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Structure Theorems

for Modifications of Complex Spaces.

G. TOMASSINI (*)

In this paper we are concerned with the modification of complex
spaces. Given such a modification f : ( Y’, flX’ ) ~ ( Y, X ), Y’ c X’ , Y c X,
we consider the problem of a « description » of f . In this direction the
main problem is the following: under what hypothesis is the given
modification isomorphic to the monoidal transformation of X along Y?
The main results of the paper are that this is the case when:

a) X’ is normal, Y’ is an irreducible projective bundle P(C) on Y
and the ideal 1,, of Y’ is invertible (Theorem 3.2), or

b) Y’ is irreducible, ly is invertible, Y and X are smooth (The-
orem 3.7).

When X’ is smooth Theorem 3.7 was proved by Moisezon ([6]).
An algebraic analogue of the theorem was proved by A. Lascu ([5]).

In § 1, 2 we prove some results on meromorphic maps between
complex spaces and on the dimension of the exceptional set Y’ of a
modification.

1. Preliminaries.

1) Let (X, be a (reduced and connected) complex space.
Let flx be the sheaf of the germs of meromorphic functions on X.

We say that a morphism f: X - Y of complex spaces is bimero-

(*) Indirizzo dell’A.: Istituto Matematico « U. Dini », Università di Firenze.
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morphic if the homomorphism is an isomorphism. It can

be proved that if Y is normal and f-1(y) is finite for every y EY,
then f is an open embedding. Moreover the fibres of a bimeromorphic
morphism f : X - Y (where Y is normal) are connected.

Let X, Y be irreducible. A meromorphic map Z~’: X -~ Y is an
irreducible analytic subset F of X X Y such that: there are an analytic
subset A c Xand an analytic subset F c F such that is the

0

graph of a morphism Y.

In particular one has Fi = pr;’ (A) r1 F (F being irreducible). For
every subset Z c X we put F(Z) = pry (pril (Z) n F) and we call

F(Z) the image of Z by .F’. A point x E A is said to be regular for F
if there is a neighborhood U of x and a morphism f: Y such

I 

that f I = 

Let Q = Q(F) be the subset of regular points of F: Q is open
and Sing (h’) = is called the singular locus of .F. Let X be

normal. Then it can be proved ([11]) that:

(i) if .F’(x) is compact and # 0 for every x, then Sing (F) is an
analytic subset of codimension &#x3E; 2;

(ii) a point x is regular for F iff .F’(x) has a connected com-
ponent of dimension 0.

2) Let X be a complex space. We shall say that X is mero-
morphically separated if for x, y E X, x ~ y, there is a meromorphic
function f on X, regular at x, y, such that f (x ) ~ f(y).

Let £. be an invertible sheaf on X and denote by A(£.) the graded
+00

algebra Lxn ) and by Q(L) the quotient field of A(C). Q(L) is
n~0

a field of meromorphic functions.

PROPOSITION 1.1. Let X be compact and normal and Q(C) separates
,the points o f X. projective.

PROOF. Let so, ..., be such that:

separate points of .~. Let ~k = Pk(C) and f be the morphism X - Pk
defined by x H (so(x), ... , f is a one-to-one, proper map and
f-1 is continuous from f (X ) to X. Let N = N(X) be the open subset
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of the normal points of f (X ) ; g = f -1 is holomorphic on N. Let

v : f (X ) * --~ f (X ) be the normalization of f (X ) ; f(()* is a projective
variety and = is a memomorphic map X - f(X)* which is a
morphism on We have for every x E X
and furthermore is an analytic subset of codimension &#x3E;2.
Let x e Sing (T) and ... , y Let H be a hyperplane sec-
tion of f (X ) * such that = 1, ..., l. Then V = f (X )*BH is
an afhne variety, x E f-1(v(H)) and (qJ) c f (X )*BH~
for every It follows that p extends to a morphism ~: 
. (v(H)) - V. This proves that 99 extends on X and E vw( f (x) ).
Hence is one-to-one and so is an isomorphism between X and f(X)*.

2. Modifications.

1) Let X be a (connected) complex space, Y a complex sub-
space, I p the ideal of Y the monoidal trasformation
of X with center Y ( [6] ) . The universal property of ~c : X --~ X is
the following: for every complex space Z and for every morphism

such that f* Iy is an invertible ideal there is a morphism
g: Z - 8 (unique up to isomorphisms) such that = f . In par-
ticular if X = n-1(Y) one has IY = 

REMARK. If f * I y is invertible on the complement of a proper

analytic subset A of Z, then g is a meromorphic map Z -8.
We denote by f : ( Y’, X’) - (Y, X) a modification of irreducible

complex spaces and we will refer to Y’ as to the exceptional subset
of the given modification ([6], [9]).

We say that the modification is

a) regular if Y and X are both smooth,

b) a point-modification if Y is zero-dimensional.

In the sequel we shall be concerned with the following problem:
under what hypothesis is the modification f : ( Y’, ~’ ) -~ ( Y, X) iso-

morphic to the monoidal transformation of X with center Y ~ As we
shall see later, conditions may be placed on properties of the embed-
ding Y’ 4- X’ or on properties of the embedding Y 4- X.

2) Now let us establish some geometrical properties of regular
modifications.
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THEOREM 2.1. Let f : (Y’, X’) - (Y, X) be a regular modification
o f complex spaces. Then

(i) i f dime Y = 0, Y’ is of pure dimension 

(ii) Y’ is of dimension n -1 and it is of dimension ~ n - 2 at
every point x E Y’,

(iii) the connected components of Y’ of dimension n - 2 are fibres.

In particular if dime Sing (X’)  n - 3 then Y’ is of pure dimension
n - 1.

PROOF. We first remark that for algebraic varieties (or for alge-
braic spaces as well) it can be proved that Y’ is actually of pure
dimension n -1 ( [5] ). From this remark the affirmation (i) follows
immediately.

We shall prove (ii) by induction on n. Let d = dimc Y, a EY
and p = dime f -1(a). Let U be a neighborhood of a in X such that :
dime f -1(y) p for every y E U, U is a fibration w : U - y, where y
is an analytic curve, and n Y, is a submani-
fold of dimension d -1. Let us assume Ux is defined by ht - 0,

’ ha holomorphic, and let Vt VÂ is an irreducible analytic
subset of and gives a modification with excep-
tional subset Ea = 

Let lo e y ; by the induction hypothesis one has two possibilities:
a) is of pure dimension n - 2; b) Eao is reduced to a point and

is an isomorphism.
In the case b), for every point 0 of Yko the corresponding fibre

of f is either of dimension 0 or it has an irreducible component of
dimension 1 (actually dime Va n f -1(y) = 0 ). In the first case we

have that dimc = 0 for an yo E Ya,o and therefore for all y in
a neighborhood. It follows that f is a local isomorphism. In the

second one has an irreducible component of dimension d c n - 2 .
This is impossible because then the analytic subset defined by = 0

would have an irreducible component of codimension &#x3E; 1.
Let us suppose that case a) holds so that is of pure dimension

~ - 2. From the above discussion it follows that Ea, is of pure dimen-
sion n 2 for every thus dime Y’ = n -1. Now assume

where Y f is irreducible and (n -I)-dimensional for j = 1, ... , I and
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Zi is irreducible of dimension  n - 2 for ~==1,...,~. We have

I(Y’) = Y for at least one i (and suppose i = 1) and Y, o 0,
Zj r’1 Y§ # 0 for every i, j (the fibres being connected). Let yl = f (x1)
where xl E ZlBYi and let Yo be a submanifold of U through yo defined
by h - 0 . The analytic subset Y, defined by h o f = 0, is of pure

dimension n -1 and f-1(Vo"’Y) is an irreducible component of W.
Let Wo be an irreducible component of W containing xo ; then: Wo c Zl
and gives a modification Wo -~ It follows that Wo r1 Zl is of
pure dimension n - 2 or that flwo is an isomorphism. In view of the

fact that Zl is the zero-set of and that Zl is irreducible,
we have Zl c Wo and dimc Z1 = n - 2. This proves part (ii) of the

statement.
If xi E is ’another point such that = y[ # yl then, by

repeating the above argument with respect to a variety V1 through
xi parallel to Yo, we get a contradiction. Therefore we have = y;

for j =1, ... , 1~. In particular every Zj is compact and the connected
k

components of U Zi are fibres. This proves part (iii) of the statement.
i=l

Finally, if dime Sing (X’ ) c n 3, in
view of the jacobian criterium f is an isomorphism at every point
of = 17 ..., k, therefore ... == Z~= 0 and Y’ is of
pure dimension n -i- l .

REMARK. It was proved in [10] that if X’ is meromorphically
separated and X is locally factorial (i.e., the local rings are U.F.D.)
then Y’ is of pure codimension 1.

COROLLARY 2.2. Let f : X’ - X be a proper morphism of irreducible
complex spaces and let Y’ c X’, Y c X be irreducible complex subspaces
of codimension 1 such that f ( Y’ ) = Y. Assume X smooth and that

flx’’’.y’ is an isomorphism onto Then f is an isomorphism.

3. Structure theorems.

1) Let us go back to the initial problem, i.e., the description
of modification of complex spaces.

If X is a complex space and Y is a complex subspace we shall
denote by n : ( Y, 0l) - ( Y, X) the monoidal transformation of X with
center Y.
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PROPOSITION 3.1. Let f : ( Y’, X’ ) - ( Y, X ) be a modification where
Y’ is irreducible, Iÿ and are locally f ac-
torial and that f is irreducible. Then the modifications f : ( Y’, X’ ) -~
-~ (Y, X ) and n: (Y, I) - ( Y, X ) are isomorphic.

PROOF. Assume that X’ is normal and consider the meromorphic
map g : X’ -+ X determined by f * IY . For a generic x E f, the fibre

is discrete and therefore reduced to a single point x’. Thus g
is an isomorphism at x’. The subset A of the points where g is not
a local ismorphism is of codimension &#x3E;1 in Y’ ( Y’ being irreducible)
and of codimension ~ 2 in X’. We have A = ?: 

Let b E B = g-1(A) and a = g(b) and let ~ be a generator of 
Let 1J be ~ o g and let h be a generator of hl1J = Â is a holomor-
phic function on (U being a neighborhood of b in X’)
therefore Â is holomorphic on U. It follows that the pull-back

induces an isomorphism 1, ~~~~ sw This implies
that g*a is an isomorphism and IY’,a are invertible ! ) . Thus
A = 0 and g is an isomorphism. 

’

In the general case let v : X’* - X’ be the normalization of X’,
W = vw( Y) and z E W r1 Sing (X’*). Let h E Iw,z be holomorphic on ~7,
x = v(z) and ’h be a generator of Ip.,x. The function p = h/’hov is
holomorphic on UBSing (X’*) and, therefore, on U. This proves that

h is an invertible ideal.
From the first part of the proof it follows that there is an iso-

morphism 6 : X’* - k such that = = Thus
v and g are isomorphisms and this concludes the proof.

Now let X’ be normal, Y’ be an irreducible complex projective
bundle P(£) on Y where L is a locally free sheaf on Y of rank r + 1
and r + dime Y = n -1 (n = dime X). Let f : ( Y’, X’ ) -~ (Y, X) be
a modification such that is the natural projection P(£) - Y. Let

be the fundamental sheaf on ~(~).

THEOREM 3.2. Let Iy’ be invertible. Then

(i) locally isomorphic to where m &#x3E; 0.

(ii) Iy, is an ample shea f with respect to f and the modification
is isomorphic to the monoidal transformation n: ( Y, ~) 2013)- ( Y, X ) .

PROOF, (i) Since the problem is local with respect to Y we can
assume that Y’ = Y Xpr. Let 2/eY. Then there are two invertible
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sheaves L1 on Y and Cz on P’ such that

(PI’ pz natural projections) ([7]) so that we can assume L2 = Opr(m)
and ~.1 ~ 0y: It follows that One has m ~ 0. If

not, as 0p,(m) ) = 0 for m  0, we have r(Y’, Y, = 0 for
every k ~ 1. Then, from the exact sequence

it follows that .I’( Y’, I p. /I p. ) = 0 for every 
Let be an element of and y’ EY’ : there is k &#x3E; 2

such that Thus v gives a non zero element in 
contradiction.

Now assume m = 0. Then is isomorphic to 0y,. Let
Y = U where Ui is open in X’ and such that is generated

tEl

by hi.
We can assume that =1. Let h be a holomorphic func-

tion on a neighborhood of Y’ vanishing on Y’ and let ~8z = 
We have Ai e and Åi = Aj on UZ n U, n Y’. Thus h determines
a holomorphic function A on Y’ (which is constant on each fibre).
The zero-set Z of h has Y’ as an irreducible component; let Z be
Y’ U Z’ : Z’ is of pure codimension 1 and dimo Z’ r1 Y’ = n - 2. Take

h = go f where g is a holomorphic function on X vanishing on Y.
Then Z’ r1 Y’ intersects each fibre of f but it does not contain all
fibres. This is a contradiction because then A would have different
values on a fibre. Thus Iy)I;, is locally isomorphic to where
m&#x3E;0.

(ii) Let us denote by I~~~ the algebraic restriction of 1,, to

f-1(y)o. Part (i) implies that the reduced sheaf Q§/ is isomorphic to
0pr(na). Therefore is ample on f-1(y)0.

In view of a result of Schneider ( [9] ) ly, is ample with respect
to f , hence we can assume that there exists a closed embedding

(for a suitable N) such that 
In view of the theorem of Grauert and Remmert on projective

morphisms (cf. [4]), for every coherent sheaf Y on X’ and for every
compact K c X there is an integer such that 
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for every n = no . From the exact sequence

decreasing induction on k implies that R 1 f * (I p, ) ~g = 0 for every ~=0.
Arguing as in [10] (Th6or6me 2.2.3) we get part (ii) of the statement.

REMARK. The above theorem tells us that a modification which
« blows-down a projective bundle » Y’ is always isomorphic to a mono-
idal transformation (provided ly, is invertible).

2) In this final part we shall prove that, under natural hypoth-
esis, every regular modification f : ( Y’, ~’ ) - ( Y, X) is isomorphic to
the monoidal transformation n: ( Y, X ) -~ ( Y, X).

This was proved in [5] for algebraic normal varietis and that

proof extends to normal algebraic spaces as well, by passing to an
« étale)) covering and applying the « descent property » ([3]).

For complex manifolds the theorem was proved in [6].
We proceed in several steps.

LEMMA 3.3. A regular point-modi f ication f : ( Y’, X’ ) - ( yo , X) of
irreducible complex spaces such that Ip. is invertible, is isomorphic to
the monoidal trasformation n: ( Y, I) - ( yo , X).

PROOF. We can assume X is P" and that X’ is a compact Moi0161e-
zon space therefore a complete C-algebraic space ([2]). We have
dime Sing (~’ ) c n - 2 because is invertible. Let be
the normalizati on of X’ and put W= v-1 ( Y’ ) : ~V is irreducible. Let
z E W r1 Sing (X’*), z = v(z) and let h E be holomorphic on a neigh-
borhood U of z and ’g a generator of The function hl’gov is

holomorphic on UBSing (X’ * ) and theref ore on ~7. It follows that

’g o v generates locally Iw. Then, by the previous remark, the modi-
fication g: (W, X’*) ~ (yo, X) is isomorphic to the monoidal trans-
formation. Let X CW and let zi, ... , zn be local coordinates at

yo such that ZL(YO) _ ... = 0. Let « =1, ... ,n, and
let us assume that x, generates lw,x. Let y = v(x) and let ~ be a gen-
erator of On a neighborhood of y the zero-sets of $, z1o f coincide,
so that ~8 == where A is invertible and and therefore

(Sov)8 = On the other hand, as $ ov generates we have
also x1 = where p is invertible. Thus s = 1 and z1o f generates
Iy, v. In particular if 1. denotes the ideal sheaf of {2/0}? is
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invertible and, in view of the Proposition 2 .1, ( Y’, X’ ) - (yo, .X ) is
isomorphic to the monoidal transformation.

REMARKS. In the previous statement, the hypothesis that 1y’ is
invertible can be replaced by the following ones: Y’ is geometrical
principal (i.e., Y’ is locally a zero-set of a holomorphic function) and
X’ is a regular in codimension 1. Namely we have the

LEMMA 3.4. Let ( Y’, X’ ) -~ X ) be a regular point-modification
o f irreducible algebraic varieties. Assume that Y’ is geometrically prin-
cipal and that X’ is regular in codimension 1. Then the shea f 
invertible.

PROOF. We can assume that X and X’ are complete. Let y E Y’
and h be a local equation for Y’ on a neighborhood U of y. Let u

be a rational function on X such that h = and put u = q/r where
q, r are rational functions on X without common factors in 

We observe that q(yo) = 0. Let (h) denote the divisor of h. On rT
we have (h) = 0, and therefore (h) == ( f oq) - ( f or) &#x3E; 0. As q
and r have no common factor in f o q is a positive divisor on a
neighborhood V of y and on V one has : (foq) = m Y’, m &#x3E; 0. Let 1p
be in (or in Ip.,~) : we have 0 on V, so that fo1p ==

This proves that (and 1~) are invertible and
therefore that (and are invertible being local).

LEMMA 3.5. Let ( Y’, X’ ) -4 (yo, X) be a regular point-modification
o f complex compact surfaces. Assume that X’ is normal. Then the modi-

fication is isomorphic to a product o f monoidal trans f ormations.

PROOF. Let Y’ = Ci U ... U Ck be the irreducible decomposition of
Y’ and let X’ -=4. X’ be a desingularization of .X’ : in view of the

fundamental theorem of surface theory ([8]), .F’ = fon: is a

product of monoidal trasformations. Furthermore the exceptionl set E
of 1~’ is

where CP, D* are projective lines and

We may blow-down the curves D1, ..., Dt in such a way as to get a
regular surface with a morphism ~o --~ X’ which is actually
an isomorphism (X’ being normal).
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LEMMA 3.6. Let f: ( Y’, X’) - (yo , X) be a regular point-modifica-
tion of complex compact sur f aces. Assume Y’ is geometrically principal.
Then the modi f icatzon is a product of monoidal trans f ormations.

PROOF. Let us assume for simplicity that Y’ is irreducible. We
may restrict ourselves to the following case: .X is P2 and X’ is alge-
braic. By passing to a non-singular model of .~’ and arguing as in the

previous lemma we find a modification ~c : P2 ) --~ (Y’, X’) (where
g : ( ~’, P2 ) ~ ( yo , X ) is a product of monoidal transformations and

= g). Let 10 be the ideal sheaf of {yo} and let zl, z2 be rational
functions on X giving local coordinates at yo (and z,(y,) = z,(yo) = o ).
Let y, = y2 = x1= and x2 = z2 o g. The invertible ideal

7y is generated by xl or x2 and there are two points f, such
that Iÿ,z == all c~g,~ - x2 u8,x b1, b2 . Let c = ~ ~(b2) :
y2 = 0 is a local equation for Y’ at c. We have Y2 on = uxl where
u = (p/q)og is invertible in ° i,,, and p, q are polynomials in zl, z2
without common factors. Further

where p1, q, are polynomials of degree &#x3E;2 and 
It follows that

p and q are coprime therefore p o f , q o f can vanish only on Y’ (locally
at x). It follows that either p og and q og vanish on Y’ or are invertible
at x (because (p/q)og is invertible). In the first case p = z1 Pl , q = ZlQ1
which implies B0 = 0 and pi = z1 P2 , q1 = ZlQ2 where P2(0) # 0,
Q~(o) ~ 0. Thus Y2 where v is a unit of °X’,c. It follows that

the ideal is invertible on Xo = U {n(b2)}. The mor-

phism X( - P2 determinated by is an inverse and this

proves that .X’ is non singular in codimension 1. Now the result fol-
lows from Lemma 3.4.

REMARKS. 1) Let Ai be the analytic set defined by zj = 0 and
let ~P~ = = 1, 2. As a consequence of the above lemma
we have Wi r1 0.
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2) The assumption that Y’ is geometrically principal cannot be
dropped.

Now we are in position to prove the

THEOREM 3.7. Let f: ( Y’, X’ ) - ( Y, X ) be a regular modi f ication
of irreducible complex spaces..Assume that Y’ is irreducible and that IF,
is invertible. Then the modification is isomorphic to the monoidal trans-
formation of X wich center Y.

PROOF. From the hypothesis it follows that .X’ is nonsingular
in codimension 1. The problem is local with respect to X along Y
so we may assume X is a ball in Cn centered at 0 and Y is defined

by ... = zn = 0. Let C; be the function z; o f, j = d -f-1, ... , n
and let W j be the analytic set where 

j = d + 1, ... , n. In view of Remark 1 it is easy to prove that 
r1 ... r1 0. Let y E Y’ and let U be a neighborhood of y and ~i
such that 0. Let h be a generator of IY,7I. Then we have
~~ = Àhm where ~1 is a unit of 0x,,y. Let IJ be a regular
point of X’ and L1 a one dimensional analytic disk such that L1 r1 Y’ _
= ~y’~ . On 4 we have hm = and = 0 i.e., is a holo-

morphic function vanishing at y’ and admitting a holomorphic root.
This implies that m = 1 and therefore that Cj is a generator of 
In particular f * IY is invertible. The statement is now a consequence
of the Proposition 3.1. 

,
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