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Minkowski Asymptotic Spaces in General Relativity.

GAETANO ZAMPIERI (*)

SUMMARY - In this note a class of asymptotically Minkowskian space-times
is defined rigorously by means of certain conditions endowed with a direct
physical meaning. On the one hand these conditions are not too restric-
tive-for instance they do not limit us to particular cases such as the
stationary one-, on the other hand they are sufficiently strong to imply
the existence (of the right number) of asymptotic inertial spaces whose
proof is the main aim of this note.

1. Introduction.

In the classical gravitational theory we consider a system of mas-
ses confined to a bounded region of Euclidean space, such as, for

example, the solar system taken in isolation. However complicated
the distribution of masses may be, we can always say that the gra-
vitational force and the gravitational potential approach zero asymp-
totically. This concept of a physical gravitating system-often called
an insular system-is obviously noteworthy in any theory of gra-
vitation unless we are concerned with the cosmological universe.

In relativity the gravitational field is described by the Riemannian
geometry of space-time, and its absence, or rather negligibility, is

(*) Indirizzo dell’A.: Seminario Matematico, Università di Padova, via
Belzoni 7, 35100 Padova.

Lavoro eseguito nell’ambito dei gruppi di ricerca di Fisica Matematica
del C.N.R.
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expressed by the flatness of the Minkowski space. Thus we come to
assume that space-time is « asymptotically Minkowksian » ( 1 ).

The first aim of this note is to define this concept rigorously in the
sense of determining a class of space-times, to be called p-Minkowskian,
satisfying certain conditions endowed with a direct physical meaning.
On the one hand these conditions are not too restrictive (for instance
they do not limit us to particular cases such as the stationary one);
on the other hand they are sufficiently strong to imply the existence
of asymptotic inertial spacces that are in a one-to-one correspondence
with the inertial spaces of special relativity whose proof is the second
and main aim of this note.

Bressan pointed out that up to now one lacks any natural absolute
concept of event point in general relativity-see [7] and N. 9 in [2].
Moreover he showed that this concept would be available if something
like Fock’s conjecture on the existence of inertial spaces in general
relativity (in a suitable sense) were proved-see N. 10 in [2] and
N. 93 in [4].

Hopefully, among other things, this note will be useful in working
on the problem of inertial spaces and hence in determining the afore-
mentioned absolute concept.

***

In this note a space-time S4 is called ,u-Minkow°skian if certain
frames called 03BC-Minkowskian exist in it-Def 5.1. In Def 5.1 the

aforementioned classical behaviour of the gravitational potential and
of the gravitational force is « translated » in terms of suitable prop-
erties of the components of the metric tensor and the Christoffel

symbols. In addition, each p-Minkowskian frame satisfies a condition
related to the 4-velocity field associated to it subclause (i’ ) in Def 5.1.
This property assures the boundedness of certain fields which are to
be considered; it is defined in N. 3 where its main implications, used
later repeatetly, are developed (2).

(1) Incidentally we might point out that the aforementioned boundedness
of the region occupied by the gravitational sources in the classical theory
cannot be translated into a corresponding property in general relativity where
electromagnetic radiation is also a source of gravity.

(2) This property is relative to a suitable region of space-time. In N. 3

we consider it with respect to an arbitrary region.
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In N. 8 asymptotic Minkowski spaces, asymptotic Minkowski
frames, and asymptotic inertial spaces are introduced; and these

spaces are proved to be oo3-Theor 8.2. Let us give more detail about
this conclusion. Consider a space-time which admits a class of frames
such that if (x) and (x’ ) belong to it, then along every asymptotic
geodesic in the sense of (h) in N. 4-the limits of the components,
in both frames, of the metric tensor coincide with the diagonal matrix
(-1, 1, 1,1), and the limit of the field is a Lorentz matrix.
Therefore we can say that (x) and (x’ ) are asymptotically equivalent
if approaches the identity matrix in the limit along every
asymptotic geodesic, and we can call the equivalence classes of this
relation asymptotic Minkowski frames. Consequently the asymptotic
inertial spaces are picked out.

Using our (u-Minkowskian) conditions, the limit of is
not only a Lorentz matrix but it is also independent of the asymptotic
geodesic on which it is calculated. This result-Theor. 7.3-makes
it possible to think of asymptotic mutual velocities of the ideal fluids IF
and ~’’ to which (x) and (x’) are joined respectively. In fact, in our
case, the limits of the components in (x) of the 4-velocity of ~’ rela-
tive to F exist and are independent of the particular asymptotic
geodesic on which they are calculated Remark in N. 8.

If the thesis of Theor 7.3 were not valid, the existence of a single
asymptotic velocity would not be guaranteed and the number of

asymptotic inertial spaces would be much greater than 003 (and there-
fore they could not be called in this way).

Lastly we observe that in N. 2 several concepts, well known from
the literature on relativity-see e.g. [3]-, , are referred to, and in [6]
the validity of our hypothesis in the case of the Schwarzschild universe
is verified.

2. Preliminaries on space-time.

Let the functions xa = xa(~), with a E {0, 1, 2, 31 (3), define the co-
ordinate system (x) in the space-time S4 whose arbitrary point-or
event-is denoted by e.

is well known, S4 is a Riemannian manifold of four dimensions

(3) Latin [Greek] indices range from 1 [0] to 3, and Einstein’s conven-
tion on dummy indices is used.
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whose metric tensor g~~ is pointwise reducible to the diagonal matrix
(-1, 1, 1,1 ) called the Minkowski matrix.
We denote the scalar product of the vectors v and m, defined

at e9 by (v .w)(8), and the norm of v by ~~ - (V- - v).
For the infinitesimal vector dx, we set ds --- (e dx - where e,

the indicator, equals -1 for dx time-like and 1 for dx space-like.
It can be easily shown that

LEMMA. The scalar product of two time-like future-oriented unit
vectors is less than or equal to -1.

We shall consider a congruence of o03 regular time-like lines as
the motion of an ideal f luid ~ .

We say that the coordinate system (x) is joined to the ideal fluid !F if

(i) the coordinate lines x° = var. ~ of (x) coincide with the world
lines for the elements of W;

(ii) the variable x° increases toward the future along every co-
ordinate line x° = var.;

(iii) the coordinate lines xi = var., with i E {1, 2, 3} (3), are

space-like.

We say that a coordinate system is physically admissible if it is

joined to an ideal fluid.
We assume that it is possible to define in S, a single system of

physically admissible coordinates onto R4, and we call such systems
f rames (of reference).

It is well known that the physical admissibility of (x) is equivalent
to the validity of the inequalities

where w2, and w3 are any three numbers, not all zero.
Two frames (x) and (x’) are joined to the same ideal fluid ~ if

they are related by a transformation of the form

called an internal trans f ormation.
The ideal fluid W is considered to be uniquely determined by the

congruence above and hence by the field of the unit vectors y tan-
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gent to the world-lines for its elements and pointing into the future.
If the frame (x) is joined to IF

Given the ideal fluid -5F, for each vector v we set

where is called the temporal [spatial] projection o f v. The norm

of is called the temporal [spatial] norm o f v, and is denoted by
Obviously

Furthermore we set

Let c be the speed of light in vacuo. If dx is future-oriented and

tangent to the world-line of a moving point, then dxldt, where
is called its relative 4-velocity, and the spatial pro-

jection of dx/dT is called its relative standard velocity. Obviously
v = /dx/dT/J..Y is called the relative standacrd speed of the moving point
(and it equals c along a null world-line). Along a time-like world-line

We shall denote

(i) the Christoffel symbols of the second kind by

(ii) the components of the Minkowski matrix (-1, 1, 1, 1) by
(= 

(iii) a regular geodesic joining the events Co and C1 by E1]
(or briefly by 1); and, if is oriented, E0 is its origin.
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3. Ideal fluids with bounded intrinsic speed-oscillation in a space-time
region.

Consider the ideal fiuid ~’ in the space-time 54, y and the field of
unit vectors y tangent to the world-lines for the elements of ~ and
pointing into the future.

For any given space-like geodesic l[~o, let U8o(CI) [u~l(~‘’o)]
represent the vector obtained in by parallel transport of y(Co)

along l[80, 81], By well known properties of parallel transport
U8o(GI) and ue,(eo) are time-like future-oriented unit vector, and

By the Lemma in N. 2

DEFINITION 3.1. - For the ideal f luid ~’ and the space-like geodesic
l[o%, consider

We call v(l ) the intrinsic difference, along 1 (4), of the speeds of ~ in
and tff1.

By (3.2) 0 c v (l )  c. Moreover we see at once that v (1) is the

standard speed-see N. 2-of the ideal fluid ~, at one of the two

endpoints of l, relative to the observer represented there by the unit
vector obtained there by parallel transport (along 1) of the value taken
by y at the other endpoint.

DEFINITION 3.2. In connection with the ideal f l.uid ~ and the region 5)
of S4, consider

where L(D) is the set of the space-like regular geodesics contained by D

(4) This is not necessarily the only geodesic joining 80 and ~1.
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and having endpoints. W e call d v ( ~ ) the intrinsic speed-oscillation of
~ in Ð.

DEFINITION 3.3. We say that the ideal fluid ~ has a bounded intrinsic
speed-oscillation in 0-briefly is D-BISO-if there exists a constant, V,
with 0  V  c, such that

Let r== [1- V2jc2]-I. From (3.3) and (3.4) it follows that (3.5)
is equivalent to

THEOREM 3.1. Let the ideal fluid 9i’ be D-BISO in that (3.6 ) holds.
Then for any space-like geodesic I in ~, not necessarily bounded, but
having an origin, Co, and for any vector field v undergoing parallel
transport along l

PROOF. Consider the space-like geodesic I c Ð. Let Co be its origin,
and let v be a vector field transported by parallelism along it. More-
over let ff denote the arbitrary point of 1.

Case 1. v is parallel to y at 80, i.e. u(~o) _ - 
Let u(C) be the unit vector obtained by parallel transport of 
along Z. Then v(J) - - (v.. u(,g), which yields (3.7) by (3.6).

Case 2. ~v(~o) ~1Y ~ U. Let and

let c(4ff) be the unit vector obtained from it by parallel transport
along Z. Then

Let ~C(a~~a=~,1,2,3 ~ with co&#x3E; = u and c~l~ --- c, be an orthonormal tetrad
at With respect to it -1 = y’ y = ma~[y ’ c(a&#x3E;~ [Y ’ ca,]. Therefore

which, together with (3 .8 ) yields +
-I- By’ the last inequality and by (3.6), the theorem
is proved. q.e.d.

If v is a time-like or null (3 . 7 ) yields
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In the following we are also concerned with the case where v is
a space-like unit vector. For such vectors (3.7) leads to

LEMMA 3.2 . If a is ac time-like unit vector and b~ i~ i = 1, 2-are
non-space-like vectors (all defined at then

1 1

PROOF. Decomposing b(1) into the where b(i)
is orthogonal to a, we have

1 1

If we prove that Ib(1) b(2)1 [ c [bcl, ’ oallb(2) oal, , from (3.10 ) we have the
proof by increasing the modulus of the sum to the sum of the moduli.

In the subspace orthogonal to the time-like vector a, the Cauchy-
.1.1 1 1

Schwarz inequality holds. Therefore Ib(1) . [ ~ Ilb(2) I, which, together
with the hypothesis 11 b(i) II  0, gives the proof. q.e.d.

In the following theorems y[ y’&#x3E;] is the field of future-oriented unit
vectors tangent to the world-lines for the elements of the ideal
fiuid ~"[~’’].

THEOREM 3.3. I f W is D-BISO, a sufficient condition for ~’’ to

be D-BISO is that the standard speed of the two ideal fluids with respect
to one another, be bounded in 0 by a ’constant less than c.

PROOF. By hypothesis and by (2..5), for some constant 

Let us consider Def. 3.2. By Theor 3.1
which holds for the D-BISO fluid (3.7’), and by (3.11)

where u~o is the unit vector obtained by parallel transport of 
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along l. By Lemma 3.2, (3.11), and the preceding inequality

Setting 1" = 2.1~’1~2, we have

In N. 7 we shall need the following theorem which involves two
regions A and 9) satisfying

CONDITION 3.1. For some compact subset 9, of A, c- A is

joined to (at least one) i E 9, by the space-like geodesic 1[,F, C] contained
by 0. Furthermore A c Ð.

THEOREM 3.4. Let IF and be ideal 9)-BISO fluids, and let A
and 0 satisfy the condition above. Then the standard speed of the two
fluids with respect to one another is bounded in A by a constant less than c.

PROOF. Formulae (3.6 ) and (3.6’ ) in the proof of Theor 3.3-hold
by hypothesis. Let 93 be a compact subset of A with respect to which
Condition 3.1 holds for A and 0. Then, since y. y~’~ is continuous, for
some constant Ki

By Condition 3.1, each J is joined to some E E B by some space-
like geodesic l. By Theor 3.1, formula (3.7) in W holds for ~’. Hence,
by the instance (3.7’ ) of this-with respect to W’ and where h is sub-
stituted by the constant r’ in (3.6’)-and by (3.12)

Finally, by Lemma 3.2, (3.6) and the preceding inequality

where -K is independent Therefore (2.5), with y() = dx/ds,
yields the thesis, q.e.d.
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4. Preliminaries for p-Minkowskian space-time.

The following assumptions and conventions will be in force.

(a) Any two (distinct) events Co and C1 in space-time S4 are
joined by at least one geodesic l[Co, 

(b) Given a frame, (x), and a real number, a, we denote the

hypersurface x° = a by (and in connection with (x’) we use ~’(a)).
THEOREM 4.1. Any two events of are joined by a space-like

geodesic.

PROOF. Consider a geodesic joining them (which exists by assump-
tion (a)). Along it 0 where À is a special parameter.
By the continuity of at some event on this geodesic 0.

Therefore II » 0 at such event-see (2.1 ). Hence by a well
known theorem the same holds at any event on the geodesic. q.e.d.

(c) We say that the region % of S4 is spatially- bounded, if

for every choice of the frame (x) and the real numbers and b, with
cc ~ b, the set (J e 91: E [a, b]l is bounded (5). Obviously the union
of two spatially-bounded regions is spatially-bounded.

(d) Let us consider some time-like regular lines unbounded in
both senses. If their union i0 is spatially-bounded, we call it a world-
bundle. Obviously the union of two world-bundles is a world-bundle

An example of a world-bundle is the set of events of the coordinate
lines of a frame (x), which satisfy the following inequality

In fact, given the frame (x’ ) arbitrarily, y the equalities 0153"o == 

and x"i = xi, define a frame, (x"). For the events which satisfy (4.1)
and are such that b], c 1 + a2-P b2. q.e.d.

(e) Any space-like geodesic I of the form ~~~(s) : 0 c s  where
s is the arc parameter, will be called a space-like semigeodesic (with

(5) I.e. its image under some frame-which is onto R4-is bounded. Then
this holds with respect to any frame.

(6) We shall often denote by r.
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origin &#x26;(0)). If we have fixed the above line 1, we say that the event C2
follows C1 on l-briefly E1 l C2 or off,  tff2-if for some s, and s2 r
with 0 ~ sl C s2, and ~2 = C(S2)’

( f ) The space-like semigeodesic 1, is called an asymptotic semi-
geodesic-briefly AS-if (i) for every spatially-bounded region U, and
for some point Jo of 1, and (ii)
there exists such that if then ~2 and Ca are not
in causal relation, i.e. they are not joinable ~ by a future-oriented line
consisting of n,i regular time-like arcs and ~2 regular null arcs, where n1
or n2 may vanish.

(g) We assume that S4 admits some asymptotic semigeodesics.

( h ) We say that two AS are asymptotically equivalent if one of
them contains the other. This relation is an equivalence and we call
its equivalence classes asymptotic geodesics-briefly AG. The arbitrary
AG will be denoted by t~ .

(i) If f is a field defined on the AS 1, and if lim f(s) along it
s-+oo

exists, this remains unchanged if we substitute for the above AS,
another asymptotically equivalent to it. Therefore it makes sense to

use for this limit the notation 1. - lim f, where 
We say that a tensor field is defined on the AG l , if it is defined

on some AS I belonging to loo.

(j) Given the frame (x) and the events &#x26;0 and E1, the line T[E0,
joining them and having in (x) the equations

will be called a coordinate segment-of the frame (x).
We say that the coordinate segment is spatial (that is

not the same as space-like) if 80 and are joined by a space-like
geodesic.

REMARK One might think that every space-like semigeodesic is

asymptotic, and that any two distinct events of a space-like geodesic
are not in casual relation. To give an idea of how in the presence of
a « ’very strong » curvature this is not necessarily true, we consider
the Schwarzschild universe and assume that the external metric is

defined for values of the radial coordinate less than 3m (where 2m
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is the value for which the external metric becomes singular). Then

there exist circular orbits for photons-see e.g. in [1] p. 674.
We introduce now some notations and properties useful in N. 6.

(k) Consider the world-bundle the frame (r), and the real
number a. For each E E ’U) such that c a], consider
the set of all events 8’ belonging to the coordinate line x° = var.
through 6, with We denote the union
of all the sets above andu itself by (x ), (x ), a~ ] and
we set (r), al = (r), al U (r), a}.

LEMMA 4.2. Consider the world-bundle ‘1,U, the f rames (x) and (x’ ),
and the real numbers a and a’. The set

is bounded.

PROOF. W r’1 Z’(a’)-see (b ) is bounded because ‘LU is spatially-
bounded. Therefore we can consider b = sup tf E ’ill r1 

By definition-see (d)-, , each J E i0, with c a’, belongs to a
regular time-like line in i0 that is unbounded in both senses. If the
intersection of this line with E’(a’) would be empty, i0 could not be
spatially-bounded; moreover the intersection above is a single event,
C (the proof is similar to the one of Theor 4.1). Thus

for each E E i0 with x’0(E) a’ ,

because, along the line above, x° is a (strictly) increasing function of x’°
(which can be assumed as a parameter because the line is regular and
time-like). By (4.2) (J e i0 : 0153’O( 8) c a’~ ~ (J e i0 : x°(~) ~ b~, hence

If b  a then Ja,a’ is

empty; otherwise i0 : E [a, bjl, hence our thesis holds
because i0 is spatially-bounded.

THEOREM 4.3. The a f orementioned region (x), al is spatially
bounded.

PROOF. We shall prove that 8+{’UJ, (x), al is spatially-bounded.
The analogue for 8-{’ill, (x), thus the thesis-has a similar

proof. Let us fix the frame (x’) and the real numbers b’ and d’ with
b’ ~ d’, arbitrarily. We must prove that 9 == {8 E ~+ ~ ‘1,U, (x), a~ :
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x’0(E)E[b’, d’]l is bounded. H={EE i0: x’0(E)E[b’, d’]}(CG) is bo-

unded because i0 is spatially-bounded. If E E 19 - Je, by the defini-
tion of 8+{’UJ, (x), al, there exists i c- W such that

and

(4.4)

Moreover

(4.5)

because x’O is an increasing function of x° along every line x° == var.

By (4.4), (4.5), and Lemma 4.2, the set 3 _ E ~ - R) is bounded.
Hence we can consider

where we have used (4.3). In the frame (x"), defined by ~"° = x’°(xa)
and x"i = xi,  ro + b’2 + d’2 for each C c- 9 - JC. q.e.d.

5. ,u-Minkowskian frames.

Let us consider a frame that satisfies the following (weak)

CONDITION any choice of the spatially -bounded region cu’1
[the world-boundle ‘LU1] see (e) and (d) in N. 4-, there exists another, 
[’ill2], 2uith c ~ ’ill2], and such that

(i) if a spatial coordinate segment (of the considered f rame) see
( j ) in N. 4 - is contained by then every space-like geodesic with
the same endpoints is a subset o f 

(ii ) if a space-like geodesic is contained by then the spatial
coordinate segment with the same endpoints is a subset o f 

DEFINITION 5.1. I f ,u &#x3E; 0, we say that the f rame (x), satis f ying the
condition above, is 03BC-Minkowskian-briefly Iz-Mink.-if

(i) for some world-bundle ’ill 0

(i’) the ideal fluid to which (x) is joined is Wc0-BISO-see Def. 3.3-,
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(i" ) there exists the positive function f(x), continuous in such
that along any space-like geodesic with ori 9 in off and belonging to 

where s is the arc pacrameter;

(ii) for every choice of the positive number 8, there ex2sts the world-
bundle ‘1.U1, such that

Let (x) be a It-Mink. frame. By (ii) of Def 5.1 we can consider the
world-bundle i0 such that for any e E 

(i) the matrices (gij)(8) and (gii)(8) have eigenvalues (8) larger
than a positive number independent of 8; .

(ii) - goo(8) and - gOO(8) (8) are larger than a positive number
independent of ~;

(iii) all and are less than a number independ-
ent of e.

Furthermore let be a world-bundle with respect to which the
clause (i) in Def 5.1 holds. All the properties above hold also with
respect to any world-bundle containing the world-bundle i0oW i0.

DEFINITION 5.2. We say that the world-bundle ‘1U covers the irre-

gularities (if any) o f the p-Mink. f rame (x) ; if for it

(ii) the preceding clauses (i) to (iii) hold, and

(ii) the clause (i) in Def 5.1 holds with ‘1,U° = ‘1,U.

In the sequel we shall consider only It-Mink. space-times according
to the following

DEFINITION 5.3. We say that S4 is admits
some f rames.

(1) Remember that is the Minkowski matrix, i.e. the diagonal ma-
trix (- 1, 1, 1, 1).

(8) They are positive by the physical admissibility of the frame-see (2.1)
which imply similar inequalities involving the gafl.
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REMARK. Condition (i) in Def 5.1 is given in the complement of a
suitable world-bundle and not in the whole of space-time, because we
wish not to exclude phenomena related to a « very strong » curvature
of 54-see Remark in N. 4. Such a curvature may be caused by e.g.
the presence of « very dense » matter. On the other hand, the assump-
tion that such « exceptional » phenomena take place (if at all) inside
a world-bundle is consistent with the Minkowskian asymptotic behav-
iour of the «gravitational potentials ~&#x3E;, i.e. with (5.1) and (~.2 ). For

this to occur, in fact, we must exclude e.g. the existence of « very dense »

matter outside arbitrarily large spatially-bounded regions.
We note also that we have not excluded the possibility that «very

dense » masses move away from one another indefinitely. In fact,
even in this case, we can find a (suitably large) world-bundle that
contains the world-tubes of these masses and outside of which the
curvature is suitably small even using a world-bundle of the type
which, in a suitable frame, satisfies (4.1); in fact such a frame is not
necessarily (said to be) 03BC-Minkowskian and its behaviour can be very
different from the one of a rigid frame.

Lastly we note that we have not required that outside a suitable
region the Ricci tensor should vanish (9) (field equations in vacuo);
i.e. we have not excluded sources of gravitational field in the whole
of space-such as e.g. electromagnetic radiation.

6. Asymptotic geodesics in a ,u-Min.kowskian space-time.

THEOREM 6.1. If (x) is a p-Mink. and is an asymptotic
geodesic-see (h) and (i) in N. 4-, then

The proof immediately follows from (ii) in Def. 5.].

THEOREM 6.2. Assume that (x) is a It-Mink. frame, is an asy,mpto-
tic geodesic, and v is a vector field undergoing parallel transport along Z~ .
Then the limit 1,,,-Iimvx exists (finite).

PROOF. Let us consider a world-bundle, i0, that covers (x)’s irre-
gularities-see Def. 5.2-, and an asymptotic semigeodesic-see ( f ) in

(9) A condition of this type is required in the definition of « asympto-
tically empty and simple space in [5], p. 222.



346

N. 4 , contained by Furthermore let v be transported
by parallelism along Z. Firstly let us prove that all s

is the arc parameter along I-are bounded. By definition the ideal
fluid to which (x) is joined is Wc-BISO, so that by Theor. 3.1

where y is tangent to the world-lines for the elements of the ideal fluid,
and T is a suitable constant-see (3.6) with D = ’We. By this, (2.2),
and (i) in Def. 5.2.

In (6.2) and in the sequel we take as understood that 2, 3, ...
are suitable constants, and s E [0, + oo[. Remembering that goo is

bounded in ’We, and that Ilv(s) II is constant, (6.2) yields .

If we denote the smallest eigenvalue of the matrix by e
by (i) in Def 5.2 we have

Furthermore, by (6.2) and the boundedness of gOi in we

Now, let us suppose that some vi (s ) be unbounded. Then we can
consider the sequence ~sn~n-1, ,., such that for each
value of n. Therefore by (6.6) = 1, 2, ... ,
which is absurd. Then remembering also (6.2), we have
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From this and from the boundedness of all in we have that

all va(s) are bounded. By this result, that holds in particular for the
unit tangent vector, the condition

for parallel transport, and (~.1 ) see Def 5.2-

which is sufficient condition for the existence of our limit. q.e.d.

In particular the preceding theorem holds for the unit tangent
vector X. In this case we denote the aforementioned limit by ~4~ .
By Theor 6.1

In Lemma 6.3 below and in Theor 7.3 we consider an asymptotic
semigeodesic 1. Then we denote its arbitrary point by P and its origin
by Po . Furthermore in connection with the frame (x) we denote by Z
the arbitrary point of the line given by

(that is the «image» of 1 on the hypersurface 0153O== 

LEMMA 6.3. Assume that (x) is f rame, loo is an asymptotic
geodesic, the world-bundle ‘1,U covers (x)’s irregularities-see Def 5.2-,
and XO is unbounded on some asymptotic semigeodesic (AS) o f loo. Then
there exist an AS 1 E a positive constant K, and a sequence 
f ormed with points on 1 that satisfy

-where s is the arc parameter on 1-

and the following condition.
For every f ixed Pn, if Qn is the arbitrary point of the coordinate

segment-see (j) in N. Pn]-cf. (6.10)-, then

(i) the geodesic l[Po, Qn] (where Po is the origin of 1) belongs to ‘1U~
and is space-like, and
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(ii) denoting the length of l[Po, Qn] by s(Qn)

PROOF. If we denote by 2,x the components in (x) of the unit vector
tangent to 1"., then by Theors 6.1-2 (6.9) holds. Hence easy conti-

nuity considerations show that for some positive 8

We can choose satisfying

Furthermore let ‘LU1 be a world-bundle containing i0 and such that
(5.2) holds with respect to the aforementioned 8. Since the frame (x)
is ,u-lVlink., there is ‘LU2, with ’1111, such that the clause (i) in Con-
dition 5.1 holds with respect to ‘LU1 and ‘1U2 .

Now let us consider the (k) in N. 4

where a is the value of xj at the origin of 1,. We denote it by U1
because, by Theor 4.3, it is spatially-bounded. For’lLl and for some ~2
containing it, the clause (ii) in Condition 5.1 holds.

Let 12 E 100 be such that 1, C 11 and 12 ç U’ 2-

CASE 1. For some = a. In this case let us denote

by I the AS of Zoo with origin Po (I ç l2 ç 11), Let P denote its arbitrary
point, and let I[P,,, P] be its arc joining Po and P. By our choice
of the inclusion l[Po, P] C 12 ç yields

For every fixed P E l, let us consider the arbitrary point Q on
P] where Z(P) satisfies (6.10 )..As an hypothesis for reduction

ad absurdum, let there be Then, since

by the definition of such regions, the inter-
section of the coordinate line var. through off with P]
would belong to This contrasts to (6.15). Therefore Q] c
C Moreover every geodesic l[Po, Q]-obviously with Q = P0-
is space-like (in fact, by the contrary assumption, we could join the
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distinct points Po and P by the future-orientable line consisting of
the non-space-like geodesic Q] and the time-like segment T[Q, P]
and hence Po and P would be in causal relation against clause (ii)
in N. 4, ( f ) ) . Then, by our choice of ’ID2,

CASE 2. The assumption of Case 1 does not hold: i.e. a

for every E e l2’ We denote l2 by I, its origin by Po and its arbitrary
point by P. By hypothesis, x0 is unbounded on 1. Then we can con-
sider a sequence of points on l, satisfying (6.11) and either

By this, and by reasonings similar to those of Case 1, we prove that
for every Pn

By (6.16) also in Case 1 we can choose a sequence, I satis-

fying (6.11) and (6.17).
Now let us fix (arbitrarily) the space-like geodesic l[Po, Our

theorem is completely proved if we show that thesis (ii) holds for it.
By our choice of ‘1.U1, the inclusion l[Po, (6.17)

yields

Now, let us suppose that 0 along l[Po, and let Z3
denote I[P,,, Qn] oriented in the increasing sense of x°. Then (6.18)
yields
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at every point on 1,. Thus

where we have set

If we multiply each term of the inequality above by , and

we use

which follows from the Cauchy-Schwarz inequality, y we have

v.

Let t be the unit vector tangent to l[Po, By definition, xi(Qn) - =
Then

where E is a suitable point of l[Po, By (6.14)-with a = 1, 2, 3r--
and the inclusion we have

By (6.20) and (6.14)-with a = 0-the preceding inequality yields

By (6.13), the term on the right hand side of the above inequality is
positive. Therefore for some positive constant Kl independent of the
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particular I[P,, Qn] which we consider

(at the suitable point on 

We have deduced (6.21 ) in the case where along but

obviously it holds also in the opposite case.
In the sequel we take as understood that .Ki 2 = 2, 3, ... are

suitable positive constants independent of the particular I[Po , 
Since (6.17)-, and ‘1,U covers (x)’s irregularities,

the result in (6.21) yields

at 0-cf. (6.3) to (6.6). By this Then 

- The ideal fluid to which (x) is joined is

Wc-BISO-see (ii) in Def 5.2. Furthermore l[Po, Hence by
Theor 3.1, formula (3.7) holds. By the instance (3.7)" of this 
at every point on l[Po, Qn]. By this and (i) in Def 5.2, |t0| 
 ’y7(- Thence we prove in the usual way that

Let us observe now that by (6.13) the term on the right hand side
in (6.20) is positive. Moreover it is independent of Z[Po, Qn]. Then

by (6.20) and (6.22) we have

where s(Qn) is the length of l[Po, Qn] and (6.19) is used. Lastly if we
set K - KlO/ý3K9 we have (6.12). q.e.d. 

7. Existence of the asymptotic Lorentz matrix joined to an ordered
couple of It-Minkowskian frames.

In this number we consider some properties involving two ,u-Mink.
frames (x) and (x’ ) . We always assume that is the ideal fluid
to which the frame (x)[(x’)] is joined, and y[y~’~] is the field of unit
vectors tangent to the world-lines of the elements of ~"[~’’], and
pointing into the future.
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LEMMA 7.1. Let (x) and (x’ ) be p-Mink, frames, let the world-bundle
’ill cover their irregularities (1°)-see Def 5.2-, and let Condition 3.1
on 9 ‘~) hold with 0 = Then all the f unctions 
are bounded in A.

PROOF. At any event ff E A let us consider an orthonormal tetrad,
~cc~ya=o, ..., 3 ~ 9 with c(o) = y(’). Let us prove, firstly, that the compo-
nents, in (x‘), of each are bounded in A. By (2.2) c~o,= 80(- 
and c~°~a = Then, by (i) in Def 5.2 and the inclusion
A C 1D6 (= ~), they are bounded in A. Let us consider now the space-
like vectors C(i)’ Since they are orthogonal to y() (= we have

where e’ is the smallest eigenvalue of the matrix ( g’ i ~ ) . Therefore,
by (i) in Def 5.2, all the functions are bounded in A, and such
are also all c~ ~ = Thus the boundedness of has been proved.

Now let us write the components of y in (x’ ) in the forms

By them

In this expression are bounded in A, and such is also (- 
By hypothesis the ideal fluids W and W’ are Wc-BISO-see clause (ii)
in Def. 5.2-, and Condition 3.1 on 0 and A holds with D = W.
Then, by Theor 3.4, the function ly’y(’)1 _ ~ bounded in A.
But from the equalities have

; then the functions are all bounded in ~.
We have thus proved the boundedness of the term on the right hand
side in ( 7.1 ), i.e. the thesis for 

Let us consider now the expression

(lo) Remember that the union of two world-bundles is a world-bundle.
Moreover if a world-bundle covers the irregularities of a frame, then any
world-bundle containing it has the same property. Therefore it makes sense
to consider ‘1,U covering the irregularities of both frames.
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The first term on the right hand side and g’aa are bounded in A. Then
for some positive constant and for each a E ~0,1, 2, 3}

By this we easily prove that are bounded in A-see the reason-

ings in Theor 6.2 from (6.3) to (6.7), where we had the function 99
instead of each Va. q.e.d.

In the sequel we shall often denote by x the event with coordinates
in the frame (x).
For any function f (x) on 54 let [a, b]-lim f (x) express the limit of f (x)

when x = xi) approaches 00 fulfilling the condition a  x~  b.

LEMMA 7.2. If (x) and (x’ ) are f rames, and a and b ( ~ a)
are real numbers, then the limit

is a matrix independent of a and b.

PROOF. We shall prove that

where and ro are suitable positive constants. By (7.3) it is easy
to prove that

(i) lim along each coordinate line r = var.-I.e, a
x-+oo

line having the equations xa = Aar with 0  r  oo and the constants
Aa 1 and A° = 0-exists (finite); and

(ii) lim wp = 0, where wp is the oscillation of on
r-*-

{x:x0E[a, b] and r = const.}.
The existence of the limit in (7.2) follows immediately from these

results. Moreover its uniqueness i.e. its independence of a and b
is trivial. Therefore let us prove (7.3). To this extent we can use
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the well known formula

Let us consider a world-bundle, ’ill1, covering the irregularities of
both our frames-see fnt. (10). Since (x) is ,u-Mink., for Wi and for
some containing it, the clause (i) of Condition 5.1 holds (with
respect to (x) ) . By definition ’ill2 is spatially-bounded-see (c) and (d)
in N. 4. Therefore we can consider a positive constant, ro , such that

the region is contained by i0§. Let

93 E = rol. For each EEA let E be the event of the com-
pact % belonging to the coordinate segment-see (~) in N. 4- joining
and the event having the coordinates 0, 0, 0, in (x). The seg-
ment above is spatial-in fact, by Theor 4.1, its endpoints are joined
by a space-like geodesic-and is contained by Then, by our
choice of ’ill2, there exists a space-like geodesic, ~], contained by 
Condition 3.1 is thus satisfied i0§ and its subset ~. Therefore,
by the preceding Lemma, all are bounded in A. If we prove
that for some positive constant .K2, 7 at each x in 

then from (7.4) and from the boundedness .of we have (7.3).
Let t be the unit vector tangent to el. By continuity there

exists an event of ~], where 0-see the proof of Theor 4.1.
By this-see the proof of Lemma 6.3 from (6.21) to (6.22)-for some
constant Ka, independent of the particular 1[,g, being considered,
Ita at every point on C]. This yields

wheres is the length of and r = 

The geodesic lei, J] is contained by Then by clause (ii) in
Def 5.2, for some positive continuous functions and f ~x,~ on i0§,
condition (5.1) in (x) holds for (x) and (x’ ) respectively. The afore-
mentioned functions are bounded in 93 because it is compact, thus
(5.1) and (7.6) imply (7.5). q.e.d.
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THEOREM 7.3. If (x) and (~’ ) are frame8, and is an

as ymptotic geodesic, then the limit

exists, and is a Lorentz matrix independent of the choice of Zoo’

PROOF. Assume that the world-bundle i0 covers the irregularities
of both our frames-see fnt (10 ) 1 is an asymptotic semigeodesic of 1,,,,
contained by ’We (remember that this choice is possible because i0 is
spatially-bounded).

Condition 3.1 holds with D=Wc and A = Z (the compact set B
mentioned in Condition 3.1 can consist of the origin of 1). Therefore,
by Lemma 7.1, is bounded in l. Moreover, by Theor 6.2, such
is also dx03B1/ds-where s is the arc parameter on 1. Thus, by (7.4) and (5.1),
we have along I

where .M~1 is a suitable constant. This proves the existence of the limit
in ( 7 . 7 ) . Furthermore, since -

by Theor 6.1, our limit is a Lorentz matrix.
Let us prove now the uniqueness of our limit, i.e. its independence

of To this extent it is sufficient to prove that it equals the matrix,
(N’), given by Lemma 7.2. By this lemma and the limit (along l)
lim r(s) = + oo-that follows from Theors 6.1-2 , our result is ob-
s+oo

vious if x° is bounded on 1. Therefore let us consider the opposite case.
In it, by Lemma 6.3, we can assume that 1, and some sequence 
formed with points on it, satisfy the conditions of this lemma. Now
let us observe that we prove the theorem if we show that our limit

equals lim where Z(P) is given by (6.10). In fact, by
s-+oo

Lemma 7.2 and lim r(s) - + oo along 1, the latter coincides with (Np).
s-+oo

If Po is the origin of 1, then by Lemma 6.3 we have that I[P,,, Qn] c ’IDe
-we refer to Lemma 6.3 for the meaning of Qn]. Moreover Con-
dition 3.1 holds if ~ _ we and is the union of all l[Po, Qn] (this
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holds with e.g. j5 --- {P°~~. Therefore, by Lemma 7.1, the derivatives
are bounded in A. By this, (7.4), (5.1), (6.12), and by the

boundedness of dx°/ds in 1, we have for some positive constants
~2 and .1~3

for every n. Thus, by (6.11), our limit equals (N’). q.e.d.

By the preceding theorem we can introduce the following

DEFINITION 7.1. Let (x) and (x’ ) be two p-Mink. f rames. We call
the Zimzt in (7.7)-which is independent of the choice of asymp-
totic Lorentz matrix joined to (x) and (x’ ).

Obviously the asymptotic Lorentz matrix joined to ~(x’ ) and (x)
is the inverse of the one joined to (x) and (x’).

DEFINITION 7.2. We say that the f rames (x) and (x’) are
asymptotically equivalent, i f the asymptotic Lorentz matrix joined to them
coincides with the identity matrix.

The relation introduced by Def 7.2 is an equivalence. Its equi-
valence class that contains (x) will be denoted by [(x)]. If q = [(x)]
and CfJ’ == [(x’)], the asymptotic Lorentz matrix joined to (x) and (x‘)
is a function of (p and 99’.

DEFINITION 7.3. We call the a f orementioned matrix, the Lorentz

matrix joined to 99 and 99.

8. Asymptotic Minkowski space.

We consider a 03BC-Minkowskian space-time-see Def 5.3-. We call
every couple (loo, v), where loo is an asymptotic geodesic-see (h) in

N. 4-and v is a vector field undergoing parallel transport along it,
an (asymptotic) pre-vector. 

’

By Theor. 6.2, if (loo, v) is a pre-vector and (x) is a p-Mink. frame,
then the limit loo - lim va exists. Furthermore it does not change if

we replace (x) with any ,a-Mink. frame asymptotically equivalent to
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it-see Def 7.2. Therefore it makes sense to call com-

ponents of the pre-vector v) in [(~)].
By Theor 7.3, if two pre-vectors have the same components in

q = [ (x ) ], this property is independent of the particular class w being
considered. Through this property, we introduce an equipollence
between prevectors, and we call its equivalence classes asymptotic
vectors. In the sequel w’e shall denote by V the arbitrary asymp-
totic vector.

If 99 = [(x)], 99 defines a function, to be denoted by the same
symbol, that maps every asymptotic vector V in the common quadruple
formed by the components in the class 99, of the pre-vectors belonging
to V. We say that the function is an acsymptotic Minkowski f rame
and we call the elements of the components of the asymptotic
vector V in (p.

We see at once that the asymptotic Minkowski frames 99 and q’
are related by

where .L is the Lorentz matrix joined to w and Def 7.3.
Let (x) be a p-Mink. frame and let L be an orthocronous2013i.e.

one that does not reverse time matrix. By (ii) in
Def 5.1, the coordinate system (x)L obtained from (x) by L is physically
admissible in the complement of some world-bundle ‘LU1. Let (x’ )
be a frame coinciding with in By (i’ ) in Def 5.1 there is a
world-bundle, i0o , such that the ideal fluid joined to (x) is Wc0-BISO
By Theor 3.3 the ideal fluid joined to (x’ ) is Now

we see at once that (x’ ) is ,a-Mink. Therefore, if q is an asymptotic
Minkowski frame, and L is an orthocronous Lorentz matrix, the func-
tion ~’ -_ (~’a)a-0,1,2,3 given by (8.1 ) is an asymptotic Minkowski
frame (i.e. it is defined by a class of asymptotically equivalent ,a-Mink.
frames). We have thus proved the following

THEOREM the whole class o f the asymptotio Minkowski
f rames, can be obtained f rom one o f them, by means o f the trans f orma-
tion (8.1 ) in connection with all orthocronous Lorentz matr2ces.

Using this result we see at once that if = 1, 2-are asympto-
tic vectors, and then the 
and the product where w is an asymptotic Min-
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kowski frame, are well defined, i. e. they are independent of T. The

set of the asymptotic vectors, with these operations is a vector space.
If we define on it the scalar product V(2) = which

is invariant by Theor 8.1, we obtain a Minkowski space.

If ~L is a Lorentz matrix

Let q and CfJ’ be asymptotic Minkowski frames. We say that

they are co-moving if the component L00 of the Lorentz matrix joined
to cp and q’ equals 1. Using (8.2 ) we see at once that the relation above
is an equivalence : we call its equivalence classes asymptotic inertial
spaces. The arbitrary one of them will be denoted by. 

The Lorentz matrices L with Lo = 1 are in one-to-one correspond-
ence with the orthogonal matrices of the third order. Then, remember-
ing that the Lorentz matrices are 00% we have the following

THEOREM 8.2. In a space-time there are oo3 asymp-
inertial spaces.

Let us consider now the asymptotic Mink. frame and the

asymptotic inertial space joined to it. Moreover let L be
the Lorentz matrix joined to w and By (8.2) we see at once that .La
are independent of the choice of q/ in S;a,i)’ and, in particular, Lo is
a function of and symmetric in these arguments. Therefore
it makes sense to call the asymptotic vector, whose covariant com-
ponents in w are the 4-velocity o f relative to 

Obviously we call the asymptotic vector whose components in q are
vanish and q’ are co-moving-the

standard velocity o f Lastly we say that c[1- (~Lo)-2]~
is the standard speed o f the two asymptotic inertial spaces with respect
to one another.

REMARK. Let the ¡.t-Mink. frames (x) and (x’ ) be joined to the ideal
fluids ~ and ~’, and to the aforementioned asymptotic Mink.
frames w and Then the limit, on each asymptotic geodesic, of the
components, in (x), of the 4-velocity [standard velocity] of IF’ rela-
tive to ~, equals the components, in CfJ, of the 4-velocity [standard
velocity] of relative to Moreover the corresponding prop-
erty for the standard speed holds.
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