RENDICONTI del Seminario Matematico della Università di Padova

G. TOMASSINI

Structure theorems for modifications of complex spaces

Rendiconti del Seminario Matematico della Università di Padova, tome 59 (1978), p. 295-306

http://www.numdam.org/item?id=RSMUP_1978_59_295_0

© Rendiconti del Seminario Matematico della Università di Padova, 1978, tous droits réservés.

L'accès aux archives de la revue « Rendiconti del Seminario Matematico della Università di Padova » (http://rendiconti.math.unipd.it/) implique l'accord avec les conditions générales d'utilisation (http://www.numdam.org/conditions). Toute utilisation commerciale ou impression systématique est constitutive d'une infraction pénale. Toute copie ou impression de ce fichier doit contenir la présente mention de copyright.

\mathcal{N} umdam

Article numérisé dans le cadre du programme Numérisation de documents anciens mathématiques http://www.numdam.org/ REND. SEM. MAT. UNIV. PADOVA, Vol. 59 (1978)

Structure Theorems for Modifications of Complex Spaces.

G. TOMASSINI (*)

In this paper we are concerned with the modification of complex spaces. Given such a modification $f: (Y', X') \to (Y, X), Y' \subset X', Y \subset X$, we consider the problem of a «description» of f. In this direction the main problem is the following: under what hypothesis is the given modification isomorphic to the monoidal transformation of X along Y? The main results of the paper are that this is the case when:

a) X' is normal, Y' is an irreducible projective bundle $\mathbb{P}(\mathfrak{L})$ on Y and the ideal $I_{\mathbf{x}'}$ of Y' is invertible (Theorem 3.2), or

b) Y' is irreducible, $I_{F'}$ is invertible, Y and X are smooth (Theorem 3.7).

When X' is smooth Theorem 3.7 was proved by Moišezon ([6]). An algebraic analogue of the theorem was proved by A. Lascu ([5]).

In §1,2 we prove some results on meromorphic maps between complex spaces and on the dimension of the exceptional set Y' of a modification.

1. Preliminaries.

1) Let (X, \mathcal{O}_X) be a (reduced and connected) complex space. Let \mathcal{M}_X be the sheaf of the germs of meromorphic functions on X. We say that a morphism $f: X \to Y$ of complex spaces is *bimero*-

(*) Indirizzo dell'A.: Istituto Matematico « U. Dini », Università di Firenze.

morphic if the homomorphism $M_{Y} \to f_{*} \mathcal{M}_{X}$ is an isomorphism. It can be proved that if Y is normal and $f^{-1}(y)$ is finite for every $y \in Y$, then f is an open embedding. Moreover the fibres of a bimeromorphic morphism $f: X \to Y$ (where Y is normal) are connected.

Let X, Y be irreducible. A meromorphic map $F: X \to Y$ is an irreducible analytic subset F of $X \times Y$ such that: there are an analytic subset $A \subset X$ and an analytic subset $F_1 \subset F$ such that $F \setminus F_1$ is the graph of a morphism $X \setminus A \to Y$.

In particular one has $F_1 = \operatorname{pr}_X^{-1}(A) \cap F$ (*F* being irreducible). For every subset $Z \subset X$ we put $F(Z) = \operatorname{pr}_F(\operatorname{pr}_X^{-1}(Z) \cap F)$ and we call F(Z) the *image* of Z by F. A point $x \in A$ is said to be *regular* for F if there is a neighborhood U of x and a morphism $f: U \to Y$ such that $f|_{U \supset A} = F_{U \supset A}$.

Let $\dot{\Omega} = \Omega(\dot{F})$ be the subset of regular points of $F: \Omega$ is open and Sing $(F) = X \setminus \Omega$ is called the *singular locus* of F. Let X be normal. Then it can be proved ([11]) that:

(i) if F(x) is compact and $\neq \emptyset$ for every x, then Sing (F) is an analytic subset of codimension ≥ 2 ;

(ii) a point x is regular for F iff F(x) has a connected component of dimension 0.

2) Let X be a complex space. We shall say that X is meromorphically separated if for $x, y \in X, x \neq y$, there is a meromorphic function f on X, regular at x, y, such that $f(x) \neq f(y)$.

Let \mathfrak{L} be an invertible sheaf on X and denote by $A(\mathfrak{L})$ the graded algebra $\bigoplus_{n=0}^{+\infty} \Gamma(X, \mathfrak{L}^{\otimes n})$ and by $Q(\mathfrak{L})$ the quotient field of $A(\mathfrak{L})$. $Q(\mathfrak{L})$ is a field of meromorphic functions.

PROPOSITION 1.1. Let X be compact and normal and $Q(\mathfrak{L})$ separates the points of X. Then X is projective.

PROOF. Let $s_0, \ldots, s_k \in \Gamma(X, \mathbb{C}^{\otimes r})$ be such that:

$$\bigcup_{i=0}^{k} \{x \in X : s_{i}(x) = 0\} = \emptyset \quad \text{and} \quad f_{ij} = s_{i}/s_{j}, \ i, j = 0, ..., k$$

separate points of X. Let $\mathbb{P}^k = \mathbb{P}^k(\mathbb{C})$ and f be the morphism $X \to \mathbb{P}^k$ defined by $x \mapsto (s_0(x), \ldots, s_k(x))$. f is a one-to-one, proper map and f^{-1} is continuous from f(X) to X. Let N = N(X) be the open subset

of the normal points of f(X); $g = f^{-1}$ is holomorphic on N. Let $v: f(X)^* \to f(X)$ be the normalization of f(X); $f(X)^*$ is a projective variety and $\varphi = v^{-1} \circ f$ is a memomorphic map $X \to f(X)^*$ which is a morphism on $X \setminus f^{-1}(f(X) \setminus N)$. We have $\mu(x) \subset v^{-1}(f(x))$ for every $x \in X$ and furthermore $\operatorname{Sing}(\varphi)$ is an analytic subset of codimension ≥ 2 . Let $x \in \operatorname{Sing}(\varphi)$ and $y_1, \ldots, y_i \in v^{-1}(f(x))$. Let H be a hyperplane section of $f(X)^*$ such that $y_i \notin H$, $i = 1, \ldots, l$. Then $V = f(X)^* \setminus H$ is an affine variety, $x \in f^{-1}(v(H))$ and $\varphi(X \setminus f^{-1})v(H))$ Sing $(\varphi) \subset f(X)^* \setminus H$ for every $x \in X$. It follows that p extends to a morphism $\tilde{\varphi}: X \setminus f^{-1} \cdot (v(H)) \to V$. This proves that φ extends on X and $\varphi(x) \in v^{-1}(f(x))$. Hence φ is one-to-one and so is an isomorphism between X and $f(X)^*$.

2. Modifications.

1) Let X be a (connected) complex space, Y a complex subspace, I_Y the ideal of Y and $\pi: \tilde{X} \to X$ the monoidal transformation of X with center Y ([6]). The universal property of $\pi: \tilde{X} \to X$ is the following: for every complex space Z and for every morphism $f: Z \to X$ such that f^*I_Y is an invertible ideal there is a morphism $g: Z \to \tilde{X}$ (unique up to isomorphisms) such that $\pi \circ g = f$. In particular if $\tilde{X} = \pi^{-1}(Y)$ one has $I_{\tilde{Y}} = \pi^*I_Y$.

REMARK. If f^*I_Y is invertible on the complement of a proper analytic subset A of Z, then g is a meromorphic map $Z \to \tilde{X}$.

We denote by $f: (Y', X') \to (Y, X)$ a modification of irreducible complex spaces and we will refer to Y' as to the *exceptional subset* of the given modification ([6], [9]).

We say that the modification is

- a) regular if Y and X are both smooth,
- b) a point-modification if Y is zero-dimensional.

In the sequel we shall be concerned with the following problem: under what hypothesis is the modification $f: (Y', X') \to (Y, X)$ isomorphic to the monoidal transformation of X with center Y? As we shall see later, conditions may be placed on properties of the embedding $Y' \hookrightarrow X'$ or on properties of the embedding $Y \hookrightarrow X$.

2) Now let us establish some geometrical properties of regular modifications.

THEOREM 2.1. Let $f: (Y', X') \rightarrow (Y, X)$ be a regular modification of n-dimensional complex spaces. Then

(i) if dim_C Y = 0, Y' is of pure dimension n - 1,

(ii) Y' is of dimension n-1 and it is of dimension >n-2 at every point $x \in Y'$,

(iii) the connected components of Y' of dimension n-2 are fibres.

In particular if dim_c Sing $(X') \leq n-3$ then Y' is of pure dimension n-1.

PROOF. We first remark that for algebraic varieties (or for algebraic spaces as well) it can be proved that Y' is actually of pure dimension n-1 ([5]). From this remark the affirmation (i) follows immediately.

We shall prove (ii) by induction on *n*. Let $d = \dim_{\mathbb{C}} Y$, $a \in Y$ and $p = \dim_{\mathbb{C}} f^{-1}(a)$. Let *U* be a neighborhood of *a* in *X* such that: $\dim_{\mathbb{C}} f^{-1}(y) < p$ for every $y \in U$, *U* is a fibration $\varphi: U \to \gamma$, where γ is an analytic curve, and $Y_{\lambda} = U_{\lambda} \cap Y$, $U_{\lambda} = \varphi^{-1}(\lambda)$, is a submanifold of dimension d-1. Let us assume U_{λ} is defined by $h_{\lambda} = 0$, h_{λ} holomorphic, and let $V_{\lambda} = \overline{f^{-1}(U_{\lambda} \setminus Y)}$. V_{λ} is an irreducible analytic subset of $f^{-1}(U)$ and $f_{\lambda} = f|_{V_{\lambda}}$ gives a modification $V_{\lambda} \to U$ with exceptional subset $E_{\lambda} = V_{\lambda} \cap f^{-1}(Y)$.

Let $\lambda_0 \in \gamma$; by the induction hypothesis one has two possibilities: a) E_{λ_0} is of pure dimension n-2; b) E_{λ_0} is reduced to a point and f_{λ_0} is an isomorphism.

In the case b), for every point 0 of Y_{k_0} the corresponding fibre of f is either of dimension 0 or it has an irreducible component of dimension 1 (actually $\dim_{\mathbb{C}} V_{\lambda} \cap f^{-1}(y) = 0$). In the first case we have that $\dim_{\mathbb{C}} f^{-1}(y_0) = 0$ for an $y_0 \in Y_{\lambda_0}$ and therefore for all y in a neighborhood. It follows that f is a local isomorphism. In the second one $f^{-1}(Y_{\lambda_0})$ has an irreducible component of dimension d < n-2. This is impossible because then the analytic subset defined by $h_{\lambda_0} \circ f = 0$ would have an irreducible component of codimension > 1.

Let us suppose that case a) holds so that E_{λ_0} is of pure dimension n-2. From the above discussion it follows that E_{λ} is of pure dimension n-2 for every $\lambda \in \gamma$, thus dim_C Y' = n-1. Now assume

$$Y' = Y'_1 \cup \ldots \cup Y'_i \cup Z_1 \cup \ldots \cup Z_k$$

where Y'_{j} is irreducible and (n-1)-dimensional for j = 1, ..., l and

 Z_i is irreducible of dimension $\langle n-2$ for i=1, ..., k. We have $f(Y'_i) = Y$ for at least one i (and suppose i=1) and $Y'_i \cap Y'_i \neq \emptyset$, $Z_j \cap Y'_i \neq \emptyset$ for every i, j (the fibres being connected). Let $y_1 = f(x_1)$ where $x_1 \in Z_1 \setminus Y'_1$ and let V_0 be a submanifold of U through y_0 defined by h = 0. The analytic subset Y, defined by $h \circ f = 0$, is of pure dimension n-1 and $\overline{f^{-1}(V_0 \setminus Y)}$ is an irreducible component of W. Let W_0 be an irreducible component of W containing x_0 ; then: $W_0 \subset Z_1$ and $f|_{W_0}$ gives a modification $W_0 \to V_0$. It follows that $W_0 \cap Z_1$ is of pure dimension n-2 or that $f|_{W_0}$ is an isomorphism. In view of the fact that $W_0 \cap Z_1$ is the zero-set of $h \circ f|_{Z_1}$ and that Z_1 is irreducible, we have $Z_1 \subset W_0$ and $\dim_{\mathbb{C}} Z_1 = n-2$. This proves part (ii) of the statement.

If $x'_1 \in Z_1 \setminus Y'_1$ is another point such that $f(x'_1) = y'_1 \neq y_1$ then, by repeating the above argument with respect to a variety V_1 through x'_1 parallel to V_0 , we get a contradiction. Therefore we have $f(Z_j) = y_j$ for j = 1, ..., k. In particular every Z_j is compact and the connected components of $\bigcup_{j=1}^{k} Z_j$ are fibres. This proves part (iii) of the statement. Finally, if dim_C Sing $(X') \leq n - 3$, then $Z_j \notin \text{Sing } (X')$, j = 1, ..., k; in view of the jacobian criterium f is an isomorphism at every point of $Z_j \setminus \text{Sing } (X')$, j = 1, ..., k, therefore $Z_1 = ... = Z_k = \emptyset$ and Y' is of pure dimension n - 1.

REMARK. It was proved in [10] that if X' is meromorphically separated and X is *locally factorial* (i.e., the local rings $\mathcal{O}_{x,x}$ are U.F.D.) then Y' is of pure codimension 1.

COBOLLARY 2.2. Let $f: X' \to X$ be a proper morphism of irreducible complex spaces and let $Y' \subset X'$, $Y \subset X$ be irreducible complex subspaces of codimension 1 such that f(Y') = Y. Assume X smooth and that $f|_{X \setminus Y'}$ is an isomorphism onto $X \setminus Y$. Then f is an isomorphism.

3. Structure theorems.

1) Let us go back to the initial problem, i.e., the description of modification of complex spaces.

If X is a complex space and Y is a complex subspace we shall denote by $\pi: (\tilde{Y}, \tilde{X}) \to (Y, X)$ the monoidal transformation of X with center Y.

PROPOSITION 3.1. Let $f: (Y', X') \to (Y, X)$ be a modification where Y' is irreducible, $I_{\tilde{Y}}$ and f^*I_{Y} are invertible. Assume \tilde{X} is locally factorial and that \tilde{Y} is irreducible. Then the modifications $f: (Y', X') \to (Y, X)$ and $\pi: (\tilde{Y}, \tilde{X}) \to (Y, X)$ are isomorphic.

PROOF. Assume that X' is normal and consider the meromorphic map $g: X' \to \tilde{X}$ determined by f^*I_Y . For a generic $x \in \tilde{Y}$, the fibre $g^{-1}(x)$ is discrete and therefore reduced to a single point x'. Thus gis an isomorphism at x'. The subset A of the points where g is not a local isomorphism is of codimension ≥ 1 in Y' (Y' being irreducible) and of codimension ≥ 2 in X'. We have $A = \{a \in \tilde{Y} : \dim_{\mathbb{C}} g^{-1}(a) \ge 1\}$.

Let $b \in B = g^{-1}(A)$ and a = g(b) and let ξ be a generator of $I_{\tilde{r},a}$. Let η be $\xi \circ g$ and let h be a generator of $I_{r',b}$; $h/\eta = \lambda$ is a holomorphic function on $U \cap (X' \setminus B)$ (U being a neighborhood of b in X') therefore λ is holomorphic on U. It follows that the pull-back $g_a^* \colon \mathcal{O}_{\tilde{x},g(a)} \to \mathcal{O}_{x',a}$ induces an isomorphism $I_{\tilde{r},g(a)} \approx I_{r',a}$. This implies that g_a^* is an isomorphism ($I_{\tilde{r},g(a)}$ and $I_{r',a}$ are invertible!). Thus $A = \emptyset$ and g is an isomorphism.

In the general case let $v: X'^* \to X'$ be the normalization of X', $W = v^{-1}(Y)$ and $z \in W \cap \operatorname{Sing}(X'^*)$. Let $h \in I_{W,z}$ be holomorphic on U, x = v(z) and 'h be a generator of $I_{Y',z}$. The function $\mu = h/h \circ v$ is holomorphic on $U \setminus \operatorname{Sing}(X'^*)$ and, therefore, on U. This proves that I_W is an invertible ideal.

From the first part of the proof it follows that there is an isomorphism $\theta: X'^* \to \tilde{X}$ such that $v \circ \theta^{-1} \circ g = \mathrm{id}_{x'}$, $\theta^{-1} \circ g \circ v = \mathrm{id}_{x}$. Thus v and g are isomorphisms and this concludes the proof.

Now let X' be normal, Y' be an irreducible complex projective bundle $P(\mathfrak{L})$ on Y where \mathfrak{L} is a locally free sheaf on Y of rank r + 1and $r + \dim_{\mathbb{C}} Y = n - 1$ $(n = \dim_{\mathbb{C}} X)$. Let $f: (Y', X') \to (Y, X)$ be a modification such that $f|_{r'}$ is the natural projection $P(\mathfrak{L}) \to Y$. Let $\mathcal{O}_{\mathbf{P}(\mathfrak{I})}(1)$ be the fundamental sheaf on $P(\mathfrak{L})$.

THEOREM 3.2. Let $I_{r'}$ be invertible. Then

(i) $I_{r'}/I_{r'}^2$ is locally isomorphic to $\mathfrak{O}_{\mathbf{P}(\mathfrak{I})}(m)$ where m > 0.

(ii) $I_{r'}$ is an ample sheaf with respect to f and the modification is isomorphic to the monoidal transformation $\pi: (\tilde{Y}, \tilde{X}) \to (Y, X)$.

PROOF. (i) Since the problem is local with respect to Y we can assume that $Y' = Y \times \mathbb{P}^r$. Let $y \in Y$. Then there are two invertible

sheaves \mathcal{L}_1 on Y and \mathcal{L}_2 on \mathbf{P}^r such that

$$I_{\mathbf{r}'}/I_{\mathbf{r}'}^2 \approx p_1^* \mathfrak{L}_1 \otimes_{\mathbf{0}_{\mathbf{r}}} p_2^* \mathfrak{L}_2$$

 $(p_1, p_2 \text{ natural projections})$ ([7]) so that we can assume $\mathfrak{L}_2 \approx \mathfrak{O}_{\mathbf{P}'}(m)$ and $\mathfrak{L}_1 \approx \mathfrak{O}_{\mathbf{r}'}$. It follows that $I_{\mathbf{r}'}/I_{\mathbf{r}'}^2 \approx \mathfrak{O}_{\mathbf{P}(\mathbf{J})}(m)$. One has $m \ge 0$. If not, as $\Gamma(\mathbf{P}^r, \mathfrak{O}_{\mathbf{P}'}(m)) = 0$ for m < 0, we have $\Gamma(\mathbf{Y}', I_{\mathbf{r}'}/I_{\mathbf{r}'}^{2\otimes k}) = 0$ for every $k \ge 1$. Then, from the exact sequence

$$0 \to I_{\mathbf{r}'}^k/I_{\mathbf{r}'}^{k+1} \to I_{\mathbf{r}'}/I_{\mathbf{r}'}^{k+1} \to I_{\mathbf{r}'}/I_{\mathbf{r}'}^k \to 0$$

it follows that $\Gamma(Y', I_{r'}/I_{r'}^k) = 0$ for every k=1.

Let $u \neq 0$ be an element of $\Gamma(X, I_{r'})$ and $y' \in Y'$: there is $k \geq 2$ such that $v = u \circ f \notin I_{r',y'}^k$. Thus v gives a non zero element in $\Gamma(X', I_{r'}/I_{r'}^k)$: contradiction.

Now assume m = 0. Then $Y_{\mathbf{r}'}/I_{\mathbf{r}'}^2$ is isomorphic to $\mathcal{O}_{\mathbf{r}'}$. Let $Y = \bigcup_{i \in I} U_i$, where U_i is open in X' and such that $I_{\mathbf{r}'|\mathcal{O}_i}$ is generated by h_i .

We can assume that $h_i/h_{jU_i|\cap U_j} = 1$. Let h be a holomorphic function on a neighborhood of Y' vanishing on Y' and let $\beta_i = h/h_i$. We have $\lambda_i \in \mathcal{O}(U_i)$ and $\lambda_i = \lambda_i$ on $U_i \cap U_j \cap Y'$. Thus h determines a holomorphic function λ on Y' (which is constant on each fibre). The zero-set Z of h has Y' as an irreducible component; let Z be $Y' \cup Z'$: Z' is of pure codimension 1 and $\dim_{\mathbb{C}} Z' \cap Y' = n-2$. Take $h = g \circ f$ where g is a holomorphic function on X vanishing on Y. Then $Z' \cap Y'$ intersects each fibre of f but it does not contain all fibres. This is a contradiction because then λ would have different values on a fibre. Thus $I_{Y'}/I_{Y'}^2$ is locally isomorphic to $\mathcal{O}_{\mathbf{P}(\tilde{J})}(m)$ where m > 0.

(ii) Let us denote by $I_{(y)}$ the algebraic restriction of $I_{r'}$ to $f^{-1}(y)_0$. Part (i) implies that the reduced sheaf $I_{(y)}^{\text{red}}$ is isomorphic to $\mathcal{O}_{\mathbf{P}'}(m)$. Therefore $I_{(y)}$ is ample on $f^{-1}(y)_0$.

In view of a result of Schneider ([9]) $I_{r'}$ is ample with respect to f, hence we can assume that there exists a closed embedding $\varphi \colon X' \hookrightarrow X \times \mathbb{P}^{N}$ (for a suitable N) such that $\varphi^* \mathcal{O}_{\mathbb{P}^{N}}(1) \approx I_{r'}^{l}$.

In view of the theorem of Grauert and Remmert on projective morphisms (cf. [4]), for every coherent sheaf \mathcal{F} on X' and for every compact $K \subset X$ there is an integer n_0 such that $R^1 f_*(\mathcal{F} \otimes I_{r'}^{nl})|_{\mathcal{F}} = 0$

for every $n = n_0$. From the exact sequence

$$0 \to I_{r'}^{k+1} \to I_{r'}^k \to \mathcal{O}_{\mathbf{P}(\mathfrak{J})}(km) \to 0$$

decreasing induction on k implies that $R^1 f_*(I_{Y'}^l)|_{\kappa} = 0$ for every l = 0. Arguing as in [10] (Théorème 2.2.3) we get part (ii) of the statement.

REMARK. The above theorem tells us that a modification which « blows-down a projective bundle » Y' is always isomorphic to a monoidal transformation (provided $I_{r'}$ is invertible).

2) In this final part we shall prove that, under natural hypothesis, every regular modification $f: (Y', X') \to (Y, X)$ is isomorphic to the monoidal transformation $\pi: (\tilde{Y}, \tilde{X}) \to (Y, X)$.

This was proved in [5] for algebraic normal varietis and that proof extends to normal algebraic spaces as well, by passing to an « étale » covering and applying the « descent property » ([3]).

For complex manifolds the theorem was proved in [6].

We proceed in several steps.

LEMMA 3.3. A regular point-modification $f: (Y', X') \to (y_0, X)$ of irreducible complex spaces such that $I_{r'}$ is invertible, is isomorphic to the monoidal transformation $\pi: (\tilde{Y}, \tilde{X}) \to (y_0, X)$.

PROOF. We can assume X is \mathbb{P}^n and that X' is a compact Moišezon space therefore a complete \mathbb{C} -algebraic space ([2]). We have $\dim_{\mathbf{C}} \operatorname{Sing}(X') \leq n-2$ because $I_{r'}$ is invertible. Let $r: X'^* \to X$ be the normalizati on of X' and put $W = r^{-1}(Y')$: W is irreducible. Let $z \in W \cap \text{Sing}(X'^*), x = v(z) \text{ and let } h \in I_{w,z} \text{ be holomorphic on a neigh-}$ borhood U of z and 'g a generator of $I_{r',x}$. The function $h/g \circ v$ is holomorphic on $U \setminus \text{Sing}(X^{*})$ and therefore on U. It follows that $g \circ v$ generates locally I_w . Then, by the previous remark, the modification $g: (W, X'^*) \rightarrow (y_0, X)$ is isomorphic to the monoidal transformation. Let $x \in W \approx \mathbb{P}^{n-1}$ and let z_1, \ldots, z_n be local coordinates at y_0 such that $z_1(y_0) = \ldots = z_n(y_0) = 0$. Let $x_\alpha = z_\alpha \circ g$, $\alpha = 1, \ldots, n$, and let us assume that x_1 generates $I_{W,x}$. Let y = v(x) and let ξ be a generator of $I_{Y',y}$. On a neighborhood of y the zero-sets of ξ , $z_1 \circ f$ coincide, so that $\xi^s = (\lambda(t_1 \circ f))$, where λ is invertible and $s \in \mathbb{N}$, and therefore $(\xi \circ \nu)^s = (\lambda \circ \nu) x_1$. On the other hand, as $\xi \circ \nu$ generates $I_{W,x}$, we have also $x_1 = \mu(\xi \circ \nu)$ where μ is invertible. Thus s = 1 and $z_1 \circ f$ generates $I_{Y',y}$. In particular if I_0 denotes the ideal sheaf of $\{y_0\}$, $f^*I_0 = I_{Y'}$ is

302

invertible and, in view of the Proposition 2.1, $(Y', X') \rightarrow (y_0, X)$ is isomorphic to the monoidal transformation.

REMARKS. In the previous statement, the hypothesis that $I_{Y'}$ is invertible can be replaced by the following ones: Y' is geometrical principal (i.e., Y' is locally a zero-set of a holomorphic function) and X' is a regular in codimension 1. Namely we have the

LEMMA 3.4. Let $(Y', X') \rightarrow (y_0, X)$ be a regular point-modification of irreducible algebraic varieties. Assume that Y' is geometrically principal and that X' is regular in codimension 1. Then the sheaf f^*I_0 is invertible.

PROOF. We can assume that X and X' are complete. Let $y \in Y'$ and h be a local equation for Y' on a neighborhood U of y. Let u be a rational function on X such that $h = u \circ f$ and put u = q/r where q, r are rational functions on X without common factors in \mathcal{O}_{x,v_0} . We observe that $q(y_0) = 0$. Let (h) denote the divisor of h. On U we have (h) = lY', l > 0, and therefore $(h) = (f \circ q) - (f \circ r) > 0$. As q and r have no common factor in $\mathcal{O}_{x,v_0}, f \circ q$ is a positive divisor on a neighborhood V of y and on V one has: $(f \circ q) = mY', m > 0$. Let ψ be in $f^*I_0^m$ (or in $I_{T',y}^m$): we have $(f \circ \psi) - (f \circ q) > 0$ on V, so that $f \circ \psi =$ $= \beta f \circ q, \beta \in \mathcal{O}_{x',y}$. This proves that $f^*I_0^m$ (and $I_{T'}^m$) are invertible and therefore that $f^*I_0^m$ (and $I_{x'}$) are invertible $(\mathcal{O}_{x',y}$ being local).

LEMMA 3.5. Let $(Y', X') \xrightarrow{f} (y_0, X)$ be a regular point-modification of complex compact surfaces. Assume that X' is normal. Then the modification is isomorphic to a product of monoidal transformations.

PROOF. Let $Y' = C_1 \cup ... \cup C_k$ be the irreducible decomposition of Y' and let $\hat{X}' \xrightarrow{\pi} X'$ be a desingularization of X': in view of the fundamental theorem of surface theory ([8]), $F = f \circ \pi : \hat{X}' \to X$ is a product of monoidal trasformations. Furthermore the exceptionl set E of F is

$$C_1^* \cup \ldots \cup C_k^* \cup D_1 \cup \ldots \cup D_k$$

where C_i^* , D_i^* are projective lines and

 $(C_i^{st 2}) = -1, \qquad (D_i^2) = -1, \qquad 1 \! < \! j \! < \! k, \ 1 \! < \! i \! < \! l.$

We may blow-down the curves D_1, \ldots, D_i in such a way as to get a regular surface X'_0 with a morphism $\pi_0: X'_0 \to X'$ which is actually an isomorphism (X' being normal).

LEMMA 3.6. Let $f: (Y', X') \rightarrow (y_0, X)$ be a regular point-modification of complex compact surfaces. Assume Y' is geometrically principal. Then the modification is a product of monoidal transformations.

PROOF. Let us assume for simplicity that Y' is irreducible. We may restrict ourselves to the following case: X is \mathbb{P}^2 and X' is algebraic. By passing to a non-singular model of X' and arguing as in the previous lemma we find a modification $\pi: (\tilde{Y}, \tilde{\mathbb{P}}^2) \to (Y', X')$ (where $g: (\tilde{Y}, \tilde{\mathbb{P}}^2) \to (y_0, X)$ is a product of monoidal transformations and $f \circ \pi = g$). Let I_0 be the ideal sheaf of $\{y_0\}$ and let z_1, z_2 be rational functions on X giving local coordinates at y_0 (and $z_1(y_0) = z_2(y_0) = 0$). Let $y_1 = z_1 \circ f$, $y_2 = z_2 \circ f$, $x_1 = z_1 \circ g$ and $x_2 = z_2 \circ g$. The invertible ideal $I_{\tilde{Y}}$ is generated by x_1 or x_2 and there are two points $b_1, b_2 \in \tilde{Y}$, such that $I_{\tilde{Y},x} = x_1 \mathcal{O}_{\tilde{X},x} = x_2 \mathcal{O}_{\tilde{X},x}$ for $x \neq b_1, b_2$. Let $c = \pi(x) \neq \pi(b_1), \pi(b_2)$: $y_2 = 0$ is a local equation for Y' at c. We have $y_2 \circ \pi = ux_1$ where $u = (p/q) \circ g$ is invertible in $\mathcal{O}_{\tilde{X},y}$ and p, q are polynomials in z_1, z_2 without common factors. Further

$$p/q = rac{lpha_0 z_1 + eta_0 z_2 + p_1}{lpha_1 z_1 + eta_1 z_2 + q_1}$$

where p_1, q_1 are polynomials of degree ≥ 2 and $\alpha_0, \beta_0, \alpha_1, \beta_1 \in \mathbb{C}, \alpha_0 \neq 0$, $\beta_0 \neq 0$. It follows that

$$(p/q)\circ f=\frac{\alpha_0 y_1+\beta_0 y_2+p_1\circ f}{\alpha_1 y_1+\beta_2 y_2+p_2\circ f};$$

p and q are coprime therefore $p \circ f$, $q \circ f$ can vanish only on Y' (locally at x). It follows that either $p \circ g$ and $q \circ g$ vanish on Y' or are invertible at x (because $(p/q) \circ g$ is invertible). In the first case $p = z_1 P_1$, $q = z_1 Q_1$ which implies $\beta_0 = \beta_1 = 0$ and $p_1 = z_1 P_2$, $q_1 = z_1 Q_2$ where $P_2(0) \neq 0$, $Q_2(0) \neq 0$. Thus $y_2 = vy_1$ where v is a unit of $\mathcal{O}_{x',c'}$. It follows that the ideal f^*I_0 is invertible on $X'_0 = X' \setminus \{\pi(b_1)\} \cup \{\pi(b_2)\}$. The morphism $X'_0 \to \tilde{P}^2$ determinated by f^*I_0 is an inverse of $\pi|_{x'_0}$ and this proves that X' is non singular in codimension 1. Now the result follows from Lemma 3.4.

REMARKS. 1) Let A_j be the analytic set defined by $z_j = 0$ and let $W_j = \overline{f^{-1}(A_j) \setminus Y'}, \ j = 1, 2$. As a consequence of the above lemma we have $W_1 \cap W_2 = \emptyset$.

2) The assumption that Y' is geometrically principal cannot be dropped.

Now we are in position to prove the

THEOREM 3.7. Let $f: (Y', X') \rightarrow (Y, X)$ be a regular modification of irreducible complex spaces. Assume that Y' is irreducible and that $I_{r'}$ is invertible. Then the modification is isomorphic to the monoidal transformation of X wich center Y.

PROOF. From the hypothesis it follows that X' is nonsingular in codimension 1. The problem is local with respect to X along Y so we may assume X is a ball in \mathbb{C}^n centered at 0 and Y is defined by $z_{d+1} = \ldots = z_n = 0$. Let ζ_j be the function $z_j \circ f$, $j = d + 1, \ldots, n$ and let W_j be the analytic set $\overline{j^{-1}(V_j \setminus Y)}$ where $V_j = \{z \in X : z_j = 0\}$, $j = d + 1, \ldots, n$. In view of Remark 1 it is easy to prove that $W_{d+1} \cap$ $\cap \ldots \cap W_n = \emptyset$. Let $y \in Y'$ and let U be a neighborhood of y and ζ_j such that $\zeta_{j|U \setminus Y} \neq 0$. Let h be a generator of $I_{r,y}$. Then we have $\zeta_j = \lambda h^m$ where λ is a unit of $\mathcal{O}_{X',y}$. Let $y' \in Y' \cap U$ be a regular point of X' and Δ a one dimensional analytic disk such that $\Delta \cap Y' =$ $= \{y'\}$. On Δ we have $h^m = \zeta_j / \lambda$ and $\zeta_j / \lambda(y') = 0$ i.e., $\zeta_j / \lambda | \Delta$ is a holomorphic function vanishing at y' and admitting a holomorphic root. This implies that m = 1 and therefore that ζ_j is a generator of $I_{r',y}$. In particular f^*I_r is invertible. The statement is now a consequence of the Proposition 3.1.

BIBLIOGRAPHY

- A. ANDREOTTI W. STOLL, Estension of holomorphic maps, Ann. of Math., 72, no. 2 (1960), pp. 312-349.
- [2] M. ARTIN, Algebraization of formal moduli. II: Existence of modifications, Ann. of Math., 91, no. 1 (1970), pp. 88-135.
- [3] M. FIORENTINI A. LASCU, Un teorema sulle trasformazioni monoidali di spazi algebrici, Ann. Sc. Norm. Sup. Pisa, 62, fasc. I (1970), pp. 65-78.
- [4] H. GRAUERT R. REMMERT, Bilder und urbilder analytischer Gerber, Ann. of Math., 68, no. 2 (1958), pp. 393-443.
- [5] A. LASCU, Sous-variétés régulièrement contractibles d'une variété algébrique, Ann. Sc. Nor. Sup. Pisa, 23, fasc. IV (1969), pp. 675-695.
- [6] B. G. MOIŠEZON, On n-dimensional compact varieties with n algebraically independent meromorphic functions I-III, Amer. Math. Soc. Transl., Ser. 2, 63 (1967).

- [7] D. MUMFORD, Lectures on curves and surfaces.
- [8] I. R. ŠAFAREVIC, Algebraic surfaces, Proc. of the Steklov Inst. of Math. (Am. Math. Soc., Providence, 1967).
- [9] H. SCHNEIDER, Familien negativer Vektorraümbündel und 1-konvexe Abbildungen, to appear in: Abh. Math. Sem. der Univ. Hamburg.
- [10] G. TOMASSINI, Modifications des espaces complexes I, Ann. di Mat. Pura e Appl., Serie IV - Tomo C111 (1975), pp. 369-395.

Manoscritto pervenuto in redazione il 22 gennaio 1979.

306