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On the Motion of a Non-Homogeneous Ideal
Incompressible Fluid in an External Force Field.

HUGO BEIRÃO DA VEIGA - ALBERTO VALLI (*)

1. Introduction and main results.

In this paper we consider the motion of a non-homogeneous ideal
incompressible fluid in a bounded connected open subset SZ of R2.

We denote in the sequel by v(t, x) the velocity field, by x)
the mass density and by n(t, x) the pressure. The Euler equations
of the motion are

where n = n(x) is the unit outward normal vector to the boundary r
of Q, b = b(t, x) is the external force field and a = a(x), ~Oo = 

(*) Indirizzo degli A.: University di ;Trento, Dipartimento di Fisica e
Matematica - 38050 Povo (Trento), Italy.
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are the initial velocity field and the initial mass density respectively.
When the fluid is homogeneous, i.e. the density go (and conse-

quently ~O ), is constant, equations (E) have been studied by several
authors. As regards the two-dimensional case, we recall the papers of
Wolibner [13], Leray [6], H61der [3], Schaeffer [10], Yudovich [14], [15],
Golovkin [2], Kato [5], Mc Grath [9] and Bardos [1]; for the case of a
variable boundary see Valli [12]. For the n-dimensional case we recall
the papers of Lichtenstein, Ebin and Marsden, Swann, Kato, Bour-
guignon and Brezis, Temam, Bardos and Frisch.

For non-homogeneous fluids, Marsden [8] has proved the existence
of a local solution to problem (E), under the assumption that the
external force field b(t, x) is divergence free and tangential to the
boundary, i.e. div b = 0 in QT and b . n = 0 on [0, T] xr. The proof
relies on techniques of Riemannian geometry on infinite dimensional
manifolds. See also the reference [16].

In this paper we prove the existence of a local solution of prob-
lem (E) without any restriction on the external force field b(t, x) but
we need condition (A) on the initial mass density (1).

Our techniques are based on the method of characteristics and on
Schauder’s fixed point theorem, and in this sense related to the

methods of Kato [5] and Mc Grath [9].
We prove the following results (2).

THEOREM A. Let Q be of class C3+~, 0  ~.  1, E 

with a ~ n = 0 on h, ~oo E with &#x3E; 0

for each x E D, and b E r’1 with rot b E n

n 

Moreover we assume that (1)

(1 ) Added in proo f s. In the authors’ papers « On the Euler equations for
non-homogeneous fluids » (I), (II) (to appear) condition (A) is dropped and
the three dimensional case is proved.

(2 ) The definition of K1 is given in (3.4); those of .g3 and .K4 in (7.21),
(7.11) and (7.24).
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Then there exist

such that (v, e, n) is a solution of (E) in QP1.
THEOREM B. Assume that eo and belong to min eo &#x3E; 0

and that b belongs to L’(O, T; Then problem (E) has at most

a solution (v, e, n) in the class of vector f unctions v E L°°(QT) such that

av/at, av/ax1 and are in L1( 0, T ; The pressure is unique
up to an arbitrary function of t which may be added to it. This result
holds in dimension n ~ 2.

For other uniqueness theorems see also Serrin [11].
The paper consists of two parts. In Part I we prove Theorem A

for a simply connected domain S2, and Theorem B. In Part II we

prove Theorem A in the general case, i.e. we assume that 1-’ consists
of m + 1 simple closed curves To, ..., where Ti ( j = 1, ..., m)
are inside of 1~° and outside of one another.

PART I

2. Notations.

Let Q be a bounded simply connected open subset of R2.
We denote by non negative integer, 0  ~ ~1, the

space of k-times continuously differentiable functions in Q with 1-H61der
continuous derivatives of order k ; by C°(QT) the space of continuous
functions in Q,; by C’(Ql) the space of continuously differentiable
functions in Qp.

We set

and
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We denote by 11.1100 the supremum norm, both in D or in Q,, and
by [ ’ ]~, the usual 1-H61der seminorm in S~. Furthermore we define

Finally, y we set

and analogously for the seminorms [. and [. 
If u = (u1, u2) is a vector field defined in QT, we write u E 

if U1, u2 E I and we set [u]). 0 = [ul]a,,° -E- C~c2]~,o; the same con-

vention is used for the other vector spaces and norms (in SZ or in Q,).
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We put

where w is a scalar function and u = (u1, u2) is a vector function.

3. Preliminaries.

Let ~p e with E we assume that

where A, B, C, D are positive constants that we will specify in the
following (see (4.9)).

Let y be the solution of

for each t E [0, T], i.e.

where G(x, y) is the Green function for the operator - L1 with zero
boundary condition.

It is well known that there

exist constants c Q) such that

for each X E vanishing on T.
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Moreover there exists gl = such that

It is sufficient to choose Ki = 4nK diam S2, where is such that

(see for instance Lichtenstein [7], pag. 248 ).
We obtain

LE:M:MA 3.1. Let cp E with Dtgg E CÂ,O(Qp) and let 1p be de-

f ined in (3.2). Put

Moreover div v = 0 and rot v = q~ in Q,, v. n = 0 on [0, T] X F.

PROOF. for each 

(see for instance Kato [5], Lemma 1.2), it follows from Schauder’s
estimates that v E T]; C2+Â’ (Q)); hence v, Dv, D2v E CO(Qp). More-
over estimate (3.6)1 follows directly from (3.3)1, i.e. v E CO,2+Â(Qp).
Differentiating (3.2)’ with respect to t, we have

since D199 E CO’Â(Qp), arguing as above it follows that
and (3.6)3 holds.

Applying the operator Rot to (3.7) we have

and (3.4) yields (3.6)2 and (3.6)~.
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Estimate (3.6)5 follows directly from (3.5) and (3.3)3. Finally
remark that rot Rot = - L1 and that v ~ n is a tangential derivative

of 1p at the boundary. 0

By using (3.1) one has 
’

Now we construct the stream lines of the vector field v(t, x). We
denote by c, c1, c2 , ... , constants depending at most on A and ,~2.

We put U(Q, t, x) = y(a), 0-y e[0y T], where y(o) is the solu-
tion of the ordinary differential equation

Such a solution is global since v - n - 0 on [0, T] xr; from V E el,2(Q,)
one has 

We denote by and analogously for
aE[O, T7

each norm and seminorm involving U and its derivatives.
We have:

LEMMA 3.2. The vector function U(a, t, x) satis f ies the following
estimates:
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PROOF. One obtains these estimates by direct computation of the
resolutive formula

We give only the explicity proof of (3.10 )3 . From (3.11) one gets

and

Hence one obtains

and from Gronwall’s lemma

From (3.10 )1, (3.10 )2 and (3.8)1 one obtains (3.10 )3 .
On proving (3.10 )4 and (3.105) , recall that
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We now study the equation

LEMMA 3.3. Let p0 E C2+Ä(Q) and &#x3E; 0 for each x E D. Then

the solution of (3.15 ) is given by

Moreover e E C2+~’’2+~’(Q,Z·) and

PROOF. One easily obtains (3.16) by using the method of charac-
teristics. From (3.16) one has

By using (3.10), we obtain easily estimates (3.17).
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4. The vorticity equation.

In this number we study the auxiliary equation

where a(x) - rot a(x), x) = rot b(t, x), and y(t, x) is defined in QT by

where and b are as in Theorem A.
One integrates (4.1) by the method of characteristics and one

obtains

We denote by c, Ciy c2, ..., constants that depend at most 
IIbllo,l+A, 11,Bllo,l+A and 

LEMMA 4.1. Under the above conditions the following estimates hold:

PROOF. It follows by direct computations, using (4.2), (3.8) and
(3.17). 0
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Finally we have

LEMMA 4.2. The sol2ction C(t, x) of (4.1 ) satis f ies :

where 11 DC 11 ., and are bounded respectively by (4.6), (4.7)
and (4.8).

PROOF. From (4.3), (3.10) and Lemma 4.1 it follows easily that

hence (4. ~ ) 1 holds.
From (4.1), one has Z~==2013~’V~+~ and by direct computa-

tion one obtains (4.5),, (4.5)3 and (4.5)~.
Finally, from (4.3) it follows that:
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We assume in the sequel that condition (A) of Theorem A holds, and
we choose the constants A, B, C, D such that

From (4.5), (4.6 ), (4.7) and (4.8) it follows that there exists T1 E ] o, T]
such that

where the norms are taken on the cylinder [0, T1] X S2. The set

is a convex, bounded and closed subset of 
Moreover the map .F’ : g~ ~ ~ defined by (3.2), (3.5), (3.9), (3.15)

and (4.3) satisfies

and, from (4.8),

By the Ascoli-Ärzelà theorem and (4.11), (4.13) it follows that F(S)
is relatively compact in 
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Finally, we shall see that F is continuous in the C1(QT) topology,
hence, by the Schauder fixed point theorem, one has

LEMMA 4.3..F: ~-~ has a fixed point.

PROOF. It is sufficient to prove that F is continuous from 
in CO(QT)’ since F(S) is relatively compact in Cl(QT).

Let in From (3.2) and (3.5), one has

Moreover, from (3.7) and (3.4’)

On the other hand

and from Gronwall’s lemma

hence U uniformly in [0, 
Analogously, one evaluates IDi t, x) - Di Uj(a, t, x) I by using

(3.12), and this gives

Hence uniformly in [0, Tl] X QP1. Consequently
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and

From (4.3) the thesis follows. 0

This fixed F[99], together with the corresponding v
and ~O, is a solution of the system

5. Existence of a solution of system (E) when SZ is simply connected.

Since

one has from (4.17),, (4.17)2 and (4.17)~

We recall the general identity

where ~O is an arbitrary scalar and w an arbitrary vector, and applying
it we obtain
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When Q is simply connected, y it is well known that there exists a
scalar function n e such that (E)1 holds in Qpl.

Moreover CÂ,l(Qp) n CO,2+Â(Qp): in fact n(t, x) is determined as
the integral of from a fixed point zo to x, along a path inde-
pendent of t. Since Vn E it follows that j(, E The

other statement follows directly from (E)i. Furthermore

and consequently (E), holds.
Hence we have found a solution (v,,7, ~O) to problem (E) in 

This solution verifies the regularity conditions stated in Theorem A,
as follows from Lemmas 3.1 and 3.3.

6. Uniqueness of the solution of system (E).

Let (v, n, e) and be two solutions of (E) in [0, T] 
under the conditions of Theorem B. We set 

. On subtracting the two equations (E),, we obtain

On the other hand from (E)3 one gets

where ( , ) denotes the scalar product in L2(Q) or in [L2(Q)]2. Taking
the scalar product of (6.1) with u it follows
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since

recall that and = 0.

Moreover, y on subtracting the two equations (E)3, we obtain

and taking the scalar product of (6.3) with q it follows

since (v - Vq, q) = 0.
From (6.2) and (6.4) one obtains

Set

Obviously f (o ) = 0 ; moreover from (3.16) and (3.11)

and consequently from (6.5)

where c(t) E Li(0, T). By Gronwall’s lemma f (t) vanishes identically
in [0,T], i.e. 9=,v and Qr.

Finally, from (E)l it follows that Vn = Vii in QT, i.e. a = ii up
to an arbitrary function of t,
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PART II

7. Existence of a solution of system ( E) when Q is not simply connected.

Let Q be a bounded connected open subset of R2. We assume
that 1-’ consists of m + 1 simple closed curves ... , where

( j = 1, ... , m) are inside of To and outside of one another.
We denote by v the vector field defined in (3.5) and by 

k = 11 ... , m, the vector fields introduced at the end of § 1 in [4].
We have C2+~(S~), rot = 0, div = 0 in Q and u(k).n = 0
on 1". We put

and consequently we have div v = 0 and rot v == rp in 0 on

[0, T] 
We define j(t, x) to be the solution of

Now we prove that there exist 0,(t) E Ci+A([0, T] ) such that

for ... , m. We are going to use the Schauder fixed point
theorem.

We consider the map 8k ~ v from C°([0, T]) in defined

by (7.1), the map v 1-+ ë from in defined by (7.2)
and finally the map 1-+ Ok defined by (7.3), (7.4), 7 i.e.
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for each k = 19 ... , m. We have defined

Since E n and ~ E all these
coefficients belong to T]).

The notation c, c1, c2, ... , will be used for constants depending at
most a, b, poy m, 14(k).

Assume that estimates (3.1) hold and moreover

and E is a constant that will be fixed in the

following.
One has

Define U(a, t, x) to be the solution of

one has, as in (3.10 )1:

It follows from (7.7) and (7.8) that
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From (7.2) one has q(t, x) _ x) ), hence

Define

We have from (7.5)

where - meas Q.
Let M(t) be the matrix One sees easily

for each E E Rm, and
T2 s~

The element ilks(t) of [~VI(t)]-1 has the form

where is the minor of the matrix M(t) corresponding to the
(k, s)-element of M(t).

Hence
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and by using (7.12)

Applying [.M(t)]~l to (7.3)’, one obtains

where

and analogously for the other coefficients.
Obviously the system (7.17), (7.4)’ has an unique local solution

0, (t), 1~ =1, ... , m.
Moreover, taking the scalar product of (7.17) with 0(t), one has

Hence, if we choose in (7.6), we see that there exists
T* e ]0, T] such that

If we put

and we denote by .F1 the map 8 y--~ 8 defined by (7.1), (7.2), (7.17)
and (7.4)’, we have P1(Sl) c SI.

Moreover from (7.17) and the Ascoli-Arzela theorem, it follows
that is relatively compact in CO([O, T*] ).

Finally, we see easily that is continuous, consequently
Fi has a fixed point in S1.
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Hence equation (7.3), (7.4) has a local solution 0(t) E C1+Â. We
w-ant to prove that 0(t) is a global solution.

From (7.3) we have

Moreover

and from (7.2)

Hence

Consequently

Set
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the solution y(t) of

satisfies

Hence by comparison theorems

i.e. 6(t) is a global solution in [0, T] and

Define

From (7.12), (7.15) and (7.18) one has

Consequently, from (7.17) and (7.15), (7.16)

Finally, define
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from (7.1) and (3.8) one has,

which replace estimates (3.8).
Set

by replacing v, U, e, y with v, U, ~O, y in the proofs of Lemmas 3.2,
3.3, 4.1 and by using (7.25) one obtains :

LEMMA 7.1. Let C(t, x) be the solution of

Then Lemma 4.2 is true if we substitute in (4.5), (4.6), (4.7) and (4.8)
~ with t, A with A + 1/°1100’ .g1 B with ---~- B with
B + C with C -~- 11 doldt K1D with K1D + 
Constants c and c, ei and ci must be replaced respectively by j, Ci.
We will denote these new estimates by (4.5)’, (4.6)’, (4.7)’ and (4.8)’.

Hence the existence of a solution of system (4.17) will b_e a con-

sequence of the existence of a fixed point for the map F: 99 ~ t.
_ 

First of all, we prove that there exists T1 E ]0, T] such that

F(S) c S, provided that A, B, C, D are chosen in a suitable way
in (4.11).

By using (7.20), (7.22) and (7.23), we obtain from Lemma 7.1
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that in QT one has

where the functions f are continuous, non-negative, and non-decreasing
with respect to each variable. Hence, if we fix A, B, C9 D such that

there exists Tl E ]0, T] for which

in QPl.
It is easy to verify that (7.27) has a solution, provided that condi-

tion (A) is satisfied. For example, one can choose successively
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Lemma 4.3 is proved as before, provided that .I’: ~ ~ S is continuous
from in CO(QpJ.

Hence, we must prove that if - q in C1(QT), 99. E S, then vn
and v satisfy (4.14) and (4.15). Since vn and v satisfy these last condi-
tions, y it is sufficient to prove that

uniformly in [0, TJ y

uniformly in [0, TJ ;

we begin by recalling that ©" and satisfy .

for each k = 1, ... , m.

Set now q « 
one obtains from (7.3)

On substrating (7.33) from (7.31) one has

and multipling by
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From (7.30)1

and moreover

Hence (7.34) becomes

On other hand, from (7.30) and (7.2) one obtains

and taking the scalar product with q

Set f (t) = 2 (~nu’, ~c’) -~- 2 (r~, ~) : from (7.35) and (7.36) one has
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since II 00 and are bounded, and
Hence

where cn -~ 0, and consequently by comparison theorems

Estimate (7.37) gives

i.e.

Moreover from (7.5) one has

and analogously for the other coefficient.
Consequently from (7.14) it follows that

and the same is true for each coefficient in (7.17); hence we conclude
that

As in § 4, we have proved that
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and moreover ’ 
°

for each k = 17 ... , m.

As in Kato [5], Lemma 1.6 (see also Hopf [4]), it follows that
there exists a scalar function A E such that (E)l holds in QT1.
The further regularity properties of A are proved as in § 4, since ©
has the same regularity of v. 

-

Finally, by using (7.4) one obtains that Vlt==O = a in SZ, i.e. we

have found a solution A, p) of system (E) in QT1.
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