RENDICONTI

del
 SEMINARIO MATEMATICO della Università di Padova

G. TomAssini

Structure theorems for modifications of complex spaces

Rendiconti del Seminario Matematico della Università di Padova, tome 59 (1978), p. 295-306

http://www.numdam.org/item?id=RSMUP_1978__59__295_0
© Rendiconti del Seminario Matematico della Università di Padova, 1978, tous droits réservés.

L'accès aux archives de la revue «Rendiconti del Seminario Matematico della Università di Padova » (http://rendiconti.math.unipd.it/) implique l'accord avec les conditions générales d'utilisation (http://www.numdam.org/conditions). Toute utilisation commerciale ou impression systématique est constitutive d'une infraction pénale. Toute copie ou impression de ce fichier doit contenir la présente mention de copyright.

Numdam

Article numérisé dans le cadre du programme

Structure Theorems for Modifications of Complex Spaces.

G. Tomassini (*)

In this paper we are concerned with the modification of complex spaces. Given such a modification $f:\left(Y^{\prime}, X^{\prime}\right) \rightarrow(Y, X), Y^{\prime} \subset X^{\prime}, Y \subset X$, we consider the problem of a «description» of f. In this direction the main problem is the following: under what hypothesis is the given modification isomorphic to the monoidal transformation of X along Y ? The main results of the paper are that this is the case when:
a) X^{\prime} is normal, Y^{\prime} is an irreducible projective bundle $\mathbb{P}(\mathcal{L})$ on Y and the ideal $I_{Y^{\prime}}$ of Y^{\prime} is invertible (Theorem 3.2), or
b) Y^{\prime} is irreducible, $I_{Y^{\prime}}$ is invertible, Y and X are smooth (Theorem 3.7).

When X^{\prime} is smooth Theorem 3.7 was proved by Moǐšezon ([6]). An algebraic analogue of the theorem was proved by A. Lascu ([5]).

In § 1,2 we prove some results on meromorphic maps between complex spaces and on the dimension of the exceptional set Y^{\prime} of a modification.

1. Preliminaries.

1) Let $\left(X, \mathcal{O}_{X}\right)$ be a (reduced and connected) complex space. Let \mathcal{N}_{X} be the sheaf of the germs of meromorphic functions on X.

We say that a morphism $f: X \rightarrow Y$ of complex spaces is bimero-
${ }^{(*)}$ Indirizzo dell'A.: Istituto Matematico «U. Dini », Università di Firenze.
morphic if the homomorphism $M_{Y} \rightarrow f_{*} \mathcal{M}_{X}$ is an isomorphism. It can be proved that if Y is normal and $f^{-1}(y)$ is finite for every $y \in Y$, then f is an open embedding. Moreover the fibres of a bimeromorphic morphism $f: X \rightarrow Y$ (where Y is normal) are connected.

Let X, Y be irreducible. A meromorphic map $F: X \rightarrow Y$ is an irreducible analytic subset F of $X \times Y$ such that: there are an analytic subset $A \subsetneq X$ and an analytic subset $F_{1} \subset F$ such that $F \backslash F_{1}$ is the graph of a morphism $X \backslash A \rightarrow Y$.

In particular one has $F_{1}=\operatorname{pr}_{x}^{-1}(A) \cap F$ (F being irreducible). For every subset $Z \subset X$ we put $F(Z)=\operatorname{pr}_{Y}\left(\operatorname{pr}_{X}^{-1}(Z) \cap F\right)$ and we call $F(Z)$ the image of Z by F. A point $x \in A$ is said to be regular for F if there is a neighborhood U of x and a morphism $f: U \rightarrow Y$ such that $\left.f\right|_{J \backslash \Lambda}=F_{J \backslash A}$.

Let $\Omega=\Omega(F)$ be the subset of regular points of $F: \Omega$ is open and Sing $(F)=X \backslash \Omega$ is called the singular locus of F. Let X be normal. Then it can be proved ([11]) that:
(i) if $F(x)$ is compact and $\neq \emptyset$ for every x, then $\operatorname{Sing}(F)$ is an analytic subset of codimension $\geqslant 2$;
(ii) a point x is regular for F iff $F(x)$ has a connected component of dimension 0 .
2) Let X be a complex space. We shall say that X is meromorphically separated if for $x, y \in X, x \neq y$, there is a meromorphic function f on X, regular at x, y, such that $f(x) \neq f(y)$.

Let \mathfrak{L} be an invertible sheaf on X and denote by $\mathbb{A}(\mathcal{L})$ the graded algebra $\underset{n=0}{+\infty} \Gamma\left(X, \mathfrak{L}^{\otimes n}\right)$ and by $Q(\mathfrak{L})$ the quotient field of $\mathbf{A}(\mathfrak{L}) . Q(\mathcal{L})$ is a field of meromorphic functions.

Proposition 1.1. Let X be compact and normal and $Q(\mathcal{L})$ separates the points of X. Then X is projective.

Proof. Let $s_{0}, \ldots, s_{k} \in \Gamma\left(X, \mathfrak{L}^{\otimes r}\right)$ be such that:

$$
\bigcup_{i=0}^{k}\left\{x \in X: s_{i}(x)=0\right\}=\emptyset \quad \text { and } \quad f_{i j}=s_{i} / s_{j}, i, j=0, \ldots, k
$$

separate points of X. Let $\mathbb{P}^{k}=\mathbb{P}^{k}(\mathbf{C})$ and f be the morphism $X \rightarrow \mathbb{P}^{k}$ defined by $x \mapsto\left(s_{0}(x), \ldots, s_{k}(x)\right)$. f is a one-to-one, proper map and f^{-1} is continuous from $f(X)$ to X. Let $N=N(X)$ be the open subset
of the normal points of $f(X) ; g=f^{-1}$ is holomorphic on N. Let $\nu: f(X)^{*} \rightarrow f(X)$ be the normalization of $f(X) ; f(X)^{*}$ is a projective variety and $\varphi=\nu^{-1} \circ f$ is a memomorphic map $X \rightarrow f(X)^{*}$ which is a morphism on $X \backslash f^{-1}(f(X) \backslash N)$. We have $\mu(x) \subset \nu^{-1}(f(x))$ for every $x \in X$ and furthermore Sing (φ) is an analytic subset of codimension $\geqslant 2$. Let $x \in \operatorname{Sing}(\varphi)$ and $y_{1}, \ldots, y_{\imath} \in \nu^{-1}(f(x))$. Let H be a hyperplane section of $f(X)^{*}$ such that $y_{i} \notin H, i=1, \ldots, l$. Then $V=f(X)^{*} \backslash H$ is an affine variety, $x \in f^{-1}(v(\boldsymbol{H}))$ and $\left.\left.\varphi\left(X \backslash f^{-1}\right) v(H)\right)\right) \backslash \operatorname{Sing}(\varphi) \subset f(X)^{*} \backslash H$ for every $x \in X$. It follows that p extends to a morphism $\tilde{\varphi}: X \backslash f^{-1}$. $\cdot(\boldsymbol{v}(\boldsymbol{H})) \rightarrow V$. This proves that φ extends on X and $\varphi(x) \in \boldsymbol{v}^{-1}(f(x))$. Hence φ is one-to-one and so is an isomorphism between X and $f(X)^{*}$.

2. Modifications.

1) Let X be a (connected) complex space, Y a complex subspace, I_{Y} the ideal of Y and $\pi: \tilde{X} \rightarrow X$ the monoidal trasformation of X with center $Y([6])$. The universal property of $\pi: \tilde{X} \rightarrow X$ is the following: for every complex space Z and for every morphism $f: Z \rightarrow X$ such that $f^{*} I_{Y}$ is an invertible ideal there is a morphism $g: Z \rightarrow \tilde{X}$ (unique up to isomorphisms) such that $\pi \circ g=f$. In particular if $\tilde{X}=\pi^{-1}(Y)$ one has $I_{\tilde{Y}}=\pi^{*} I_{\boldsymbol{r}}$.

Remark. If $f^{*} I_{Y}$ is invertible on the complement of a proper analytic subset A of Z, then g is a meromorphic map $Z \rightarrow \tilde{X}$.

We denote by $f:\left(Y^{\prime}, X^{\prime}\right) \rightarrow(Y, X)$ a modification of irreducible complex spaces and we will refer to Y^{\prime} as to the exceptional subset of the given modification ([6], [9]).

We say that the modification is
a) regular if Y and X are both smooth,
b) a point-modification if Y is zero-dimensional.

In the sequel we shall be concerned with the following problem: under what hypothesis is the modification $f:\left(Y^{\prime}, X^{\prime}\right) \rightarrow(Y, X)$ isomorphic to the monoidal transformation of X with center Y ? As we shall see later, conditions may be placed on properties of the embedding $Y^{\prime} \hookrightarrow X^{\prime}$ or on properties of the embedding $Y \hookrightarrow X$.
2) Now let us establish some geometrical properties of regular modifications.

THEOREM 2.1. Let $f:\left(Y^{\prime}, X^{\prime}\right) \rightarrow(Y, X)$ be a regular modification of n-dimensional complex spaces. Then
(i) if $\operatorname{dim}_{\mathbf{C}} Y=0, Y^{\prime}$ is of pure dimension $n-1$,
(ii) Y^{\prime} is of dimension $n-1$ and it is of dimension $\geqslant n-2$ at every point $x \in Y^{\prime}$,
(iii) the connected components of Y^{\prime} of dimension $n-2$ are fibres.

In particular if $\operatorname{dim}_{\mathbf{C}} \operatorname{Sing}\left(X^{\prime}\right) \leqslant n-3$ then Y^{\prime} is of pure dimension $n-1$.

Proof. We first remark that for algebraic varieties (or for algebraic spaces as well) it can be proved that Y^{\prime} is actually of pure dimension $n-1$ ([5]). From this remark the affirmation (i) follows immediately.

We shall prove (ii) by induction on n. Let $d=\operatorname{dim}_{C} Y, a \in Y$ and $p=\operatorname{dim}_{\mathbf{C}} f^{-1}(a)$. Let U be a neighborhood of a in X such that: $\operatorname{dim}_{\mathbf{C}} f^{-1}(y) \leqslant p$ for every $y \in U, U$ is a fibration $\varphi: U \rightarrow \gamma$, where γ is an analytic curve, and $Y_{\lambda}=U_{\lambda} \cap Y, U_{\lambda}=\varphi^{-1}(\lambda)$, is a submanifold of dimension $d-1$. Let us assume U_{λ} is defined by $h_{\lambda}=0$, - h_{λ} holomorphic, and let $V_{\lambda}=\overline{f^{-1}\left(U_{\lambda} \backslash Y\right)} . \quad V_{\lambda}$ is an irreducible analytic subset of $f^{-1}(U)$ and $f_{\lambda}=\left.f\right|_{V_{\lambda}}$ gives a modification $V_{\lambda} \rightarrow U$ with exceptional subset $E_{\lambda}=V_{\lambda} \cap f^{-1}(Y)$.

Let $\lambda_{0} \in \gamma$; by the induction hypothesis one has two possibilities: a) $E_{\lambda_{0}}$ is of pure dimension $\left.n-2 ; b\right) E_{\lambda_{0}}$ is reduced to a point and $f_{\lambda_{0}}$ is an isomorphism.

In the case b), for every point 0 of $Y_{k_{0}}$ the corresponding fibre of f is either of dimension 0 or it has an irreducible component of dimension 1 (actually $\operatorname{dim}_{C} V_{\lambda} \cap f^{-1}(y)=0$). In the first case we have that $\operatorname{dim}_{C} f^{-1}\left(y_{0}\right)=0$ for an $y_{0} \in Y_{\lambda_{0}}$ and therefore for all y in a neighborhood. It follows that f is a local isomorphism. In the second one $f^{-1}\left(Y_{\lambda_{0}}\right)$ has an irreducible component of dimension $d \leqslant n-2$. This is impossible because then the analytic subset defined by $h_{\lambda_{0}} \circ f=0$ would have an irreducible component of codimension >1.

Let us suppose that case a) holds so that $E_{\lambda_{0}}$ is of pure dimension $n-2$. From the above discussion it follows that E_{λ} is of pure dimension $n-2$ for every $\lambda \in \gamma$, thus $\operatorname{dim}_{C} Y^{\prime}=n-1$. Now assume

$$
Y^{\prime}=Y_{1}^{\prime} \cup \ldots \cup Y_{\imath}^{\prime} \cup Z_{1} \cup \ldots \cup Z_{k}
$$

where \bar{Y}_{j}^{\prime} is irreducible and $(n-1)$-dimensional for $j=1, \ldots, l$ and
Z_{i} is irreducible of dimension $\leqslant n-2$ for $i=1, \ldots, k$. We have $f\left(Y_{i}^{\prime}\right)=Y$ for at least one i (and suppose $i=1$) and $Y_{i}^{\prime} \cap Y_{l}^{\prime} \neq \emptyset$, $Z_{j} \cap Y_{l}^{\prime} \neq \emptyset$ for every i, j (the fibres being connected). Let $y_{1}=f\left(x_{1}\right)$ where $x_{1} \in Z_{1} \backslash Y_{1}^{\prime}$ and let V_{0} be a submanifold of U through y_{0} defined by $h=0$. The analytic subset Y, defined by $h \circ f=0$, is of pure dimension $n-1$ and $\overline{f^{-1}\left(V_{0} \backslash Y\right)}$ is an irreducible component of W. Let W_{0} be an irreducible component of W containing x_{0}; then: $W_{0} \subset Z_{1}$ and $\left.f\right|_{W_{0}}$ gives a modification $W_{0} \rightarrow V_{0}$. It follows that $W_{0} \cap Z_{1}$ is of pure dimension $n-2$ or that $\left.f\right|_{W_{0}}$ is an isomorphism. In view of the fact that $W_{0} \cap Z_{1}$ is the zero-set of $\left.h \circ f\right|_{Z_{1}}$ and that Z_{1} is irreducible, we have $Z_{1} \subset W_{0}$ and $\operatorname{dim}_{C} Z_{1}=n-2$. This proves part (ii) of the statement.

If $x_{1}^{\prime} \in Z_{1} \backslash Y_{1}^{\prime}$ is another point such that $f\left(x_{1}^{\prime}\right)=y_{1}^{\prime} \neq y_{1}$ then, by repeating the above argument with respect to a variety V_{1} through x_{1}^{\prime} parallel to V_{0}, we get a contradiction. Therefore we have $f\left(Z_{j}\right)=y_{j}$ for $j=1, \ldots, k$. In particular every Z_{j} is compact and the connected components of $\bigcup_{j=1}^{k} Z_{j}$ are fibres. This proves part (iii) of the statement. Finally, if $\operatorname{dim}_{\mathrm{C}} \operatorname{Sing}\left(X^{\prime}\right) \leqslant n-3$, then $Z_{j} \notin \operatorname{Sing}\left(X^{\prime}\right), j=1, \ldots, k$; in view of the jacobian criterium f is an isomorphism at every point of $Z_{j} \backslash \operatorname{Sing}\left(X^{\prime}\right), j=1, \ldots, k$, therefore $Z_{1}=\ldots=Z_{k}=\emptyset$ and Y^{\prime} is of pure dimension $n-1$.

Remark. It was proved in [10] that if X^{\prime} is meromorphically separated and X is locally factorial (i.e., the local rings $\mathcal{O}_{x, x}$ are U.F.D.) then Y^{\prime} is of pure codimension 1.

Corollary 2.2. Let $f: X^{\prime} \rightarrow X$ be a proper morphism of irreducible complex spaces and let $Y^{\prime} \subset X^{\prime}, Y \subset X$ be irreducible complex subspaces of codimension 1 such that $f\left(Y^{\prime}\right)=Y$. Assume X smooth and that $\left.f\right|_{X^{\prime} \backslash Y^{\prime}}$ is an isomorphism onto $X \backslash Y$. Then f is an isomorphism.

3. Structure theorems.

1) Let us go back to the initial problem, i.e., the description of modification of complex spaces.

If X is a complex space and Y is a complex subspace we shall denote by $\pi:(\tilde{Y}, \tilde{X}) \rightarrow(Y, X)$ the monoidal transformation of X with center Y.

Proposition 3.1. Let $f:\left(Y^{\prime}, X^{\prime}\right) \rightarrow(Y, X)$ be a modification where Y^{\prime} is irreducible, $I_{\tilde{Y}}$ and $f^{*} I_{F}$ are invertible. Assume \tilde{X} is locally factorial and that \tilde{Y} is irreducible. Then the modifications $f:\left(Y^{\prime}, X^{\prime}\right) \rightarrow$ $\rightarrow(Y, X)$ and $\pi:(\tilde{Y}, \tilde{X}) \rightarrow(Y, X)$ are isomorphic.

Proof. Assume that X^{\prime} is normal and consider the meromorphic $\operatorname{map} g: X^{\prime} \rightarrow \tilde{X}$ determined by $f^{*} I_{Y}$. For a generic $x \in \tilde{Y}$, the fibre $g^{-1}(x)$ is discrete and therefore reduced to a single point x^{\prime}. Thus g is an isomorphism at x^{\prime}. The subset A of the points where g is not a local ismorphism is of codimension $\geqslant 1$ in Y^{\prime} (Y^{\prime} being irreducible) and of codimension $\geqslant 2$ in X^{\prime}. We have $A=\left\{a \in \tilde{Y}: \operatorname{dim}_{\mathrm{C}} g^{-1}(a) \geqslant 1\right\}$.

Let $b \in B=g^{-1}(A)$ and $a=g(b)$ and let ξ be a generator of $\dot{I}_{\vec{r}, a}$. Let η be $\xi \circ g$ and let h be a generator of $I_{Y^{\prime}, b} ; h / \eta=\lambda$ is a holomorphic function on $U \cap\left(X^{\prime} \backslash B\right)$ (U being a neighborhood of b in X^{\prime}) therefore λ is holomorphic on U. It follows that the pull-back $g_{a}^{*}: \mathcal{O}_{\tilde{\tilde{x}}, \boldsymbol{g}(a)} \rightarrow \mathcal{O}_{\boldsymbol{X}^{\prime}, a}$ induces an isomorphism $I_{\tilde{Y}, g(a)} \approx I_{\boldsymbol{Y}^{\prime}, a}$. This implies that g_{a}^{*} is an isomorphism ($I_{\tilde{r}, g(a)}$ and $I_{r^{\prime}, a}$ are invertible!). Thus $A=\emptyset$ and g is an isomorphism.

In the general case let $\nu: X^{\prime *} \rightarrow X^{\prime}$ be the normalization of X^{\prime}, $W=\nu^{-1}(Y)$ and $z \in W \cap \operatorname{Sing}\left(X^{\prime *}\right)$. Let $h \in I_{W, z}$ be holomorphic on U, $x=\nu(z)$ and ' h be a generator of $I_{r^{\prime}, x}$. The function $\mu=h / ' h \circ v$ is holomorphic on $U \backslash \operatorname{Sing}\left(X^{* *}\right)$ and, therefore, on U. This proves that I_{W} is an invertible ideal.

From the first part of the proof it follows that there is an isomorphism $\theta: X^{\prime *} \rightarrow \tilde{X}$ such that $\nu \circ \theta^{-1} \circ g=\mathrm{id}_{X^{\prime}}, \theta^{-1} \circ g \circ v=\mathrm{id}_{\boldsymbol{z}}$. Thus ν and g are isomorphisms and this concludes the proof.

Now let X^{\prime} be normal, Y^{\prime} be an irreducible complex projective bundle $\mathbb{P}(\mathcal{L})$ on Y where \mathcal{L} is a locally free sheaf on Y of rank $r+1$ and $r+\operatorname{dim}_{C} Y=n-1\left(n=\operatorname{dim}_{C} X\right)$. Let $f:\left(Y^{\prime}, X^{\prime}\right) \rightarrow(Y, X)$ be a modification such that $\left.f\right|_{Y^{\prime}}$ is the natural projection $\mathbb{P}(\mathcal{L}) \rightarrow Y$. Let $\boldsymbol{O}_{\mathbf{P}(\mathfrak{J})}(1)$ be the fundamental sheaf on $\mathbf{P}(\mathfrak{L})$.

Theorem 3.2. Let $I_{r^{\prime}}$ be invertible. Then
(i) $I_{Y^{\prime}} / I_{Y^{\prime}}^{2}$ is locally isomorphic to $\mathcal{O}_{\mathbf{P}_{(J)}}(m)$ where $m>0$.
(ii) $I_{Y^{\prime}}$ is an ample sheaf with respect to f and the modification is isomorphic to the monoidal transformation $\pi:(\tilde{Y}, \tilde{X}) \rightarrow(Y, X)$.

Proof. (i) Since the problem is local with respect to Y we can assume that $Y^{\prime}=Y \times \mathbb{P}^{r}$. Let $y \in Y$. Then there are two invertible
sheaves \mathscr{L}_{1} on Y and \mathcal{L}_{2} on \mathbf{P}^{r} such that

$$
I_{Y^{\prime}} / I_{Y^{\prime}}^{2} \approx p_{1}^{*} \mathfrak{L}_{1} \otimes_{0_{Y}} p_{2}^{*} \mathfrak{L}_{2}
$$

(p_{1}, p_{2} natural projections) ([7]) so that we can assume $\mathcal{L}_{2} \approx \mathcal{O}_{\mathbf{P r}}(m)$ and $\mathcal{L}_{1} \approx \mathcal{O}_{Y}$: It follows that $I_{Y^{\prime}} / I_{Y^{\prime}}^{2} \approx \mathcal{O}_{\mathbf{P}_{(J)}}(m)$. One has $m \geqslant 0$. If not, as $\Gamma\left(\mathbb{P}^{r}, \mathcal{O}_{\mathbf{P}^{r}}(m)\right)=0$ for $m<0$, we have $\Gamma\left(Y^{\prime}, I_{Y^{\prime}} / I_{Y^{\prime}}^{2 \otimes k}\right)=0$ for every $k \geqslant 1$. Then, from the exact sequence

$$
0 \rightarrow I_{Y^{\prime}}^{k} / I_{Y^{\prime}}^{k+1} \rightarrow I_{Y^{\prime}} / I_{Y^{\prime}}^{k+1} \rightarrow I_{Y^{\prime}} / I_{Y^{\prime}}^{k} \rightarrow 0
$$

it follows that $\Gamma\left(Y^{\prime}, I_{Y^{\prime}} / I_{Y^{\prime}}^{k}\right)=0$ for every $k=1$.
Let $u \not \equiv 0$ be an element of $\Gamma\left(X, I_{r^{\prime}}\right)$ and $y^{\prime} \in Y^{\prime}$: there is $k \geqslant 2$ such that $v=u \circ f \notin I_{Y^{\prime}, v^{\prime}}^{k}$. Thus v gives a non zero element in $\Gamma\left(X^{\prime}\right.$, $\left.I_{Y^{\prime}} / I_{Y^{\prime}}^{k}\right)$: contradiction.

Now assume $m=0$. Then $Y_{Y^{\prime}} / I_{Y^{\prime}}^{2}$ is isomorphic to $\mathcal{O}_{Y^{\prime}}$. Let $Y=\bigcup_{i \in I} U_{i}$, where U_{i} is open in X^{\prime} and such that $I_{Y^{\prime} \mid U_{i}}$ is generated by h_{i}.

We can assume that $h_{i} / h_{j v_{i} \mid \cap U_{j}}=1$. Let h be a holomorphic function on a neighborhood of Y^{\prime} vanishing on Y^{\prime} and let $\beta_{i}=h / h_{i}$. We have $\lambda_{i} \in \mathcal{O}\left(U_{i}\right)$ and $\lambda_{i}=\lambda_{j}$ on $U_{i} \cap U_{j} \cap Y^{\prime}$. Thus h determines a holomorphic function λ on Y^{\prime} (which is constant on each fibre). The zero-set Z of h has Y^{\prime} as an irreducible component; let Z be $\boldsymbol{Y}^{\prime} \cup Z^{\prime}: Z^{\prime}$ is of pure codimension 1 and $\operatorname{dim}_{C} Z^{\prime} \cap \bar{Y}^{\prime}=n-2$. Take $h=g \circ f$ where g is a holomorphic function on X vanishing on Y. Then $Z^{\prime} \cap Y^{\prime}$ intersects each fibre of f but it does not contain all fibres. This is a contradiction because then λ would have different values on a fibre. Thus $I_{Y^{\prime}} / I_{Y^{\prime}}^{2}$ is locally isomorphic to $\mathcal{O}_{\mathbf{P}^{\prime}(\mathcal{J})}(m)$ where $m>0$.
(ii) Let us denote by $I_{(y)}$ the algebraic restriction of $I_{\boldsymbol{F}^{\prime}}$ to $f^{-1}(y)_{0}$. Part (i) implies that the reduced sheaf $I_{(y)}^{\text {red }}$ is isomorphic to $\mathcal{O}_{\mathbf{P r}}(m)$. Therefore $I_{(y)}$ is ample on $f^{-1}(y)_{0}$.

In view of a result of Schneider ([9]) $I_{Y^{\prime}}$ is ample with respect to f, hence we can assume that there exists a closed embedding $\varphi: X^{\prime} \hookrightarrow X \times \mathbf{P}^{N}$ (for a suitable N) such that $\varphi^{*} \mathcal{O}_{\mathbf{P}^{N}}(1) \approx I_{P^{\prime}}^{l}$.

In view of the theorem of Grauert and Remmert on projective morphisms (cf. [4]), for every coherent sheaf \mathscr{F} on X^{\prime} and for every compact $K \subset X$ there is an integer n_{0} such that $\left.R^{1} f_{*}\left(\mathcal{F} \otimes I_{r^{\prime}}^{n l}\right)\right|_{\mathbb{K}}=0$
for every $n=n_{0}$. From the exact sequence

$$
0 \rightarrow I_{Y^{\prime}}^{k+1} \rightarrow I_{Y^{\prime}}^{k} \rightarrow \mathcal{O}_{\mathbf{P}(\mathfrak{J})}(k m) \rightarrow 0
$$

decreasing induction on k implies that $\left.R^{1} f_{*}\left(I_{r^{\prime}}^{l}\right)\right|_{R}=0$ for every $l=0$. Arguing as in [10] (Théorème 2.2.3) we get part (ii) of the statement.

Remark. The above theorem tells us that a modification which «blows-down a projective bundle» Y^{\prime} is always isomorphic to a monoidal transformation (provided $I_{r^{\prime}}$ is invertible).
2) In this final part we shall prove that, under natural hypothesis, every regular modification $f:\left(Y^{\prime}, X^{\prime}\right) \rightarrow(Y, X)$ is isomorphic to the monoidal transformation $\pi:(\tilde{Y}, \tilde{X}) \rightarrow(Y, X)$.

This was proved in [5] for algebraic normal varietis and that proof extends to normal algebraic spaces as well, by passing to an «étale» covering and applying the «descent property » ([3]).

For complex manifolds the theorem was proved in [6].
We proceed in several steps.
Lemma 3.3. A regular point-modification $f:\left(Y^{\prime}, X^{\prime}\right) \rightarrow\left(y_{0}, X\right)$ of irreducible complex spaces such that $I_{Y^{\prime}}$ is invertible, is isomorphic to the monoidal trasformation $\pi:(\tilde{Y}, \tilde{X}) \rightarrow\left(y_{0}, X\right)$.

Proof. We can assume X is \mathbb{P}^{n} and that X^{\prime} is a compact Moišezon space therefore a complete \mathbb{C}-algebraic space ([2]). We have $\operatorname{dim}_{C} \operatorname{Sing}\left(X^{\prime}\right) \leqslant n-2$ because $I_{Y^{\prime}}$ is invertible. Let $v: X^{* *} \rightarrow X$ be the normalizati on of X^{\prime} and put $W=\nu^{-1}\left(Y^{\prime}\right): W$ is irreducible. Let $z \in W \cap \operatorname{Sing}\left(X^{\prime *}\right), x=v(z)$ and let $h \in I_{W, z}$ be holomorphic on a neighborhood U of z and ' g a generator of $I_{r^{\prime}, x}$. The function $h /^{\prime} g \circ v$ is holomorphic on $U \backslash \operatorname{Sing}\left(X^{\prime *}\right)$ and therefore on U. It follows that ' $g \circ v$ generates locally I_{W}. Then, by the previous remark, the modification $g:\left(W, X^{\prime *}\right) \rightarrow\left(y_{0}, X\right)$ is isomorphic to the monoidal transformation. Let $x \in W \approx \mathbb{P}^{n-1}$ and let z_{1}, \ldots, z_{n} be local coordinates at y_{0} such that $z_{1}\left(y_{0}\right)=\ldots=z_{n}\left(y_{0}\right)=0$. Let $x_{\alpha}=z_{\alpha} \circ g, \alpha=1, \ldots, n$, and let us assume that x_{1} generates $I_{W, x}$. Let $y=\boldsymbol{v}(x)$ and let ξ be a generator of $I_{Y^{\prime}, y}$. On a neighborhood of y the zero-sets of $\xi, z_{1} \circ f$ coincide, so that $\xi^{s}=\left(\lambda\left(t_{1} \circ f\right)\right.$, where λ is invertible and $s \in \mathbb{N}$, and therefore $(\xi \circ v)^{s}=(\lambda \circ v) x_{1}$. On the other hand, as $\xi \circ v$ generates $I_{W, x}$, we have also $x_{1}=\mu(\xi \circ v)$ where μ is invertible. Thus $s=1$ and $z_{1} \circ f$ generates $I_{Y^{\prime}, v}$. In particular if I_{0} denotes the ideal sheaf of $\left\{y_{0}\right\}, f^{*} I_{0}=I_{Y^{\prime}}$ is
invertible and, in view of the Proposition 2.1, $\left(Y^{\prime}, X^{\prime}\right) \rightarrow\left(y_{0}, X\right)$ is isomorphic to the monoidal transformation.

Remarks. In the previous statement, the hypothesis that $I_{Y^{\prime}}$ is invertible can be replaced by the following ones: \mathbf{Y}^{\prime} is geometrical principal (i.e., Y^{\prime} is locally a zero-set of a holomorphic function) and X^{\prime} is a regular in codimension 1. Namely we have the

Lemma 3.4. Let $\left(Y^{\prime}, X^{\prime}\right) \rightarrow\left(y_{0}, X\right)$ be a regular point-modification of irreducible algebraic varieties. Assume that Y^{\prime} is geometrically principal and that X^{\prime} is regular in codimension 1. Then the sheaf $f^{*} I_{0}$ is invertible.

Proof. We can assume that X and X^{\prime} are complete. Let $y \in Y^{\prime}$ and h be a local equation for Y^{\prime} on a neighborhood U of y. Let u be a rational function on X such that $h=u$ of and put $u=q / r$ where q, r are rational functions on X without common factors in $\mathcal{O}_{x, v_{0}}$. We observe that $q\left(y_{0}\right)=0$. Let (h) denote the divisor of h. On U we have $(h)=l Y^{\prime}, l>0$, and therefore $(h)=(f \circ q)-(f \circ r)>0$. As q and r have no common factor in $\mathcal{O}_{x, v_{0}}$, $f \circ q$ is a positive divisor on a neighborhood V of y and on V one has: $(f \circ q)=m Y^{\prime}, m>0$. Let ψ be in $f^{*} I_{0}^{m}\left(\right.$ or in $\left.I_{r^{\prime}, v}^{m}\right)$: we have $(f \circ \psi)-(f \circ q) \geqslant 0$ on V, so that $f \circ \psi=$ $=\beta f \circ q, \beta \in \mathcal{O}_{X^{\prime}, y}$. This proves that $f^{*} I_{0}^{m}$ (and $I_{X^{\prime}}^{m}$) are invertible and therefore that $f^{*} I_{0}^{m}$ (and $I_{Y^{\prime}}$) are invertible ($\mathcal{O}_{X^{\prime}, v}$ being local).

Lemma 3.5. Let $\left(Y^{\prime}, X^{\prime}\right) \xrightarrow{\xrightarrow{\rightarrow}}\left(y_{0}, X\right)$ be a regular point-modification of complex compact surfaces. Assume that X^{\prime} is normal. Then the modification is isomorphic to a product of monoidal transformations.

Proof. Let $Y^{\prime}=C_{1} \cup \ldots \cup C_{k}$ be the irreducible decomposition of Y^{\prime} and let $\hat{X}^{\prime} \xrightarrow{\pi} X^{\prime}$ be a desingularization of $X^{\prime}:$ in view of the fundamental theorem of surface theory ([8]), $F=f \circ \pi: \hat{X}^{\prime} \rightarrow X$ is a product of monoidal trasformations. Furthermore the exceptionl set E of F is

$$
C_{1}^{*} \cup \ldots \cup C_{k}^{*} \cup D_{1} \cup \ldots \cup D_{l}
$$

where C_{j}^{*}, D_{i}^{*} are projective lines and

$$
\left(O_{j}^{* 2}\right)=-1, \quad\left(D_{i}^{2}\right)=-1, \quad 1 \leqslant j \leqslant k, 1 \leqslant i \leqslant l .
$$

We may blow-down the curves D_{1}, \ldots, D_{l} in such a way as to get a regular surface X_{0}^{\prime} with a morphism $\pi_{0}: X_{0}^{\prime} \rightarrow X^{\prime}$ which is actually an isomorphism (X^{\prime} being normal).

Lemma 3.6. Let $f:\left(Y^{\prime}, X^{\prime}\right) \rightarrow\left(y_{0}, X\right)$ be a regular point-modification of complex compact surfaces. Assume Y^{\prime} is geometrically principal. Then the modification is a product of monoidal transformations.

Proof. Let us assume for simplicity that Y^{\prime} is irreducible. We may restrict ourselves to the following case: X is \mathbb{P}^{2} and X^{\prime} is algebraic. By passing to a non-singular model of X^{\prime} and arguing as in the previous lemma we find a modification $\pi:\left(\tilde{Y}, \tilde{\mathbf{P}}^{2}\right) \rightarrow\left(\bar{Y}^{\prime}, X^{\prime}\right)$ (where $g:\left(\tilde{Y}, \tilde{\mathbf{P}}^{2}\right) \rightarrow\left(y_{0}, X\right)$ is a product of monoidal transformations and $f \circ \pi=g$). Let I_{0} be the ideal sheaf of $\left\{y_{0}\right\}$ and let z_{1}, z_{2} be rational functions on X giving local coordinates at y_{0} (and $z_{1}\left(y_{0}\right)=z_{2}\left(y_{0}\right)=0$). Let $y_{1}=z_{1} \circ f, y_{2}=z_{2} \circ f, x_{1}=z_{1} \circ g$ and $x_{2}=z_{2} \circ g$. The invertible ideal $I_{\tilde{Y}}$ is generated by x_{1} or x_{2} and there are two points $b_{1}, b_{2} \in \tilde{Y}$, such that $I_{\tilde{Y}, x}=x_{1} \mathcal{O}_{\tilde{x}, x}=x_{2} \mathcal{O}_{\tilde{x}, x}$ for $x \neq b_{1}, b_{2}$. Let $c=\pi(x) \neq \pi\left(b_{1}\right), \pi\left(b_{2}\right)$: $y_{2}=0$ is a local equation for Y^{\prime} at c. We have $y_{2} \circ \pi=u x_{1}$ where $u=(p / q) \circ g$ is invertible in $\mathcal{O}_{\tilde{x}, y}$ and p, q are polynomials in z_{1}, z_{2} without common factors. Further

$$
p / q=\frac{\alpha_{0} z_{1}+\beta_{0} z_{2}+p_{1}}{\alpha_{1} z_{1}+\beta_{1} z_{2}+q_{1}}
$$

where p_{1}, q_{1} are polynomials of degree $\geqslant 2$ and $\alpha_{0}, \beta_{0}, \alpha_{1}, \beta_{1} \in \mathbf{C}, \alpha_{0} \neq 0$, $\beta_{0} \neq 0$. It follows that

$$
(p / q) \circ f=\frac{\alpha_{0} y_{1}+\beta_{0} y_{2}+p_{1} \circ f}{\alpha_{1} y_{1}+\beta_{2} y_{2}+p_{2} \circ f} ;
$$

p and q are coprime therefore $p \circ f, q \circ f$ can vanish only on Y^{\prime} (locally at x). It follows that either $p \circ g$ and $q \circ g$ vanish on Y^{\prime} or are invertible at x (because ($p / q) \circ g$ is invertible). In the first case $p=z_{1} P_{1}, q=z_{1} Q_{1}$ which implies $\beta_{0}=\beta_{1}=0$ and $p_{1}=z_{1} P_{2}, q_{1}=z_{1} Q_{2}$ where $P_{2}(0) \neq 0$, $Q_{2}(0) \neq 0$. Thus $y_{2}=v y_{1}$ where v is a unit of $\mathcal{O}_{x^{\prime}, c}$. It follows that the ideal $f^{*} I_{0}$ is invertible on $X_{0}^{\prime}=X^{\prime} \backslash\left\{\pi\left(b_{1}\right)\right\} \cup\left\{\pi\left(b_{2}\right)\right\}$. The morphism $X_{0}^{\prime} \rightarrow \tilde{\mathbf{P}}^{2}$ determinated by $f^{*} I_{0}$ is an inverse of $\left.\pi\right|_{x_{0}^{\prime}}$ and this proves that X^{\prime} is non singular in codimension 1. Now the result follows from Lemma 3.4.

Remarks. 1) Let A_{j} be the analytic set defined by $z_{j}=0$ and let $W_{j}=\overline{f^{-1}\left(A_{j}\right) \backslash \bar{Y}^{\prime}}, j=1,2$. As a consequence of the above lemma we have $W_{1} \cap W_{2}=\emptyset$.
2) The assumption that \boldsymbol{Y}^{\prime} is geometrically principal cannot be dropped.

Now we are in position to prove the
THEOREM 3.7. Let $f:\left(Y^{\prime}, X^{\prime}\right) \rightarrow(Y, X)$ be a regular modification of irreducible complex spaces. Assume that Y^{\prime} is irreducible and that $I_{Y^{\prime}}$ is invertible. Then the modification is isomorphic to the monoidal transformation of X wich center Y.

Proof. From the hypothesis it follows that X^{\prime} is nonsingular in codimension 1. The problem is local with respect to X along Y so we may assume X is a ball in \mathbf{C}^{n} centered at 0 and Y is defined by $z_{d+1}=\ldots=z_{n}=0$. Let ζ_{j} be the function $z_{j} \circ f, j=d+1, \ldots, n$ and let W_{j} be the analytic set $\overline{f^{-1}\left(V_{j} \backslash Y\right)}$ where $V_{j}=\left\{z \in X: z_{j}=0\right\}$, $j=d+1, \ldots, n$. In view of Remark 1 it is easy to prove that $W_{d+1} \cap$ $\cap \ldots \cap W_{n}=\emptyset$. Let $y \in Y^{\prime}$ and let U be a neighborhood of y and ζ_{j} such that $\zeta_{j \mid J \backslash r} \neq 0$. Let h be a generator of $I_{r, v}$. Then we have $\zeta_{j}=\lambda h^{m}$ where λ is a unit of $\mathcal{O}_{x^{\prime}, y}$. Let $y^{\prime} \in Y^{\prime} \cap U$ be a regular point of X^{\prime} and Δ a one dimensional analytic disk such that $\Delta \cap Y^{\prime}=$ $=\left\{y^{\prime}\right\}$. On Δ we have $h^{m}=\zeta_{j} / \lambda$ and $\zeta_{j} / \lambda\left(y^{\prime}\right)=0$ i.e., $\zeta_{j} / \lambda \mid \Delta$ is a holomorphic function vanishing at y^{\prime} and admitting a holomorphic root. This implies that $m=1$ and therefore that ζ_{j} is a generator of $I_{r^{\prime}, v}$. In particular $f^{*} I_{Y}$ is invertible. The statement is now a consequence of the Proposition 3.1.

BIBLIOGRAPHY

[1] A. Andreotti - W. Stoll, Estension of holomorphic maps, Ann. of Math., 72, no. 2 (1960), pp. 312-349.
[2] M. Artin, Algebraization of formal moduli. II : Existence of modifications, Ann. of Math., 91, no. 1 (1970), pp. 88-135.
[3] M. Fiorentini - A. Lascu, Un teorema sulle trasformazioni monoidali di spazi algebrici, Ann. Sc. Norm. Sup. Pisa, 62, fasc. I (1970), pp. 65-78.
[4] H. Grauert - R. Remmert, Bilder und urbilder analytischer Gerber, Ann. of Math., 68, no. 2 (1958), pp. 393-443.
[5] A. Lascu, Sous-variétés régulièrement contractibles d'une variété algébrique, Ann. Sc. Nor. Sup. Pisa, 23, fasc. IV (1969), pp. 675-695.
[6] B. G. Moǐšezon, On n-dimensional compact varieties with n algebraically independent meromorphic functions I-III, Amer. Math. Soc. Transl., Ser. 2, 63 (1967).
[7] D. Mumford, Lectures on curves and surfaces.
[8] I. R. Safarevic, Algebraic surfaces, Proc. of the Steklov Inst. of Math. (Am. Math. Soc., Providence, 1967).
[9] H. Schneider, Familien negativer Vektorraümbündel und 1-konvexe Abbildungen, to appear in: Abh. Math. Sem. der Univ. Hamburg.
[10] G. Tomassini, Modifications des espaces complexes I, Ann. di Mat. Pura e Appl., Serie IV - Tomo C111 (1975), pp. 369-395.

Manoscritto pervenuto in redazione il 22 gennaio 1979.

