 \pmod{4}$  and  $p < (3,5) \cdot 10^{15}$  there exists  $\lambda \in \Lambda'$  of the form  $\lambda = 1 + b\theta$ .

PROOF. There are p-1 elements of the form  $1+b\theta$  with  $b\neq 0$  in  $GF^*(p^{2n})$ . Let A be the set of elements of the form  $1+b\theta$  belonging to some generator line, i.e.

$$(3.2) A = \{\lambda = 1 + b\theta | \lambda \in L^*(\lambda)\}.$$

Then, since the x and y axes (defined in an obvious way) are not generator lines we have  $O(A) = \varphi(p+1)$ .

Let  $\overline{\mathcal{Y}}$  be the number of generators  $g_i$  of  $GF^*(p)$  such that  $1-g_i$  is not a quadratic residue in  $GF^*(p)$ . For each  $g_i$  there are two b such that  $1-g_i=gb^2$ , that is,  $N(1+b\theta)=g_i$ .

Let

$$(3.3) B = \{1 + b\theta | N(1 + b\theta) \in \Lambda\}.$$

Then  $O(B) = 2\overline{\varPsi}$ .

Following the argument of Jacobsthal [3, 239] we can prove that on every line parallel to the y-axis ( $\neq y$ -axis) there are (p-1)/2 elements whose norm is a quadratic non-residue and since the elements of A and B lie between those elements we have  $O(A \cup B) \leq (p-1)/2$ .

Also, since

$$O(A \cap B) = O(A) + O(B) - O(A \cup B)$$

we have

(3.4) 
$$O(A \cap B) \geqslant \varphi(p+1) + 2\bar{\psi} - \frac{p-1}{2}$$
.

Observe that the elements of  $A \cap B$  are generators of  $GF^*(p^{2n})$ . Now let  $\Psi$  denote the character sum

(3.5) 
$$\Psi = \sum_{g_i \in A} \chi(1 - g_i) ,$$

where  $\Lambda$  is the set of generators of  $GF^*(p)$  and  $\chi(1-g_i)$  denotes the well known Legendre symbol  $((1-g_i)/p)$ .

Let h be the number of  $g_i$  such that  $\chi(1-g_i)=1$  and let k be the number of  $g_i$  with  $\chi(1-g_i)=-1$ . We have

(3.6) 
$$\left\{ \begin{array}{l} h-k=\varPsi, \\ h+k=\varphi(p-1). \end{array} \right.$$

Therefore,

$$\overline{\Psi} = k = \frac{1}{2} \left( \varphi(p-1) - \Psi \right).$$

Since  $p \equiv 1 \pmod{4}$ ,  $\chi(1) = \chi(-1)$ , the inverse  $g_i^{-1}$  of any generator is a generator too, and

$$\varPsi = \sum_{g_i \in \varLambda} \chi(1-g_i) = \sum_{g_i \in \varLambda} \chi(g_i-1) = -\sum_{g_i \in \varLambda} \chi(1-g_i^{-1}) = -\varPsi.$$

Thus,  $\Psi=0$  and by (3.7)  $\Psi=k=\frac{1}{2}\varphi(p-1)$ . Thus, in (3.6) we have

(3.8) 
$$0(A \cap B) \geqslant \varphi(p+1) + \varphi(p-1) - \frac{1}{2}(p-1)$$

which represents a lower bound for the number of generators of the form  $1 + b\theta$  with  $p \equiv 1 \pmod{4}$ .

We now prove that for  $p \equiv 1 \pmod{4}$  and  $p < (3.5) \cdot 10^{15}$  we have

(3.9) 
$$\varphi(p+1) + \varphi(p-1) > \frac{1}{2}(p-1).$$

First of all, the only prime factor common to p+1 and p-1 is 2. Let us indicate by  $q_1, q_2, ..., q_t$  the distinct prime factors of  $p^2-1$  that are different from 2 and by  $d_1, d_2, ..., d_t$  the numbers  $d_i = (q_i-1)/q_i$ .

Now, conveniently enumerating the  $q_i$ 's, we have

(3.10) 
$$\frac{\varphi(p-1)}{p-1} = \frac{1}{2} d_1 d_2 \dots d_s ,$$

(3.11) 
$$\frac{\varphi(p+1)}{p+1} = \frac{1}{2} d_{s+1} d_{s+2} \dots d_t.$$

Since for Fermat primes we can verify directly the condition (3.1) and the Mersenne primes  $2^n-1$  are not congruent to 1 (mod 4) we can assume that both expressions (3.10) and (3.11) have at least one  $d_i$  occurring as a factor.

Let  $d = \prod_{i=1}^{t} d_{i}$ . We will first prove that if  $d > \frac{1}{4}$  then

$$\frac{\varphi(p-1)}{p-1} + \frac{\varphi(p+1)}{p+1} > \frac{1}{2}$$
.

Let  $d = \frac{1}{4} + e$ , e > 0, and consider the two products

$$\left\{ \begin{array}{l} U = \prod\limits_{1}^{s} d_i \,, \\ \\ V = \prod\limits_{s+1}^{t} d_i \,. \end{array} \right.$$

Then,  $UV = d = \frac{1}{4} + e$ , where e > 0, and

$$\frac{\varphi(p-1)}{p-1} + \frac{\varphi(p+1)}{p+1} = \frac{1}{2} \left( U + V \right) \,.$$

Therefore we must prove that U+V>1. Since  $UV\neq \frac{1}{4}$  at least one of U and V will be  $\neq \frac{1}{2}$ : Let  $U=\frac{1}{2}+c$ , where  $c\neq 0$ . Then

$$egin{align} U+V=U+rac{d}{U}&=rac{U^2+d}{U}=rac{1}{U}\Big(rac{1}{4}+c+c^2+rac{1}{4}+e\Big)=\ &=rac{1}{U}(U+c^2+\ e)=1+rac{c^2+e}{U}>1 \ . \end{split}$$

Hence,  $d > \frac{1}{4}$ , and we can write now

$$2\left(\frac{\varphi(p-1)}{p-1} + \frac{\varphi(p+1)}{p-1}\right) > 2\left(\frac{\varphi(p-1)}{p-1} + \frac{\varphi(p+1)}{p+1}\right) = U + V > 1$$

which means

$$\varphi(p-1) + \varphi(p+1) > \frac{1}{2}(p-1)$$
.

We now consider a prime number p, such that  $N=p^2-1$  has at most 20 different odd prime factors  $q_1, q_2, ..., q_s, s \le 20$ . Then

$$d = \prod_{i=1}^{s} \frac{q_i - 1}{q_i} \ge \frac{2}{3} \cdot \frac{4}{5} \dots \frac{72}{73} \ge 0.2521 > \frac{1}{4}$$

Therefore

$$d > \frac{1}{4} \text{ and } \frac{\varphi(p-1)}{p-1} + \frac{\varphi(p+1)}{p+1} > \frac{1}{2}.$$

Finally observe that for any prime p which is less than  $(3.5) \cdot 10^{15}$ , N cannot have more than 20 different odd prime factors. Indeed, one has  $p < (3.5) \cdot 10^{15}$  implies

$$p < \sqrt{8 \cdot 3 \cdot 5 \cdot 7 \dots 79}$$
.

So that,

$$\frac{p^2-1}{8}$$
 < 3·5·7 ... 79

where 79 is the 21th prime number.

### BIBLIOGRAPHY

- [1] R. FRUCHT, Generadores de  $GF(p^2)$ , Rev. Soc. Mat. de Chile, 1, no. 1 (1974), pp. 4, 18.
- [2] R. GIUDICI H. LEON, Generadores especiales y asociados de  $GF(p^2)$ , Comunication presented to the IV Escuela de Algebra, Sao Paulo, Brasil (1976), pp. 1-20.
- [3] E. Jacobsthal, Über die darstellung der primzahlen der form 4n + 1 als summe zweier quadrate, J. Reine Angew. Math., 132 (1907), pp. 238, 245.

Manoscritto pervenuto in redazione il 5 aprile 1979.