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A Geometric Characterization of the Generators
in a Quadratic Extension of a Finite Field.

REINALDO E. Giupict - CLAUDIO MARGAGLIO (*)

SuMMARY - Let K'= GF(p*) be a quadratic extension of the Galois field
K = GF(p"), where p is an odd prime. In this article we deal with a
geometric characterization of the set of generators of the multiplicative
cyclic group of K’ in terms of a generator of the multiplicative cyclic
group of K. With this characterization the set of generators of (K')* =
= K'— {0} is just the intersection of two sets which are respectively the
union of sets of certain lines through the origin and « coniecs with primi-
tive norm ». As an application of the idea developed in this article we
prove that for some special primes, like Fermat’s primes, there exists a
generator of GF*(p?) with any one of its coordinates (3 0) preassigned.
It is also proved that the first component of a generator can be assigned
=1 for primes p such that p =1 (mod 4) and p < (3.5)-10%5. At the
same time we provide an alternative method for computing all of the
generators of the quadratic extension GF*(p2).

1. Introduction.

We consider a finite field, K, with ¢ = p" elements, p and odd prime.
If g is a generator of the multiplicative cyclic group K*= K — {0},

(*) Indirizzo degli AA.: Department of Mathematics, Universidad Simon
Bolivar - Caracas (Venezuela).
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we consider the quadratic extension K’ of K by X*—g, so that
(1.1) K'= {a + b0a,be K}, 02==g (0 fixed).

We denote by A the set of all generators of K* and by A’ the set
of all generators of the multiplicative cyeclic group (K')*= K'— {0}.

Since K* has ¢— 1 elements and (K')* has ¢>— 1 elements, A,
A’ will be, respectively, sets of p(¢—1), @(g*—1) = 2¢(¢—1)p(q + 1)
elements where ¢ represents the « Euler function ». '

It will also be useful to consider the norm homomorphism,

N: (K')*— K*
defined by
(1.2) N(a + b0) = (a + bO)+1 = a2— b2g,

which is onto and partitions (K')* into ¢ — 1 equivalence classes, each
containing ¢ + 1 elements of equal norm.

In particular, the norm of any generator A of (K')* is a generator
of K*. That is,

(1.3) N(A) = A= g*, with (s,¢—1)=1.

This may be very useful for finding generators of (K')* and in two
particular cases it is sufficient to determine them:

i) When ¢ = p = 2™—1 is a Mersenne prime, we have ¢q +
+ 1 = 2™ elements in (K')* with equal norm, and since there are
@(q— 1) generators in K*, we find 2»¢p(¢— 1) elements of (K')* whose
norm is a generator of K*, Among these elements we must find all
of the generators of (K')*. But since (K')* has 2¢(q + 1)p(¢g—1) =
= 2m@(q—1) generators, the elements whose norm is a generator
of K* are just all of the generators of (K')*.

ii) When ¢ = p" = 2p'—1 (p' and odd prime) there are ¢ -
+ 1 = 2p’ elements having norm a generator ¢’ of K*, but two of them
are of the form - b0, because in this case ¢ =1 (mod 4), and there-
fore — 1 is a square in K and there is an element b € K such that
gb2 = ¢'. Hence, the elements ¢ + b6 of (K')* having norm a generator
of K* and a 50 are just all of the generators of (K’)*. This criterion
is applied in several cases; for instance, if ¢ = 5,13, 25, ete,
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2. Geometric properties of /1'.

We identify the field K', defined in (1.1) with the cartesian product
K x K by associating the ordered pair (a, b) with a 4+ b0 and we think
of it as the affine plane A%*(K) over K.

In this plane, we consider two distinguished types of subsets:
i) «lines through the origin» and

ii) « conics of constant norm ».

If £ = a + b is any element of K’ (different from zero), we define
the line through the origin that contains & by

(2.1) L(§) = {(wa y) e AN K)|bx—ay = 0, (a, b) (0, 0)} ’

and if A is any non-zero element of K, we define the « conic of
norm h» to be

(2.2) C,= {(#, y) € A*(K)|#*— gy*= h, he K*} .
It is also convenient to define
(2.3) L*(¢) = L&) N (K')*.

It is easy to verify that every line L(£) contains exactly ¢ points and,
by again using the fact that the norm is a homomorfism of (K')*
onto K*, that every conic O, has exactly ¢ + 1 points.

Observe that whenever a conic C, contains a generator AeA’,
then the norm h is a generator of K*. In this case we call C, a « conic
of primitive norm ». On the other hand, a line through the origin
which contains a generator of (K')* will be called a « generator line ».

THEOREM 1. Every non-zero element of a generator line has order
of the form (¢2— 1)/d, with d an odd divisor of ¢ — 1, and for every
odd divisor d of ¢ — 1, there are exactly 2¢((¢— 1)/d) elements in
each generator line having order (¢2—1)/d.

PROOF: Let A be any generator of (K')*, L(1) the generator line
which contains A, and « any element of L*(1). Then « = hi, h e K*,
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and if g, = A«+! is the norm of 1, we may write
(2.4) h o= gF = Akerv

(25) o= h-A = Akern+1

with a convenient exponent ke [0, ¢g—2].

Then, the order of « in the cyclic group (K')* of order ¢ — 1 will be

¢°— 1 _ ¢ —1
(kg +1)+1,¢2—1) (2k+1,¢—1)’

O(a) =

because

(kg +1) +1,¢¢—1) = (k(g + 1) +1,4—1)) =
= (k(g—1) + 2k + 1,¢—1) = (2k + 1,¢—1).

In this way we have that every element of L*(1) has order of the form
(¢2—1)/d, where d = (2k + 1, ¢—1) is and odd divisor of ¢—1.

To count the number of elements of order (¢>— 1)/d contained
in L*(A), with fixed d, observe that we obtain all elements of L*(1)
by using the formula x = ¢¥-4, where k takes on all values in the in-
terval of integers [0, ¢ —2], or equivalently where 2k 4 1 takes on
all odd values in the interval of integers [1, 2¢ — 2]. Now, g*-1 will
have order (¢>—1)/d if and only if (2k+ 1,¢— 1) = d and this takes
place @((¢—1)/d) times when 2k 4 1 is in [1,¢—1] and the same
number of times when 2k + 1 is in [q, 2(¢ — 1)] because d, 2k + 1 are
odd numbers and ¢—1 is even, and if s € [q, 2(¢— 1)] then (s, ¢ — 1) =
=(s—(¢g—1),¢—1) and 1<s— (¢—1)<g—1.

Therefore, there are 2¢((¢—1)/d) numbers of the form 2% + 1 in
[1,2(¢—1)] such that (2k + 1,¢— 1) = d, and we conclude that
there are 2¢((¢—1)/d) elements of order (¢>—1)/d in our generator
line L*(2).

CoroLLARY 1.1. There are ¢(q 4 1) generator lines.

ProOOF. Let M be the number of generator lines. There are
2¢(qg—1)¢p(q + 1) generators of (K')* and each has order ¢>—1.

Therefore, by Th. 1, there are 2¢(¢— 1) generators in each gen-
erator line, and since (by definition of generator line) every generator
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belongs to some generator line, it follows that

(2.6) 2¢(q—1)p(q + 1) = M2¢p(g—1)
and therefore M = ¢(q + 1).

COROLLARY 1.2. An element ¢ e (K')* belongs to some generator
line if and only if it is order is of the form

2
(2.7) 0(8) :q—fd—l, d an odd divisor of ¢—1.

Moreover, if this holds, then

0¢)
(2.8) (1" O(N (&),

so that an element & of a generator line is a generator of (K')* if and
only if its norm is a generator of K*.

Proor. By Th. 1, every element of a generator line has order of
the form (¢®*— 1)/d, with d an odd divisor of ¢ — 1. We must there-
fore verify that all elements of such order belong to some generator line.

Observe that there are in (K')*, ¢((¢>— 1)/d) elements of order
(¢2—1)/d, with fixed d. Since both ¢ + 1, (¢— 1)/d are even, we

may write:
¢—1) _ g—1
w( a )—2¢(Q+1)¢( d )

and therefore, since @(q + 1) is the number of generator lines (cor. 1.1)
and 2¢((q — 1)/d) is the number of elements of order (¢>—1)/d in
each generator line, we see that generator lines contain all such elements.

Finally we have

o () _ 09
ONE) = 0™ = i (e =Djd) “q+1°

COoROLLARY 1.3. A conic of constant norm % intersects generator
lines if and only if % is not a square in K*. Moreover, if h is not a
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square in K* the conic of norm h intersects each generator line in
exactly two points that are elements of maximal order on the conie.
In particular, if the norm of the conic is a generator of K* then the
conic intersects every generator line in two points that are generators
of (K')*.

ProoF. By cor. 1.2 all elements of a generator line have norms
whose order is of the form

- —1
(2.9) d(qq +11) =1 a (d an odd divisor of ¢—1),

and therefore, for any element £ of a generator line, N(£) is not a
square in K*. The above argument indicates that no conic of square-
norm intersects generator lines. On the other hand, if a conic inter-
sects a generator line it intersects if in exactly two points (which are
opposite elements) and since there are (¢ — 1)/2 non-squares in K*
and every generator line has ¢— 1 points different from (0, 0), it
follows that all conics of non-square norm must intersect all gen-
erator lines.

Now, let 1 be a non-square of order (¢ — 1)/d in K*. Then every
element & of norm & has order which divides (¢ +1)O(h), since
Larnom — pom =1, and on the other hand, its intersections with a gen-
erator line are elements whose orders are (¢ + 1)O(h), by cor. 1.2,
which is the greatest possible.

CorOLLARY 1.4. The set of generators of (K')* is just the inter-
section of the union of all generator lines with the union of all conics
of primitive norm. In particular each conic of primitive norm contains
2¢(q + 1) generators and each generator line contains 2¢(q—1)
generators. .

ProoF. By using cor. 1.2 or 1.3, any element of a generator line
is a generator if and only if it has primitive norm and any element of
a conic of primitive norm is a generator if and only if it belongs to
some generator line. On the other hand every generator belongs to a
generator line and to a conic of primitive norm.

Cor. 2.1 permits us to determine all generator lines in the following
way: we take any non-square element h of K* and search among the
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elements of norm h for those that have maximal order (¢ + 1 times
the order of h).

For instance, if ¢ =3 (mod 4) we may take h = —1 and search
for all elements of norm — 1 having order 2(q 4 1); if ¢ =1 (mod 4),
and if ¢ —1 = 2tm (m odd) we may search for all elements of norm g~
(9 a generator of K*) having order 2*q 4 1).

Observe that the second case is the general one, since if ¢ =3
(mod 4) then ¢—1 = 2tm with ¢t =1 and g»= ge-vV2=__1.

In order to verify that an element A "of norm g~ has order
M = 2t(q + 1), it is sufficient to check that (A)™/r5£1 for all dif-
ferent odd prime factors p, of ¢ 4+ 1, since

(1)2“‘«”1) — (gm)z“’ =guDr=_1,

The only cases in which it is not necessary to verify orders of ele-
ments are those mencioned at the end of section 1, that is, the cases
when ¢ +1 =2 or ¢ +1 = 2p’ (p’ an odd prime).

3. An aplication to Giudici’s conjecture.

R. Giudici made the following conjecture with respect to the gen-
erators of (K')* = GF*(p?), p an odd prime:

«For each ac K* = GF*(p) there exists at least one Ae€A such
that 4 = a + b0 and for each b € GF*(p) there exists at least one gen-
erator of GF*(p?) of the form a -+ b ».

R. Frucht proved the validity of this conjecture for ¢ = 1 and p
a Fermat prime [1, thm. 6.1]. See also [2].

When p is a Fermat prime, one can also show that the number of
generators with fixed a or fixed b is ¢(p + 1). However, this is not
true for an arbitrary prime p. For instance, for p = 23 (not a Fermat
prime) we obtain

n(l) = n(2) = n(d) = n(7) = n(8) = n(9) = n(10) = 4
and
n(3) = n(4) = n(6) = n(11) = 3

where we denote by n(a) the number of generators of GF*(p2) with
given a.
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For the known Fermat primes we have

P 3 5 17 257 65537

p(p + 1) 2 2 6 84 19800

We next establish a sufficient condition which ¢ = p» may satisfy
in order to comply with Giudici’s conjecture in K'= GF(p2*).

THEOREM 2. If the number ¢ = p* satisfies the inequality

(3.1) tplg +1) + plg—1)>$(¢—1)

then it also satisfies Giudici’s conjecture in GF*(p2*).

Proor. It is evident that in each of the ¢(q 4 1) generator lines
there is exactly one element with first (or second) component assigned
Now, by Cor. 1.3, the norm of any non-zero element of a generator
line must be a non-quadratic residue in GF*(q).

Then, if for a first component a (or second b) there does not exist
€A’ such that 4 = a + b6 then the ¢(¢ + 1)/2 different norms of
the ¢(q + 1) elements with fixed a (or b) belonging to the generator
lines must be the elements of (K')* whose norm is neither a quadratic
residue in K* nor a generator of K*.

Therefore, the number of such norms plus the number of primitive
elements (generators) of K* is less than or equal to the number of ele-
ments that are not quadratic residues in K*; that is,

tplg +1) + plg—1)<}(g—1).

It can easily be verified that a Fermat prime satisfies condi-
tion (3.1). There are 18 prime numbers less than 1000 that do not
satisfy condition (3.1). '

The 8 prime numbers less than 500 that do not satisfy condition (3.1)
are: 139, 181, 211, 241, 331, 349, 379 and 421.

By direct verification, each of these satisfies Giudici’s conjecture.
Also primes of the form p = 2p’ 4+ 1, with p’ an odd prime satisfy
condition (3.1).

The following theorem gives a bound for primes of the form 4n -1
that satisfy Giudici’s conjecture when a = 1.
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THEOREM 3. For each prime p such that p =1 (mod 4) and
p < (3,5)-10% there exists AeA’ of the form A4 = 1 + b0.

PrOOF. There are p — 1 elements of the form 1 + b with b0
in @GF*(p>). Let A be the set of elements of the form 1 + b6 belonging
to some generator line, i.e.

(3.2) A={A=1+bb|Ae L*A)}.

Then, since the 2 and y axes (defined in an obvious way) are not
generator lines we have O(4) = ¢(p + 1).

Let ¥ be the number of generators g, of GF*(p) such that 1 —g, is
not a quadratic residue in GEF*(p). For each g, there are two b such
that 1— g, = ¢b?, that is, N(1 + b6) = g,.

Let

(3.3) B={1+b0|N(1 + bO)eA}.

Then O(B) = 2.

Following the argument of Jacobsthal 3, 239] we can prove that
on every line parallel to the y-axis (s y-axis) there are (p — 1)/2 ele-
ments whose norm is a quadratic non-residue and since the elements
of A and B lie between those elements we have O(4 U B)<(p — 1)/2.

Also, since

0(4 N B) = 0(4) + 0(B)— 0(4 U B)
we have
(3.4) 04N B>gp +1) +2p -2

Observe that the elements of A N B are generators of GF*(p®').

Now let ¥ denote the character sum

(3.5) V= zx(l_‘gi) ’

9i€4

where A is the set of generators of GF*(p) and y(1 — g;) denotes the
well known Legendre symbol ((1—g,)/p).

Let h be the number of g, such that y(1—g;) =1 and let k be
the number of g, with y(1—g¢,) =—1. We have

h—k =¥,
(3.6) {

h+k=gp-—1).
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Therefore,

CR I F=k=1(plp—1)—"¥).

Since p =1 (mod 4), 4(1) = x(—1), the inverse g¢;' of any gen-
erator is a generator too, and

V=3g1—g)=220—1)=—251—g)=—¥.

9.€4 91€4 9i€4

Thus, ¥ =0 and by (3.7) ¥ =k = }p(p—1).
Thus, in (3.6) we have

(3.8) 0(ANB)>p(p + 1) + ¢(p —3(p—1)

which represents a lower bound for the number of generators of the
form 1 4 b6 with p =1 (mod 4).
We now prove that for p =1 (mod 4) and p < (3.5)-10%5 we have

(3.9) pp +1) +olp—1)>3(p—1).

First of all, the only prime factor common to p +1 and p—1
is 2. Let us indicate by ¢,, ¢,, ..., ¢; the distinet prime factors of pz2 —1
that are different from 2 and by d,, d,, ..., d; the numbers d, = (¢,—1)/g; .
Now, conveniently enumerating the ¢,’s, we have

-1 1
(3.10) ¢(7__P___Tl = §d1d2 oo d, )
1 1
(3.11) (p;)pT—f—l) =§d3+lds+2 cos dt .

Since for Fermat primes we can verify directly the condition (3.1)
and the Mersenne primes 2" — 1 are not congruent to 1 (mod 4) we
can assume that both expressions (3.10) and (3.11) have at least one d,
oceurring as a factor.

t
Let d = [[d,. We will first prove that if d> } then
1

qv(p—l) +<p(p +1)
P— p+1 2'
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Let d = } + ¢, ¢>0, and consider the two products

U

[la:,

1

(4.13) )
vV =Tld.

s+1

Then, UV = d = } + ¢, where ¢> 0, and

plp—1)  op+1) 1
p_1+—p+1 =-(U+V).

Therefore we must prove that U 4+ V >1.
Since UV # } at least one of U and V will be # 3:
Let U= % + ¢, where ¢+ 0. Then

a U+d
U+V=U+g= ;

1 2
—._( + +c+ +e)
E— 2+ — +
U(U+c e) =1

Hence, d > %, and we can write now

ct+t e
U

113

>1.

2&@ )+¢@+ 0>4ﬂp )+Mp+ny:U+V>1

P 1 P p+1

which means

pp—1) + o +1)>3(p—

We now consider a prime number p, such that N = p?—1 has at
most 20 different odd prime factors ¢y, ¢z, ..., g5, $<20. Then

sqi—1 24 72 1
= >——...—=>0.2521>—.
]:] . >3 1320 521> 7
Therefore
1 — 1 1
d>_am1wP 1L+wp+-)>_

4 p—1 p+1 "2
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Finally observe that for any prime p which is less than (3.5)-10%,
N cannot have more than 20 different odd prime factors. Indeed,
one has p < (3.5)-10% implies

p<V835-7..79.
So that,

2 __
1’T1<3-5-7... 79

where 79 is the 21th prime number.
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