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On Wave Functions in Quantum Mechanics.

A. BRESSAN (*)

SUMMARY - Some examples and considerations are presented to show that
the possibility of determining a quantistic state 8 by means of the

expectations of fundamental observables is doubtful.

PART 2

On Fundamental Observables and Quantistic States.

9. Introduction to Part 2.

Quantum mechanics-more precisely its foundations-can be im-
proved by basing them on primitive notions that are more surely
operative and on postulates that are better supported by experiments, y
as far as the reference to a physical model (involving e.g. electrons)
allows. The present work aims at making a step in this direction by
giving, in particular, y some solutions to the problem considered at the

(*) Indirizzo dell’A.: Seminario Matematico, Università - Via Belzoni 7 -
1-35100 Padova.

This paper has been worked out in the sphere of activity of the research
group no. 3 of the C.N.R. (Consiglio Nazionale delle Ricerche) for the aca-
demic years 1976-77 and 1977-78.
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outset of N. 1 (Part 1 ) cf. the last part of footnote ( 1) in Part 3, N. 13.
In connection with this task it is of interest to consider Assump-

tion 2.1 which substantially says that a state s of a quantal system @)
(formed with n spinless pairwise distinguishable particles) is deter-
mined by the expected values in the usual direct sense, of all
fundamental observables m (for 16) in the state s. Indeed it is to

remark that on the one hand Assumption 2.1 seems to be often

considered as true, while on the other hand

(i) actual experiments are far from assuring the truth of Assump-
tion 2.1,

which fact is emphasized in the present work; furthermore the consid-
erations presented in NN. 10, 11 support thesis (e) in N. 1, i.e. that

(ii) Assumption 2.1 is probably false.

Hence, to fulfil the task above we must help using that assump-
tion, in particular when we define or characterize intuitively states
and wave functions. Of course this induces some changes in these
basic notions; more precisely the proofs of Theors 4.1 and 2.1 (N. 5)
induce us, first, to characterize connex pure states by means of a cer-
tain system a of position and momentum measurements, and then to
extend this characterization to general pure states by means of a

joinability property-cf. Post ~.1.
The task above will be fulfilled in Part 3 by the construction of

an ariomatic theory b1 of quantum mechanics in hich wave func-
tions are defined, Born’s rule need not be postulated, and the funda-
mental proportionality theorem 2.1 is proved.

Now let us describe the content of Part 2 in more detail. In N. 10
we show by an explicit (admittedly easy) quantistic example that the
usual statistical distribution for position and momentum does not
determine its wave function up to a constant factor. This example,
also used in turn to construct a certain example in N. 16 (Part 3)
relevant for the notion of states, shows rigorously the validity of a
quantistic analogue for a known indetermination in classical statistical
mechanics. Still in N. 10- this indetermination is shown to be very

high. This fact is used in N. 11 to support assertion (ii) above, i.e.

thesis (e) in N. 1.

N

(1) We understand p-q "

h=l
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10. On a certain impossible characterization of states by the statistical
distributions of position and momentum, from the quantistic and
classical points of view.

The state of a classical system, can be determined by means
of precise measurements of its position co-ordinates qh and conjugate
momenta (h = 1, ..., N). Then the following conjecture may
appear natural: the state s of the corresponding quantistic system
C~ (N. 4) zs determined by the statistical distributions B - Bs[XB(q)] and
B (B E $n), cf. N. 2 in Part 1.

As is usually done, we assume those distributions-which are

Lebesgue measures-to have the respective densities P(q) and n(p).
It is known that a statistical state s, for the classical analogue C~~
of (g is not determined by the corresponding (classical) densities P~ (q)
and but, if s, is regular enough, it is determined by the proba-
bility density p) for the result of a simultaneous (precise) meas-
urement of the qh’s and p,ls (h = 1, ..., N).

By analogy with the classical theory one aspects the above con-
jecture to be false. Here we want to prove (rigorously) its falsity
by a simple example-to be used also in N. 16-and to this aim we
denote the Fourier transform (1) dq of 1p by ~ or

RN

and formulate the conjecture above as follows:

CONJECTURE (to be disproved). If f or the wave functions y~ and f

then y and f are proportional, i.e. ’ljJ == c f for some c E C.

We denote the complex conjugate of z (E C) by z* and we first
remember after von Neumann that, f or ( 2),

( 2 ) For the case of the reader we remark that (10.2) holds because, setting
~ = - q, for nearly all p we have (h = 2nh)
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There are infinitely many choices of the functions 1p and f above
for which they are e.g. twice continuously differentiable, have connex
supports, and fulfil the conditions

where and r(q) are real functions with the above regularity prop-
erties and (10.3 ) holds in the support Supp ( y~) of 1p. It is natural to

accept the following

ASSUMPTION 10.1. Some of the above choices and f (possibly
with compact supports) represent quantistic states.

As a consequence we can prove the

THEOR 10.1. The conjecture above is f alse in that some wave func-
tions and f of the kind above fulfil (10.1) and are not proportional.

Indeed by Assumption 10.1 some wave functions V and f fulfil
the condition above in italics involving (10.3), so that by (10.3)4’
(10.1 )1 holds. In addition by (10.2 )2 and (10.3h, y~*o - I = ~ y~*, so
that (10.2)1 becomes w "* = + ’IjJ* ^. Hence

. which by (10.3)4’ yields ( 10 .1 ) 2 . By (10.3) we have for no

ceC. q.e.d.
***

For the afore-mentioned classical system 6c we have

and

Hence
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If P~ and n, are given and (10.6) holds, then (10.4), and hence
(10.5), can be fulfilled cf. e.g. [3], p. 129-by defining e.g. as

follows:

It is useful to realize that the indetermination affecting the solu-
tion of (10.4) is very high.

THEOR. 10.2. Let Pc and ~~ be piece-wise continuous f unetions in
L1(RN), that fulfil (10.6) ; and let r be the class of the piece-wise con-
tinuo2cs f unctions T(q, p) that fulfil conditions (10.4 ) in fl. Then T con-
tains a family with infinitely many parameters, i.e. r in-
cludes a manifold o f zn f inite dimension.

Indeed the function e defined by (10.7) is piece-wise continuous,
(10.5) holds, hence for some value ( a, b) of ( q, p) and some positive
real numbers k and s we have

Ler cr and 03B3r be two arbitrary successions of real numbers for

which

furthermore set

and

otherwise .

Then the series in (10.11) is absolutely convergent and-cf. (10.8)
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Now we set

so that by (10.12), (10.5h, and (10.4)

i.e. T fulfils conditions (10.4) and (10.5)2 in e. The same can be said

of condition (10.5), in e by (10.14)2 and (10.6)1. q.e.d.

11. Considerations of a negative kind on the problem of defining wave
’ 

functions by means of surely fundamental observables.

be a subset of the class of the observables of 6 (at some
instant 7:) and let S~" be the set of the fundamental observables in .S~’.
We say that w is an of the state s (for 6 at 7:) if for every
wEQ"

where Em is the spectral measure EA of the self-adjoint operator A 
representing w. Obviously the Q’ -functions are the Q"-functions (3).

Let us call the set SZ’ (C ,~) determinative (weakly determinative) if
for every pure (pure connex) state s (N. 1) all Q’-functions of s are

mutually proportional, so that (Theor. 2.1) they are the wave func-
tions of the same states s.

The set is obviously not even weakly
determinative. The same holds for SZ2 {Q,7 P1, ... , QN, as is

shown by two suitable states and f == 1jJ* considered in the first

part of N. 10.
According to the aims of this work cf . the problem at the outset

of N. 1-it would be useful to find an at least weakly determinative
class Q’ formed with observables that are surely fundamental-cf.

(3) By using the terminology in [2], p. 170, the Q’-functions of a state s
can be characterized as the wave functions of the states equivalent to s with
respect to the closure S of the class of the operators X,(A) where A represents
an observable in Q" and 
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footnote (~) in Part 1. However this seems rather impossible by the
following considerations. At least we are far from being able to

proving the existence of such a determinaive class.
The second example in N. 10 shows that, for an arbitrary choice

of our quantal system C~, in classical statistical mechanics the analogue
of the following quantistic condition (on C~ ) holds:

The of some state s of 6 are of infinitely
many other states of 6..

This may push people to think that (i) by analogy the above
quantistic condition itself is true, and (ii) no finite (weakly) deter-

minative subsets of SZ exist, in general. At this point it is natural
to ask whether there are (infinite) determinative sets and whether

they include the Jordan algebra S~3 generated by ~2! we mean the
least set Q3 for which ( a ) S~3 and (b) if A, B E Q3 and A E C,
then A -~- B, AA, and where 

’

It may be preferable to consider, instead of the Jordan algebra
SZ3 generated by the (infinite) set 522:

in that S~2 (hence Q§) contains only bounded operators.
Since the Jordan product A o B is commutative but not associa-

tive, and

if A and B do not commute, we generally have

Let us now remember the first point of Bohr’s analysis of physical
phenomena-cf. [3], vol. 1, p. 153: «no matter how far the phe-
nomena trascend the scope of classical physics, their account must
be expressed in classical terms ». In this connection we can remark

that, on the one hand, the operators and (A o B ) o B are distinct,
so that they express distinct observables; in spite of this, on the
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other hand for A = Q, and B = P,, those operators must reasonably
be regarded as representing the coinciding classical magnitudes q, p2
and (qipl)pi.

The considerations above push people to think that q,p2 is not

fundamental and the same holds for most polinomials in ql , pi, ...

... , qN, pN . With some exceptions the values of these polinomials can
be measured, according to classical physics, only through mcasure-
ments of qh and p~ (h = 1, ... , N), and the same can be said of the
functions f (q1, PI’ ..., qN, pN) of these magnitudes. This strengthens
the point of view above and pushes us to extend it, i. e. to assert that
the whole set Q of observables is not (weakly) determinative. This implies
the falsity of Assumption 2.1, i.e. thesis (e) in N. 1 cf. assertions (i)
and (ii) in N. 9.

The intuitive considerations above, of a negative character, increase
the interest of the Definition 16.1 of wave functions suggested by
Theor 2.1 and carried out in NN. 13-16 (Part 3). However they are
not essential for this interest, as we said in N. 1.)
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