RENDICONTI del SEMINARIO MATEMATICO della UNIVERSITÀ DI PADOVA

HUGO BEIRÃO DA VEIGA Alberto Valli

On the motion of a non-homogeneous ideal incompressible fluid in an external force field

Rendiconti del Seminario Matematico della Università di Padova, tome 59 (1978), p. 117-145

http://www.numdam.org/item?id=RSMUP_1978__59__117_0

© Rendiconti del Seminario Matematico della Università di Padova, 1978, tous droits réservés.

L'accès aux archives de la revue « Rendiconti del Seminario Matematico della Università di Padova » (http://rendiconti.math.unipd.it/) implique l'accord avec les conditions générales d'utilisation (http://www.numdam.org/conditions). Toute utilisation commerciale ou impression systématique est constitutive d'une infraction pénale. Toute copie ou impression de ce fichier doit contenir la présente mention de copyright.

NUMDAM

Article numérisé dans le cadre du programme Numérisation de documents anciens mathématiques http://www.numdam.org/

On the Motion of a Non-Homogeneous Ideal Incompressible Fluid in an External Force Field.

Hugo Beirão da Veiga - Alberto Valli (*)

1. Introduction and main results.

In this paper we consider the motion of a non-homogeneous ideal incompressible fluid in a bounded connected open subset Ω of \mathbb{R}^2 .

We denote in the sequel by v(t,x) the velocity field, by $\varrho(t,x)$ the mass density and by $\pi(t,x)$ the pressure. The Euler equations of the motion are

$$egin{aligned} arrho\left[rac{\partial v}{\partial t} + (v\cdot
abla)\,v - b
ight] &= -
abla\pi & ext{in } Q_T \equiv [0,\,T] imesar{arOmega}\,, \ & ext{div}\,v = 0 & ext{in } Q_T\,, \ & ext{in } Q_T\,, \ & ext{in } Q_T\,, \ & ext{v}\cdot n = 0 & ext{on } [0,\,T] imesarGamma\,, \ & ext{v}\cdot n = 0 & ext{on } [0,\,T] imesarGamma\,, \ & ext{v}\cdot n = 0 & ext{on } [0,\,T] imesarGamma\,, \ & ext{v}\cdot n = 0 & ext{on } [0,\,T] imesarGamma\,, \ & ext{v}\cdot n = 0 & ext{on } [0,\,T] imesarGamma\,, \ & ext{on } [0,$$

where n = n(x) is the unit outward normal vector to the boundary Γ of Ω , b = b(t, x) is the external force field and a = a(x), $\varrho_0 = \varrho_0(x)$

(*) Indirizzo degli A.: Università di Trento, Dipartimento di Fisica e Matematica - 38050 Povo (Trento), Italy.

are the initial velocity field and the initial mass density respectively.

When the fluid is homogeneous, i.e. the density ϱ_0 (and consequently ϱ), is constant, equations (E) have been studied by several authors. As regards the two-dimensional case, we recall the papers of Wolibner [13], Leray [6], Hölder [3], Schaeffer [10], Yudovich [14], [15], Golovkin [2], Kato [5], Mc Grath [9] and Bardos [1]; for the case of a variable boundary see Valli [12]. For the *n*-dimensional case we recall the papers of Lichtenstein, Ebin and Marsden, Swann, Kato, Bourguignon and Brezis, Temam, Bardos and Frisch.

For non-homogeneous fluids, Marsden [8] has proved the existence of a local solution to problem (E), under the assumption that the external force field b(t,x) is divergence free and tangential to the boundary, i.e. div b=0 in Q_T and $b \cdot n=0$ on $[0,T] \times \Gamma$. The proof relies on techniques of Riemannian geometry on infinite dimensional manifolds. See also the reference [16].

In this paper we prove the existence of a local solution of problem (E) without any restriction on the external force field b(t, x) but we need condition (A) on the initial mass density $\varrho_0(x)$ (1).

Our techniques are based on the method of characteristics and on Schauder's fixed point theorem, and in this sense related to the methods of Kato [5] and Mc Grath [9].

We prove the following results (2).

THEOREM A. Let Ω be of class $C^{3+\lambda}$, $0 < \lambda < 1$, and let $a \in C^{2+\lambda}(\overline{\Omega})$ with div a = 0 in $\overline{\Omega}$ and $a \cdot n = 0$ on Γ , $\varrho_0 \in C^{2+\lambda}(\overline{\Omega})$ with $\varrho_0(x) > 0$ for each $x \in \overline{\Omega}$, and $b \in C^{0,1+\lambda}(Q_T) \cap C^{\lambda,0}(Q_T)$ with rot $b \in C^{0,1+\lambda}(Q_T) \cap C^{\lambda,0}(Q_T)$.

Moreover we assume that (1)

$$\left\|\frac{D\varrho_{0}}{\varrho_{0}}\right\|_{\infty} < \left\{ \begin{array}{ll} \frac{1}{K_{1}} & \mbox{if Ω is simply connected} \;, \\ \\ \frac{1}{K_{1}(1+K_{3}K_{4})} & \mbox{otherwise} \;. \end{array} \right.$$

- (1) Added in proofs. In the authors' papers «On the Euler equations for non-homogeneous fluids» (I), (II) (to appear) condition (A) is dropped and the three dimensional case is proved.
- (2) The definition of K_1 is given in (3.4); those of K_3 and K_4 in (7.21), (7.11) and (7.24).

Then there exist

$$T_1\in \left]0,\ T
ight], \qquad v\in C^{1,2+\lambda}(Q_{T_1})\cap C^{1+\lambda,0}(Q_{T_1})\ ,$$
 $arrho\in C^{2+\lambda,2+\lambda}(Q_{T_1})\ , \qquad \pi\in C^{0,2+\lambda}(Q_{T_1})\cap C^{\lambda,1}(Q_{T_1})\ ,$

such that (v, ϱ, π) is a solution of (E) in Q_{π} .

THEOREM B. Assume that ϱ_0 and $\nabla \varrho_0$ belong to $L^{\infty}(\Omega)$, $\min \varrho_0 > 0$ and that b belongs to $L^1(0, T; L^{\infty}(\Omega))$. Then problem (E) has at most a solution (v, ϱ, π) in the class of vector functions $v \in L^{\infty}(Q_T)$ such that $\partial v/\partial t$, $\partial v/\partial x_1$ and $\partial v/\partial x_2$ are in $L^1(0, T; L^{\infty}(\Omega))$. The pressure is unique up to an arbitrary function of t which may be added to it. This result holds in dimension n > 2.

For other uniqueness theorems see also Serrin [11].

The paper consists of two parts. In Part I we prove Theorem A for a simply connected domain Ω , and Theorem B. In Part II we prove Theorem A in the general case, i.e. we assume that Γ consists of m+1 simple closed curves Γ_0 , Γ_1 , ..., Γ_m , where Γ_i (j=1,...,m) are inside of Γ_0 and outside of one another.

PART I

2. Notations.

Let Ω be a bounded simply connected open subset of \mathbb{R}^2 .

We denote by $C^{k+\lambda}(\overline{\mathcal{Q}})$, k non negative integer, $0 < \lambda < 1$, the space of k-times continuously differentiable functions in $\overline{\mathcal{Q}}$ with λ -Hölder continuous derivatives of order k; by $C^0(Q_T)$ the space of continuous functions in Q_T ; by $C^1(Q_T)$ the space of continuously differentiable functions in Q_T .

We set

$$D_i arphi \equiv rac{\partial arphi}{\partial x_i} \,, \qquad D^lpha D_i^j arphi \equiv rac{\partial^{|lpha|+j} arphi}{\partial x_1^{lpha_1} \, \partial x_2^{lpha_2} \, \partial t^j} \,,$$

and

$$egin{aligned} C^{k,h}(Q_T) & \equiv ig\{ arphi \in C^0(Q_T) | D^{lpha} D^j_{\ i} arphi \in C^0(Q_T) \ & ext{if} \ 0 \leqslant j \leqslant k, \ & |lpha| \leqslant h \ ext{and} \ j + |lpha| \leqslant \max{(k,\,h)} ig\}, \end{aligned}$$

$$C^{\lambda,0}(Q_T) \equiv ig\{ arphi \in C^0(Q_T) | arphi \ ext{ is λ-H\"{o}lder continuous in t,} \ ext{uniformly with respect to x} ig\},$$

$$C^{0,\lambda}(Q_T) = \{ \varphi \in C_0(Q_T) | \varphi \text{ is λ-H\"{o}lder continuous in } x, \\ \text{uniformly with respect to } t \},$$

$$egin{aligned} C^{\mathtt{k}+\lambda,\hbar}(Q_T) &\equiv ig\{ arphi \in C^{\mathtt{k},\hbar}(Q_T) | D^lpha D^j_t arphi \in C^{\lambda,0}(Q_T) \ & ext{if } j+|lpha| = \max{(k,\,\hbar)} ext{ or if } j=k ig\}, \end{aligned}$$

$$egin{aligned} C^{k,h+\lambda}(Q_T) &\equiv &\Big\{ arphi \in C^{k,h}(Q_T) | D^lpha D^j_t arphi \in C^{0,\lambda}(Q_T) \\ & ext{if } j+|lpha| = \max{(k,h)} \text{ or if } |lpha|=h \Big\}, \end{aligned}$$

$$C^{k+\lambda,h+\lambda}(Q_T) \equiv C^{k+\lambda,h}(Q_T) \cap C^{k,h+\lambda}(Q_T)$$
.

We denote by $\|\cdot\|_{\infty}$ the supremum norm, both in $\overline{\Omega}$ or in Q_T , and by $[\cdot]_{\lambda}$ the usual λ -Hölder seminorm in $\overline{\Omega}$. Furthermore we define

$$\begin{split} [\varphi]_{\lambda,0} & \equiv \sup_{\substack{t,s \in [0,T] \\ t \neq \underline{s} \\ x \in \overline{\Omega}}} \frac{|\varphi(t,x) - \varphi(s,x)|}{|t-s|^{\lambda}} \,, \\ [\varphi]_{0,\lambda} & \equiv \sup_{\substack{x,y \in \overline{\Omega} \\ x \neq y \\ t \in [0,T]}} \frac{|\varphi(t,x) - \varphi(t,y)|}{|x-y|^{\lambda}} \,, \\ [\varphi]_{\text{lip},0} & \equiv \sup_{\substack{t,s \in [0,T] \\ t \neq s \\ x \in \overline{\Omega}}} \frac{|\varphi(t,x) - \varphi(s,x)|}{|t-s|} \,, \\ [\varphi]_{0,\text{lip}} & \equiv \sup_{\substack{x,y \in \overline{\Omega} \\ x \neq y \\ t \in [0,T]}} \frac{|\varphi(t,x) - \varphi(t,y)|}{|x-y|} \,, \end{split}$$

Finally, we set

$$egin{aligned} \|D arphi\|_{\,_{oldsymbol{\infty}}} &\equiv & \sum\limits_{|lpha|=1} \|D^lpha arphi\|_{\,_{oldsymbol{\infty}}}, \ \|D^2 arphi\|_{\,_{oldsymbol{\infty}}} &\equiv & \sum\limits_{|lpha|=2} \|D^lpha arphi\|_{\,_{oldsymbol{\infty}}}, \end{aligned}$$

and analogously for the seminorms $[\cdot]_{\lambda,0}$ and $[\cdot]_{0,\lambda}$.

If $u = (u_1, u_2)$ is a vector field defined in Q_T , we write $u \in C^{\lambda,0}(Q_T)$ if $u_1, u_2 \in C^{\lambda,0}(Q_T)$, and we set $[u]_{\lambda,0} = [u_1]_{\lambda,0} + [u_2]_{\lambda,0}$; the same convention is used for the other vector spaces and norms (in $\overline{\Omega}$ or in Q_T).

We put

$$egin{aligned} \operatorname{Rot} \varphi &\equiv \left(rac{\partial arphi}{\partial x_2}, \, -rac{\partial arphi}{\partial x_1}
ight), \ \operatorname{rot} u &\equiv rac{\partial u_2}{\partial x_1} - rac{\partial u_1}{\partial x_2}, \end{aligned}$$

where φ is a scalar function and $u = (u_1, u_2)$ is a vector function.

3. Preliminaries.

Let $\varphi \in C^{1,1+\lambda}(Q_T)$ with $D_t \varphi \in C^{\lambda,0}(Q_T)$; we assume that

$$\begin{cases} \|\varphi\|_{0,1+\lambda} \equiv \|\varphi\|_{\infty} + \|D\varphi\|_{\infty} + [D\varphi]_{0,\lambda} \leqslant A \;, \\ \|D_{t}\varphi\|_{\infty} \leqslant B \;, \\ \|D_{t}\varphi\|_{0,\lambda} \equiv \|D_{t}\varphi\|_{\infty} + [D_{t}\varphi]_{0,\lambda} \leqslant C \;, \\ [D_{t}\varphi]_{\lambda,0} \leqslant D \;, \end{cases}$$

where A, B, C, D are positive constants that we will specify in the following (see (4.9)).

Let ψ be the solution of

$$\left\{ \begin{array}{ll} -\varDelta \psi(t,x) = \varphi(t,x) & \text{ in } \varOmega \,, \\ \psi|_{\varGamma} & = 0 \,, \end{array} \right.$$

for each $t \in [0, T]$, i.e.

$$(3.2)' \psi(t, x) = \int_{\Omega} G(x, y) \varphi(t, y) dy$$

where G(x, y) is the Green function for the operator — Δ with zero boundary condition.

Put $\|\chi\|_{k+\lambda} \equiv \sum_{|\alpha| \leq k} \|D^{\alpha}\chi\|_{\infty} + \sum_{|\alpha| = k} [D^{\alpha}\chi]_{\lambda}$. It is well known that there exist constants $c = c(\lambda, \Omega)$ such that

(3.3)
$$\begin{aligned} \|\chi\|_{3+\lambda} &< c \|\Delta\chi\|_{1+\lambda}, \\ \|\chi\|_{2+\lambda} &< c \|\Delta\chi\|_{\lambda}, \\ [D\chi]_{\lambda} &< c \|\Delta\chi\|_{\infty}, \end{aligned}$$

for each $\chi \in C^{\infty}(\overline{\Omega})$ vanishing on Γ .

Moreover there exists $K_1 = K_1(\Omega)$ such that

$$\sup_{x\in\overline{\Omega}}\int\limits_{\Omega}\left|\nabla_{x}G(x,y)\right|dy\leqslant\frac{1}{2}K_{1}\;.$$

It is sufficient to choose $K_1 = 4\pi K \operatorname{diam} \Omega$, where K is such that

$$(3.4)' |\nabla_x G(x,y)| \leqslant \frac{K}{|x-y|}, \forall x, y \in \overline{\Omega}, x \neq y,$$

(see for instance Lichtenstein [7], pag. 248).

We obtain

LEMMA 3.1. Let $\varphi \in C^{1,1+\lambda}(Q_T)$ with $D_t \varphi \in C^{\lambda,0}(Q_T)$ and let ψ be defined in (3.2). Put

$$(3.5) v \equiv \operatorname{Rot} \psi ;$$

then $v \in C^{1,2+\lambda}(Q_T)$, $D_t v \in C^{\lambda,0}(Q_T)$ and

$$||v||_{0,2+\lambda} \leq c ||\varphi||_{0,1+\lambda},$$

$$||D_{t}v||_{\infty} \leq \frac{1}{2} K_{1} ||D_{t}\varphi||_{\infty},$$

$$||D_{t}v||_{0,1+\lambda} \leq c ||D_{t}\varphi||_{0,\lambda},$$

$$[D_{t}v]_{\lambda,0} \leq \frac{1}{2} K_{1} [D_{t}\varphi]_{\lambda,0},$$

$$[D_{t}v]_{0,\lambda} \leq c ||D_{t}\varphi||_{\infty}.$$

Moreover div v = 0 and rot $v = \varphi$ in Q_T , $v \cdot n = 0$ on $[0, T] \times \Gamma$.

PROOF. Since $\varphi \in C^{0,1+\lambda}(Q_T) \subset C^0([0, T]; C^{1+\lambda'}(\overline{\Omega}))$ for each $\lambda' < \lambda$ (see for instance Kato [5], Lemma 1.2), it follows from Schauder's estimates that $v \in C^0([0, T]; C^{2+\lambda'}(\overline{\Omega}))$; hence $v, Dv, D^2v \in C^0(Q_T)$. Moreover estimate (3.6), follows directly from (3.3), i.e. $v \in C^{0,2+\lambda}(Q_T)$. Differentiating (3.2)' with respect to t, we have

$$(3.7) D_t \psi(t,x) = \int_{\Omega} G(x,y) D_t \varphi(t,y) dy ;$$

since $D_t \varphi \in C^{0,\lambda}(Q_T)$, arguing as above it follows that $D_t v \in C^{0,1+\lambda}(Q_T)$ and $(3.6)_3$ holds.

Applying the operator Rot to (3.7) we have

$$D_t v(t, x) = \int_{\Omega} \operatorname{Rot}_x G(x, y) D_t \varphi(t, y) dy$$

and (3.4) yields $(3.6)_2$ and $(3.6)_4$.

Estimate $(3.6)_5$ follows directly from (3.5) and $(3.3)_3$. Finally remark that rot Rot = $-\Delta$ and that $v \cdot n$ is a tangential derivative of ψ at the boundary. \square

By using (3.1) one has

$$egin{array}{ll} \|v\|_{0,2+\lambda} & \leqslant cA \;, \ \|D_tv\|_{\infty} & \leqslant rac{1}{2}K_1B \;, \ \|D_tv\|_{0,1+\lambda} \leqslant cC \;, \ [D_tv]_{\lambda,0} & \leqslant rac{1}{2}K_1D \;, \ [D_tv]_{0,\lambda} & \leqslant cB \;. \end{array}$$

Now we construct the stream lines of the vector field v(t, x). We denote by $c, c_1, c_2, ...,$ constants depending at most on λ and Ω .

We put $U(\sigma, t, x) \equiv y(\sigma)$, $\sigma, t \in [0, T]$, $x \in \overline{\Omega}$, where $y(\sigma)$ is the solution of the ordinary differential equation

(3.9)
$$\begin{cases} \frac{dy}{d\sigma} = v(\sigma, y(\sigma)) & \text{in } [0, T], \\ y(t) = x. \end{cases}$$

Such a solution is global since $v \cdot n = 0$ on $[0, T] \times \Gamma$; from $v \in C^{1,2}(Q_T)$ one has $U \in C^2([0, T] \times Q_T)$.

We denote by $\|DU\|_{\infty} = \sup_{\sigma \in [0,T]} \|DU(\sigma, \cdot, \cdot)\|_{\infty}$ and analogously for each norm and seminorm involving U and its derivatives.

We have:

LEMMA 3.2. The vector function $U(\sigma, t, x)$ satisfies the following estimates:

$$\|DU\|_{\infty} \leqslant 2 \exp[cTA],$$
 $\|D^{2}U\|_{\infty} \leqslant cTA \exp[cTA],$ $[D^{2}U]_{0,\lambda} \leqslant cTA(1+TA) \exp[cTA],$ $[U]_{\mathrm{lip},0} \leqslant cA \exp[cTA],$ $[DU]_{\lambda,0} \leqslant cT^{1-\lambda}A(1+T^{\lambda}A^{\lambda}) \exp[cTA],$ $[D^{2}U]_{\lambda,0} \leqslant cT^{1-\lambda}A(1+T^{\lambda}A^{\lambda})(1+TA) \exp[cTA].$

Proof. One obtains these estimates by direct computation of the resolutive formula

$$(3.11) \hspace{1cm} U(\sigma,t,x) = x + \int\limits_t^\sigma \!\! v(\tau,\,U(\tau,t,x))\,d\tau \,.$$

We give only the explicity proof of (3.10)₃. From (3.11) one gets

 $(3.13) D_{ik}^2 U_j(\sigma, t, x) =$ $= \int_t^{\sigma} \left[\sum_{\tau,h} (D_{\tau h}^2 v_j)(\tau, U(\tau, t, x)) D_k U_{\tau}(\tau, t, x) D_i U_h(\tau, t, x) + \sum_i (D_h v_j)(\tau, U(\tau, t, x)) D_{ik}^2 U_h(\tau, t, x) \right] d\tau.$

Hence one obtains

$$\begin{split} \sum_{i,k,j} |D_{ik}^2 U_j(\sigma,t,x) - D_{ik}^2 U_j(\sigma,t,y)| &\leqslant T |x-y|^{\lambda} \big\{ [D^2 v]_{0,\lambda} [U]_{0,\operatorname{lip}}^{\lambda} \|DU\|_{\infty}^2 + \\ &\quad + 2 \|D^2 v\|_{\infty} \|DU\|_{\infty} [DU]_{0,\lambda} + \|D^2 U\|_{\infty} [Dv]_{0,\lambda} [U]_{0,\operatorname{lip}}^{\lambda} \big\} + \\ &\quad + \|Dv\|_{\infty} \left| \int_{i,k,h}^{\sigma} |D_{ik}^2 U_h(\tau,t,x) - D_{ik}^2 U_h(\tau,t,y)| \, d\tau \right| \end{split}$$

and from Gronwall's lemma

$$\begin{split} \sum_{i,j,k} & |D_{ik}^2 \, U_j(\sigma,t,x) - D_{ik}^2 \, U_j(\sigma,t,y)| \leqslant T |x-y|^{\lambda} \cdot \\ & \cdot \big\{ [D^2 v]_{0,\lambda} [\, U]_{0,\mathrm{lip}}^{\lambda} \|D \, U\|_{\infty}^2 + 2 \, \|D^2 v\|_{\infty} \|D \, U\|_{\infty} [D \, U]_{0,\lambda} + \\ & \quad + \|D^2 \, U\|_{\infty} [D v]_{0,\lambda} [\, U]_{0,\mathrm{lip}}^{\lambda} \big\} \exp \left[T \|D v\|_{\infty} \right]. \end{split}$$

From $(3.10)_1$, $(3.10)_2$ and $(3.8)_1$ one obtains $(3.10)_3$. On proving $(3.10)_4$ and (3.10_5) , recall that

$$\frac{\partial U(\sigma,t,x)}{\partial t} = -\sum_{h} \frac{\partial U(\sigma,t,x)}{\partial x_{h}} v_{h}(t,x) . \qquad \Box$$

We now study the equation

$$\begin{cases} \frac{\partial \varrho}{\partial t} + v \cdot \nabla \varrho = 0 & \text{in } Q_T, \\ \varrho|_{t=0} & = \varrho_0 & \text{in } \overline{\varOmega}. \end{cases}$$

LEMMA 3.3. Let $\varrho_0 \in C^{2+\lambda}(\overline{\Omega})$ and $\varrho_0(x) > 0$ for each $x \in \overline{\Omega}$. Then the solution of (3.15) is given by

$$\varrho(t,x) = \varrho_0(U(0,t,x)).$$

Moreover $\varrho \in C^{2+\lambda,2+\lambda}(Q_T)$ and

$$\left\| \frac{D\varrho}{\varrho} \right\|_{\infty} \leqslant 2 \left\| \frac{D\varrho_{0}}{\varrho_{0}} \right\|_{\infty} \exp\left[cTA\right],$$

$$\left\| \frac{D^{2}\varrho}{\varrho} \right\|_{\infty} \leqslant c \left(TA \left\| \frac{D\varrho_{0}}{\varrho_{0}} \right\|_{\infty} + \left\| \frac{D^{2}\varrho_{0}}{\varrho_{0}} \right\|_{\infty} \right) \exp\left[cTA\right],$$

$$\left[\frac{D\varrho}{\varrho} \right]_{0,\lambda} \leqslant c \left(TA \left\| \frac{D\varrho_{0}}{\varrho_{0}} \right\|_{\infty} + \left[\frac{D\varrho_{0}}{\varrho_{0}} \right]_{\lambda} \right) \exp\left[cTA\right],$$

$$\left[\frac{D^{2}\varrho}{\varrho} \right]_{0,\lambda} \leqslant c \left\{ TA(1+TA) \left\| \frac{D\varrho_{0}}{\varrho_{0}} \right\|_{\infty} + TA \left[\frac{D\varrho_{0}}{\varrho_{0}} \right]_{\lambda} +$$

$$+ TA \left\| \frac{D^{2}\varrho_{0}}{\varrho_{0}} \right\|_{\infty} + \left[\frac{D^{2}\varrho_{0}}{\varrho_{0}} \right]_{\lambda} \right\} \exp\left[cTA\right],$$

$$\left[\frac{D\varrho}{\varrho} \right]_{\lambda,0} \leqslant c \left\{ T^{1-\lambda}A(1+T^{\lambda}A^{\lambda}) \left\| \frac{D\varrho_{0}}{\varrho_{0}} \right\|_{\infty} + A^{\lambda} \left[\frac{D\varrho_{0}}{\varrho_{0}} \right]_{\lambda} \right\} \exp\left[cTA\right].$$

PROOF. One easily obtains (3.16) by using the method of characteristics. From (3.16) one has

$$egin{aligned} rac{D_i arrho}{arrho}(t,x) &= \sum_h rac{D_h arrho_0}{arrho_0} \left(U(0,t,x)
ight) D_i U_h(0,t,x) \,, \ & rac{D_{ik}^2 arrho}{arrho}(t,x) &= \sum_{r,h} rac{D_{rh}^2 arrho_0}{arrho_0} \left(U(0,t,x)
ight) D_k U_r(0,t,x) D_i U_h(0,t,x) \,+ \ & + \sum_h rac{D_h arrho_0}{arrho_0} \left(U(0,t,x)
ight) D_{ik}^2 U_h(0,t,x) \,. \end{aligned}$$

By using (3.10), we obtain easily estimates (3.17).

4. The vorticity equation.

In this number we study the auxiliary equation

$$\begin{cases} \frac{\partial \zeta}{\partial t} + v \cdot \nabla \zeta = \gamma & \text{in } Q_T, \\ \zeta|_{t=0} = \alpha & \text{in } \bar{\Omega}, \end{cases}$$

where $\alpha(x) \equiv \operatorname{rot} a(x)$, $\beta(t, x) \equiv \operatorname{rot} b(t, x)$, and $\gamma(t, x)$ is defined in Q_T by

$$\gamma \equiv \beta + \frac{\mathrm{Rot}\,\varrho}{\varrho} \left[\frac{\partial v}{\partial t} + (v \cdot \nabla) v - b \right],$$

where a and b are as in Theorem A.

One integrates (4.1) by the method of characteristics and one obtains

$$\zeta(t,x) = \alpha\big(U(0,t,x)\big) + \int_0^t \gamma\big(\tau,\,U(\tau,t,x)\big)\,d\tau\;.$$

We denote by \bar{c} , \bar{c}_1 , \bar{c}_2 , ..., constants that depend at most on λ , Ω , $\|D\varrho_0/\varrho_0\|_{\lambda}$, $\|D^2\varrho_0/\varrho_0\|_{\lambda}$, $\|b\|_{0,1+\lambda}$, $\|b\|_{\lambda,0}$, $\|\beta\|_{0,1+\lambda}$ and $\|\beta\|_{\lambda,0}$.

LEMMA 4.1. Under the above conditions the following estimates hold:

$$\|\gamma\|_{\infty} \ll \overline{c}(A^{2}+1) \exp[cTA] + \left\|\frac{D\varrho_{0}}{\varrho_{0}}\right\|_{\infty} K_{1}B \exp[cTA],$$

$$[\gamma]_{0,\lambda} \ll \overline{c}(1+TA)(A^{2}+B+1) \exp[cTA],$$

$$\|D\gamma\|_{\infty} \ll \overline{c}\left\{(1+TA)(A^{2}+B+1)+C\right\} \exp[cTA],$$

$$[D\gamma]_{0,\lambda} \ll \overline{c}\left\{(1+T^{2}A^{2})(A^{2}+B+1)+(1+TA)C\right\} \exp[cTA],$$

$$[\gamma]_{\lambda,0} \ll \overline{c}\left\{T^{1-\lambda}AC+1+A^{\lambda}(A^{2}+B+1)(1+TA)\right\}.$$

$$\cdot \exp[cTA] + \left\|\frac{D\varrho_{0}}{\varrho_{0}}\right\|_{\infty} K_{1}D \exp[cTA].$$

PROOF. It follows by direct computations, using (4.2), (3.8) and (3.17).

Finally we have

LEMMA 4.2. The solution $\zeta(t, x)$ of (4.1) satisfies:

$$\begin{split} \|\zeta\|_{0,1+\lambda} \leqslant 2 \, \|\alpha\|_{1+\lambda} \exp\left[cTA\right] + \overline{c}T \left\{A \, \|D\alpha\|_{\infty} + \\ &+ (1 + T^2A^2)(A^2 + B + 1) + (1 + TA)\,C\right\} \exp\left[cTA\right], \\ \|D_t\zeta\|_{\infty} \leqslant c_1A \, \|D\alpha\|_{\infty} \exp\left[cTA\right] + \overline{c}_1(A^2 + 1) \exp\left[cTA\right] + \\ &+ \overline{c}TA[(1 + TA)\,(A^2 + B + 1) + C] \exp\left[cTA\right] + \\ &+ \left\|\frac{D\varrho_0}{\varrho_0}\right\|_{\infty} K_1B \exp\left[cTA\right], \\ (4.5) \qquad [D_t\zeta]_{0,\lambda} \leqslant c_2A \left(\|D\zeta\|_{\infty} + [D\zeta]_{0,\lambda}\right) + \\ &+ \overline{c}_2(1 + TA)(A^2 + B + 1) \exp\left[cTA\right], \\ [D_t\zeta]_{\lambda,0} \leqslant c_4A[D\zeta]_{\lambda,0} + cT^{1-\lambda}B\|D\zeta\|_{\infty} + \\ &+ \overline{c}_3A^{\lambda}(A^2 + B + 1)(1 + TA) \exp\left[cTA\right] + \left\|\frac{D\varrho_0}{\varrho_0}\right\|_{\infty} K_1D \exp\left[cTA\right], \end{split}$$

where $||D\zeta||_{\infty}$, $[D\zeta]_{0,\lambda}$ and $[D\zeta]_{\lambda,0}$ are bounded respectively by (4.6), (4.7) and (4.8).

PROOF. From (4.3), (3.10) and Lemma 4.1 it follows easily that

$$\|\zeta\|_{\infty} \leqslant \|\alpha\|_{\infty} + \bar{c}T(A^2 + B + 1) \exp[cTA]$$
,

$$egin{aligned} \|D\zeta\|_{\infty} \leqslant 2 \|Dlpha\|_{\infty} \exp\left[cTA
ight] + \\ &+ ar{c}T[(1+TA)(A^2+B+1)+C] \exp\left[cTA
ight], \end{aligned}$$

$$(4.7) [D\zeta]_{0,\lambda} \leq 2[D\alpha]_{\lambda} \exp[cTA] + \\ + \bar{c}T[A\|D\alpha\|_{\infty} + (1 + T^2A^2)(A^2 + B + 1) + (1 + TA)C] \exp[cTA],$$

hence (4.5), holds.

From (4.1), one has $D_t\zeta = -v \cdot \nabla \zeta + \gamma$, and by direct computation one obtains (4.5)₂, (4.5)₃ and (4.5)₄.

Finally, from (4.3) it follows that:

$$\begin{split} (4.8) \quad & [D\zeta]_{\lambda,0} \! \leqslant \! c_3 A^{\lambda} \! [D\alpha]_{\lambda} \exp{[cTA]} + \\ & + c T^{1-\lambda} A (1 + T^{\lambda} A^{\lambda}) \| D\alpha\|_{\infty} \exp{[cTA]} + \\ & + \bar{c} T^{1-\lambda} \! [(1 + TA) (A^2 + B + 1) + C] (1 + T^{1+\lambda} A^{1+\lambda}) \exp{[cTA]}. \ \ \Box \end{split}$$

We assume in the sequel that condition (A) of Theorem A holds, and we choose the constants A, B, C, D such that

$$(4.9) \begin{cases} A > 2 \|\alpha\|_{1+\lambda}, \\ B > \left\| \frac{D\varrho_0}{\varrho_0} \right\|_{\infty} K_1 B + c_1 A \|D\alpha\|_{\infty} + \overline{c}_1 (A^2 + 1), \\ C > c_1 A \|D\alpha\|_{\infty} + 2 c_2 A \|D\alpha\|_{\lambda} + (\overline{c}_1 + \overline{c}_2) (A^2 + 1) + \\ + \left[\left\| \frac{D\varrho_0}{\varrho_0} \right\|_{\infty} K_1 + \overline{c}_2 \right] B, \\ D > \left\| \frac{D\varrho_0}{\varrho_0} \right\|_{\infty} K_1 D + c_3 c_4 A^{1+\lambda} [D\alpha]_{\lambda} + \overline{c}_3 (A^2 + B + 1) A^{\lambda} + \overline{c}_3. \end{cases}$$

From (4.5), (4.6), (4.7) and (4.8) it follows that there exists $T_1 \in (0, T]$ such that

$$egin{aligned} &\|\zeta\|_{0,1+\lambda} \leqslant A \;, \ &\|D_t\zeta\|_{\infty} \leqslant B \;, \ &\|D_t\zeta\|_{0,\lambda} \leqslant C \;, \ &[D_t\zeta[_{\lambda,0} \leqslant D \;, \ \end{array}$$

where the norms are taken on the cylinder $Q_{T_1} \equiv [0, T_1] \times \overline{\Omega}$. The set

$$(4.11) S \equiv \{ \varphi \in C^{1}(Q_{T_{1}}) | \|\varphi\|_{0,1+\lambda} \leqslant A, \|D_{t}\varphi\|_{\infty} \leqslant B, \\ \|D_{t}\varphi\|_{0,\lambda} \leqslant C, [D_{t}\varphi]_{\lambda,0} \leqslant D \}$$

is a convex, bounded and closed subset of $C^1(Q_{T_1})$.

Moreover the map $F: \varphi \mapsto \zeta$ defined by (3.2), (3.5), (3.9), (3.15) and (4.3) satisfies

$$(4.12) F(S) \subset S,$$

and, from (4.8),

$$(4.13) [D\zeta]_{\lambda,0} \leqslant \text{const}, \forall \varphi \in S.$$

By the Ascoli-Arzelà theorem and (4.11), (4.13) it follows that F(S) is relatively compact in $C^1(Q_T)$.

Finally, we shall see that F is continuous in the $C^1(Q_{\tau_1})$ topology, hence, by the Schauder fixed point theorem, one has

LEMMA 4.3. $F: S \rightarrow S$ has a fixed point.

PROOF. It is sufficient to prove that F is continuous from $C^1(Q_{T_1})$ in $C^0(Q_{T_1})$, since F(S) is relatively compact in $C^1(Q_{T_1})$.

Let $\varphi_n \in S$, $\varphi_n \to \varphi$ in $C^1(Q_{T_1})$. From (3.2) and (3.5), one has

$$egin{array}{lll} v^n &
ightarrow v & & ext{in } C^0(Q_{T_1}) \ , \ & Dv^n
ightarrow Dv & & ext{in } C^0(Q_{T_1}) \ . \end{array}$$

Moreover, from (3.7) and (3.4')

$$(4.15) \qquad \frac{\partial v^n}{\partial t} \to \frac{\partial v}{\partial t} \qquad \text{in } C^0(Q_{T_1}) .$$

On the other hand

$$\begin{split} |\,U^{n}(\sigma,\,t,\,x) - \,U(\sigma,\,t,\,x)\,| \, \leqslant \, & \Big| \int\limits_{t}^{\sigma} \!\! \left[\,|v^{n}(\tau,\,U^{n}(\tau,\,t,\,x)) - v(\tau,\,U^{n}(\tau,\,t,\,x))| \,+ \right. \\ \\ & + \,|v(\tau,\,U^{n}(\tau,\,t,\,x)) - v(\tau,\,U(\tau,\,t,\,x))| \,\right] d\tau \,| \, \leqslant \\ \\ & \leqslant \, T_{1} \|v_{n} - v\|_{\,\varpi} + \, [v]_{0,\mathrm{lip}} |\int\limits_{\tau}^{\sigma} \!\! U^{n}(\tau,\,t,\,x) - \,U(\tau,\,{}_{t},\,x)| \,d\tau \,\Big| \,\,, \end{split}$$

and from Gronwall's lemma

$$|U^{\mathbf{n}}(\sigma, t, x) - U(\sigma, t, x)| \leqslant T_1 ||v_n - v||_{\infty} \exp \left[T_1[v]_{0, \text{lip}}\right],$$

hence $U^n \to U$ uniformly in $[0, T_1] \times Q_{T_1}$.

Analogously, one evaluates $|D_i U_j^n(\sigma, t, x) - D_i U_j(\sigma, t, x)|$ by using (3.12), and this gives

$$\|DU^{n}-DU\|_{\infty} \leqslant T_{1}([Dv^{n}]_{0,\text{lip}}\|DU^{n}\|_{\infty}\|U^{n}-U\|_{\infty}+\|DU\|_{\infty}\|Dv^{n}-Dv\|_{\infty})\cdot \exp\left[T_{1}\|Dv^{n}\|_{\infty}\right].$$

Hence $DU^n \to DU$ uniformly in $[0, T_1] \times Q_{T_1}$. Consequently

$$(4.16) \qquad \frac{\operatorname{Rot} \varrho_n}{\varrho_n} \to \frac{\operatorname{Rot} \varrho}{\varrho} \qquad \text{in } C^0(Q_{T_1})$$

and

$$\gamma_n(\sigma, U^n(\sigma, t, x)) \rightarrow \gamma(\sigma, U(\sigma, t, x))$$
 uniformly in $[0, T_1] \times Q_{T_1}$.

From (4.3) the thesis follows.

This fixed point $\zeta = \varphi = F[\varphi]$, together with the corresponding v and ϱ , is a solution of the system

$$\begin{cases} \frac{\partial \zeta}{\partial t} + v \cdot \nabla \zeta = \beta + \frac{\operatorname{Rot} \varrho}{\varrho} \cdot \left[\frac{\partial v}{\partial t} + (v \cdot \nabla)v - b \right] & \text{in } Q_{T_1}, \\ \zeta &= \operatorname{rot} v & \text{in } Q_{T_1}, \\ \operatorname{div} v &= 0 & \text{in } Q_{T_1}, \\ \frac{\partial \varrho}{\partial t} + v \cdot \nabla \varrho = 0 & \text{in } Q_{T_1}, \\ v \cdot n &= 0 & \text{on } [0, T_1] \times \Gamma, \\ \zeta|_{t=0} &= \alpha & \text{in } \overline{\Omega}, \\ \varrho|_{t=0} &= \varrho_0 & \text{in } \overline{\Omega}. \end{cases}$$

5. Existence of a solution of system (E) when Ω is simply connected.

Since

$$\operatorname{rot}\left[(v\cdot\nabla)v\right]=(\operatorname{div}v)\operatorname{rot}v+v\cdot\nabla(\operatorname{rot}v)$$

one has from $(4.17)_1$, $(4.17)_2$ and $(4.17)_4$

$$arrho \operatorname{rot}\left[rac{\partial v}{\partial t} + \left(v\cdot
abla
ight)v - b
ight] = \operatorname{Rot} arrho \cdot \left[rac{\partial v}{\partial t} + \left(v\cdot
abla
ight)v - b
ight].$$

We recall the general identity

$$rot(\varrho w) = \varrho \operatorname{rot} w - (\operatorname{Rot} \varrho) \cdot w,$$

where ϱ is an arbitrary scalar and w an arbitrary vector, and applying it we obtain

(5.1)
$$\operatorname{rot}\left\{\varrho\left[\frac{\partial v}{\partial t}+(v\cdot\nabla)v-b\right]\right\}=0\quad \text{ in } Q_{T_1}.$$

When Ω is simply connected, it is well known that there exists a

scalar function $\pi \in C^{0,1}(Q_{T_1})$ such that (E)₁ holds in Q_{T_1} . Moreover $\pi \in C^{\lambda,1}(Q_{T_1}) \cap C^{0,2+\lambda}(Q_{T_1})$: in fact $\pi(t,x)$ is determined as the integral of $\nabla \pi \cdot ds$ from a fixed point x_0 to x, along a path independent of t. Since $\nabla \pi \in C^{\lambda,0}(Q_{T_1})$, it follows that $\pi \in C^{\lambda,0}(Q_{T_1})$. The other statement follows directly from (E)₁. Furthermore

$$\left\{egin{aligned} &\operatorname{rot}\left(v|_{t=0}-a
ight)=0 & &\operatorname{in}\; ar{\mathcal{Q}}\,, \ &\operatorname{div}\left(v|_{t=0}-a
ight)=0 & &\operatorname{in}\; ar{\mathcal{Q}}\,, \ &\left(v|_{t=0}-a
ight)\cdot n &=0 & &\operatorname{on}\; arGamma\,, \end{aligned}
ight.$$

and consequently (E), holds.

Hence we have found a solution (v, π, ϱ) to problem (E) in Q_{τ} . This solution verifies the regularity conditions stated in Theorem A, as follows from Lemmas 3.1 and 3.3.

Uniqueness of the solution of system (E).

Let (v, π, ϱ) and $(\tilde{v}, \tilde{\pi}, \tilde{\varrho})$ be two solutions of (E) in $[0, T] \times \overline{\Omega}$, under the conditions of Theorem B. We set $u \equiv \tilde{v} - v$, $\sigma = \tilde{\pi} - \pi$, $\eta = \tilde{\varrho} - \varrho$. On subtracting the two equations (E)₁, we obtain

$$(6.1) \qquad \tilde{\varrho} \left[\frac{\partial u}{\partial t} + (\tilde{v} \cdot \nabla) u + (u \cdot \nabla) v \right] = -\nabla \sigma - \eta \left[\frac{\partial v}{\partial t} + (v \cdot \nabla) v - b \right].$$

On the other hand from (E)₃ one gets

$$\left(\tilde{\varrho}\,\frac{\partial u}{\partial t},\,u\right)=\frac{1}{2}\,\frac{d}{dt}\left(\tilde{\varrho}u,\,u\right)+\frac{1}{2}\left(\left(\tilde{v}\cdot\nabla\tilde{\varrho}\right)u,\,u\right)\,,$$

where (,) denotes the scalar product in $L^2(\Omega)$ or in $[L^2(\Omega)]^2$. Taking the scalar product of (6.1) with u it follows

$$(6.2) \qquad \frac{1}{2} \frac{d}{dt} \left(\tilde{\varrho} u, u \right) = - \left(\tilde{\varrho} (u \cdot \nabla) v, u \right) - \left(\eta \left[\frac{\partial v}{\partial t} + (v \cdot \nabla) v - b \right], u \right),$$

since

$$(\tilde{\varrho}(\tilde{v}\cdot\nabla)u,u)+\frac{1}{2}((\tilde{v}\cdot\nabla\tilde{\varrho})u,u)=0$$
;

recall that div $\tilde{v} = 0$ and $\tilde{v} \cdot n = 0$.

Moreover, on subtracting the two equations (E)3, we obtain

$$(6.3) \qquad \qquad \frac{\partial \eta}{\partial t} + v \cdot \nabla \eta = - \, u \cdot \nabla \tilde{\varrho}$$

and taking the scalar product of (6.3) with η it follows

(6.4)
$$\frac{1}{2} \frac{d}{dt}(\eta, \eta) = -\left(u \cdot \nabla \tilde{\varrho}, \eta\right),$$

since $(v \cdot \nabla \eta, \eta) = 0$.

From (6.2) and (6.4) one obtains

(6.5)
$$\frac{1}{2} \frac{d}{dt} \int_{\Omega} (\tilde{\varrho} |u|^2 + \eta^2) dx = - \int_{\Omega} \tilde{\varrho} [(u \cdot \nabla) v] \cdot u dx - \int_{\Omega} \eta \left[\frac{\partial v}{\partial t} + (v \cdot \nabla) v - b + \nabla \tilde{\varrho} \right] \cdot u dx.$$

Set

$$f(t) \equiv \frac{1}{2} \int_{\Omega} (\tilde{\varrho}|u|^2 + \eta^2) dx$$
.

Obviously f(0) = 0; moreover from (3.16) and (3.11)

$$\|\nabla\tilde{\varrho}\|_{\infty} \leqslant 2 \|\nabla\varrho_{0}\|_{\infty} \exp\left[\|D\boldsymbol{v}\|_{L^{1}(0,T;L^{\infty}(\Omega))}\right]$$

and consequently from (6.5)

$$f'(t) \leqslant c(t) f(t)$$

where $c(t) \in L^1(0, T)$. By Gronwall's lemma f(t) vanishes identically in [0, T], i.e. $\tilde{v} = v$ and $\tilde{\varrho} = \varrho$ in Q_T .

Finally, from (E)₁ it follows that $\nabla \pi = \nabla \tilde{\pi}$ in Q_T , i.e. $\pi = \tilde{\pi}$ up to an arbitrary function of t,

PART II

7. Existence of a solution of system (E) when Ω is not simply connected.

Let Ω be a bounded connected open subset of \mathbb{R}^2 . We assume that Γ consists of m+1 simple closed curves $\Gamma_0, \Gamma_1, ..., \Gamma_m$, where Γ_i (j=1,...,m) are inside of Γ_0 and outside of one another.

We denote by v the vector field defined in (3.5) and by $u^{(k)}$, $k=1,\ldots,m$, the vector fields introduced at the end of §1 in [4]. We have $u^{(k)} \in C^{2+\lambda}(\overline{\Omega})$, rot $u^{(k)} = 0$, div $u^{(k)} = 0$ in $\overline{\Omega}$ and $u^{(k)} \cdot n = 0$ on Γ . We put

(7.1)
$$\overline{v}(t,x) \equiv v(t,x) + \sum_{k=1}^{m} \theta_k(t) u^{(k)}(x) \equiv v(t,x) + v'(t,x)$$
,

and consequently we have div $\overline{v}=0$ and rot $\overline{v}=\varphi$ in Q_T , $\overline{v}\cdot n=0$ on $[0,T]\times \Gamma$.

We define $\bar{\rho}(t,x)$ to be the solution of

$$\begin{cases} \frac{\partial \bar{\varrho}}{\partial t} + \bar{v} \cdot \nabla \bar{\varrho} = 0 & \text{in } Q_T, \\ \bar{\varrho}|_{t=0} = \varrho_0 & \text{in } \bar{\varOmega}. \end{cases}$$

Now we prove that there exist $\theta_k(t) \in C^{1+\lambda}([0, T])$ such that

(7.3)
$$\left(\overline{\varrho} \left[\frac{\partial \overline{v}}{\partial t} + (\overline{v} \cdot \nabla) \overline{v} - b \right], u^{(k)} \right) = 0 \qquad \forall t \in [0, T],$$

$$(\overline{v}|_{t=0} - a, u^{(k)}) = 0$$

for each k = 1, ..., m. We are going to use the Schauder fixed point theorem.

We consider the map $\bar{\theta}_k \mapsto \bar{v}$ from $C^0([0, T])$ in $C^{0,2+\lambda}(Q_T)$ defined by (7.1), the map $\bar{v} \mapsto \bar{\varrho}$ from $C^{0,2+\lambda}(Q_T)$ in $C^{\lambda,0}(Q_T)$ defined by (7.2) and finally the map $(\bar{v}, \bar{\varrho}) \mapsto \theta_k$ defined by (7.3), (7.4), i.e.

(7.3)'
$$\sum_{s=1}^{m} \mu_{ks}(t) \frac{d\theta_{s}(t)}{dt} + \sum_{s,h=1}^{m} \mu_{ksh}(t)\theta_{s}(t)\theta_{h}(t) + \sum_{s=1}^{m} [\nu_{ks}(t) + \eta_{ks}(t)]\theta_{s}(t) + \mu_{k}(t) + \nu_{k}(t) + \eta_{k}(t) = 0 \quad \text{in } [0, T],$$
(7.4)'
$$\theta_{k}(0) = (a, u^{(k)}),$$

for each k = 1, ..., m. We have defined

$$\mu_{ks}(t) \equiv (\bar{\varrho}u^{(s)}, u^{(k)}), \qquad \mu_{ksh}(t) \equiv (\bar{\varrho}(u^{(s)} \cdot \nabla) u^{(h)}, u^{(k)}),$$

$$v_{ks}(t) \equiv (\bar{\varrho}(v \cdot \nabla) u^{(s)}, u^{(k)}), \qquad \eta_{ks}(t) \equiv (\bar{\varrho}(u^{(s)} \cdot \nabla) v, u^{(k)}),$$

$$\mu_{k}(t) \equiv \left(\bar{\varrho}\frac{\partial v}{\partial t}, u^{(k)}\right), \qquad v_{k}(t) \equiv (\bar{\varrho}(v \cdot \nabla) v, u^{(k)}),$$

$$\eta_{k}(t) \equiv -(\bar{\varrho}b, u^{(k)}).$$

Since $u^{(k)} \in C^{2+\lambda}(\overline{Q})$, $v \in C^{1,2+\lambda}(Q_T) \cap C^{1+\lambda,0}(Q_T)$ and $\overline{\varrho} \in C^{\lambda,0}(Q_T)$, all these coefficients belong to $C^{\lambda}([0,T])$.

The notation \tilde{c} , \tilde{c}_1 , \tilde{c}_2 , ..., will be used for constants depending at most on λ , Ω , a, b, ϱ_0 , m, $u^{(k)}$.

Assume that estimates (3.1) hold and moreover

(7.6)
$$\sup_{t \in [0,T]} \left[\sum_{k=1}^m \tilde{\theta}_i(t)^2 \right]^{\frac{1}{2}} = \|\tilde{\theta}\|_{\infty} \leqslant E,$$

where $\tilde{\theta} \equiv (\tilde{\theta}_1, ..., \tilde{\theta}_m)$ and E is a constant that will be fixed in the following.

One has

(7.7)
$$\|\overline{v}\|_{\infty} \leq \|v\|_{\infty} + \sum_{k} \|\tilde{\theta}_{k}\|_{\infty} \|u^{(k)}\|_{\infty} \leq \tilde{c}(A+E) ,$$

$$\|D\overline{v}\|_{\infty} \leq \|Dv\|_{\infty} + \sum_{k} \|\tilde{\theta}_{k}\|_{\infty} \|Du^{(k)}\|_{\infty} \leq \tilde{c}(A+E) .$$

Define $\overline{U}(\sigma, t, x)$ to be the solution of

$$\left\{egin{aligned} rac{d\overline{U}}{d\sigma}\left(\sigma,t,x
ight)&=\overline{v}ig(\sigma,\,\overline{U}(\sigma,t,x)ig)\;,\ \overline{U}(t,t,x)&=x\;; \end{aligned}
ight.$$

one has, as in $(3.10)_1$:

$$(7.8) \qquad [\overline{U}]_{\text{lip,0}} = \left\| \frac{\partial \overline{U}}{\partial t} \right\|_{\infty} = \|D\overline{U}\|_{\infty} \|\overline{v}\|_{\infty} \leqslant 2 \|\overline{v}\|_{\infty} \exp\left[T\|D\overline{v}\|_{\infty}\right].$$

It follows from (7.7) and (7.8) that

(7.9)
$$[\overline{U}]_{\text{lip},0} \leqslant \tilde{c}(A+E) \exp \left[\tilde{c}T(A+E)\right].$$

From (7.2) one has $\bar{\varrho}(t,x) = \varrho_0(\bar{U}(0,t,x))$, hence

(7.10)
$$\begin{aligned} \|\bar{\varrho}\|_{\infty} \leqslant \|\varrho_{0}\|_{\infty}, \\ [\bar{\varrho}]_{\lambda,0} \leqslant [\varrho_{0}]_{\text{lip}} [\bar{\overline{U}}]_{\lambda,0} \leqslant T^{1-\lambda} [\varrho_{0}]_{\text{lip}} [\bar{\overline{U}}]_{\text{lip},0}. \end{aligned}$$

Define

(7.11)
$$K_2 = \sup_{k} \|u^{(k)}\|_{L^2(\Omega)}.$$

We have from (7.5)

$$\|\mu_{ks}\|_{\infty} \leqslant K_{\frac{2}{2}}^{2} \|\varrho_{0}\|_{\infty} , \qquad [\mu_{ks}]_{\lambda} \leqslant \tilde{c}T^{1-\lambda}[\varrho_{0}]_{\mathrm{lip}}[\overline{U}]_{\mathrm{lip,0}} , \\ \|\mu_{ksh}\|_{\infty} \leqslant \tilde{c}\|\varrho_{0}\|_{\infty} , \qquad [\mu_{ksh}]_{\lambda} \leqslant \tilde{c}T^{1-\lambda}[\varrho_{0}]_{\mathrm{lip}}[\overline{U}]_{\mathrm{lip,0}} , \\ \|\nu_{ks}\|_{\infty} + \|\eta_{ks}\|_{\infty} \leqslant \tilde{c}A\|\varrho_{0}\|_{\infty} , \\ [\nu_{ks}]_{\lambda} + [\eta_{ks}]_{\lambda} \leqslant \tilde{c}A(\|\varrho_{0}\|_{\infty} + T^{1-\lambda}[\varrho_{0}]_{\mathrm{lip}}[\overline{U}]_{\mathrm{lip,0}}) , \\ \|\mu_{k}\|_{\infty} \leqslant K_{1}K_{2}B|\Omega|^{\frac{1}{2}} \|\varrho_{0}\|_{\infty} , \\ [\mu_{k}]_{\lambda} \leqslant \tilde{c}(D\|\varrho_{0}\|_{\infty} + T^{1-\lambda}[\varrho_{0}]_{\mathrm{lip}}[\overline{U}]_{\mathrm{lip,0}} B) , \\ \|\nu_{k}\|_{\infty} \leqslant \tilde{c}A^{2} \|\varrho_{0}\|_{\infty} , \qquad [\nu_{k}]_{\lambda} \leqslant \tilde{c}A^{2} (\|\varrho_{0}\|_{\infty} + T^{1-\lambda}[\varrho_{0}]_{\mathrm{lip}}[\overline{U}]_{\mathrm{lip,0}}) , \\ \|\eta_{k}\|_{\infty} \leqslant \tilde{c}\|\varrho_{0}\|_{\infty} , \qquad [\eta_{k}]_{\lambda} \leqslant \tilde{c}(\|\varrho_{0}\|_{\infty} + T^{1-\lambda}[\varrho_{0}]_{\mathrm{lip}}[\overline{U}]_{\mathrm{lip,0}}) ,$$

where $|\Omega| \equiv \text{meas } \Omega$.

Let M(t) be the $(m \times m)$ -symmetric matrix $\{\mu_{ks}(t)\}$. One sees easily that $|\xi|^2 \min_{\overline{O}} \varrho_0 \leqslant M(t) \xi \cdot \xi \leqslant \max_{\overline{O}} \varrho_0 |\xi|^2$ for each $\xi \in \mathbb{R}^m$, and

$$(7.13) 0 < \left(\min_{\overline{\Omega}} \varrho_{\mathbf{0}}\right)^{m} \leqslant \det M(t) \leqslant \left(\max_{\overline{\Omega}} \varrho_{\mathbf{0}}\right)^{m} \forall t \in [0, T].$$

The element $\bar{\mu}_{ks}(t)$ of $[M(t)]^{-1}$ has the form

(7.14)
$$\bar{\mu}_{ks}(t) = \frac{(-1)^{k+s} M_{ks}(t)}{\det M(t)},$$

where $M_{ks}(t)$ is the minor of the matrix M(t) corresponding to the (k, s)-element of M(t).

Hence

and by using (7.12)

$$(7.16) \qquad [\bar{\mu}_{ks}]_{\lambda} \leqslant \tilde{c} T^{1-\lambda} [\varrho_0]_{\text{lip}} [\overline{U}]_{\text{lip,0}} \left[\frac{\|\varrho_0\|_{\infty}^{m-2}}{(\min_{\overline{Q}} \varrho_0)^m} + \frac{\|\varrho_0\|_{\infty}^{2(m-1)}}{(\min_{\overline{Q}} \varrho_0)^{2m}} \right].$$

Applying $[M(t)]^{-1}$ to (7.3)', one obtains

(7.17)
$$\frac{d\theta_{k}(t)}{dt} = \sum_{s,h=1}^{m} \bar{\mu}_{ksh}(t)\theta_{s}(t)\theta_{h}(t) + \sum_{s=1}^{m} [\bar{\nu}_{ks}(t) + \bar{\eta}_{ks}(t)]\theta_{s}(t) + \\ + \bar{\mu}_{k}(t) + \bar{\nu}_{k}(t) + \bar{\eta}_{k}(t) \quad \text{in } [0, T],$$

where

(7.18)
$$\bar{\mu}_k(t) \equiv -\sum_{i=1}^m \bar{\mu}_{ki}(t) \mu_i(t)$$

and analogously for the other coefficients.

Obviously the system (7.17), (7.4)' has an unique local solution $\theta_k(t)$, $k=1,\ldots,m$.

Moreover, taking the scalar product of (7.17) with $\theta(t)$, one has

$$(7.19) \quad \begin{cases} \frac{1}{2} \frac{d}{dt} |\theta(t)|^2 < \tilde{c} \frac{\|\varrho_0\|_{\infty}^m}{(\min \varrho_0)^m} \\ \frac{1}{\bar{a}} \cdot \{|\theta(t)|^3 + A |\theta(t)|^2 + (A^2 + B + 1) |\theta(t)|\}, \\ |\theta(0)|^2 < \tilde{c}_5^2 \|a\|_{\infty}^2. \end{cases}$$

Hence, if we choose $E > \tilde{c}_{\mathfrak{s}} \|a\|_{\infty}$ in (7.6), we see that there exists $T^* \in]0, T]$ such that

$$|\theta(t)| \leqslant E$$
 in $[0, T^*]$.

If we put

$$S_1 \equiv \left\{ ar{ heta}(t) \in C^0([0, T^*]) | \|ar{ heta}\|_{\infty} \leqslant E \right\}$$

and we denote by F_1 the map $\bar{\theta} \mapsto \theta$ defined by (7.1), (7.2), (7.17) and (7.4), we have $F_1(S_1) \subset S_1$.

Moreover from (7.17) and the Ascoli-Arzelà theorem, it follows that $F_1(S_1)$ is relatively compact in $C^0([0, T^*])$.

Finally, we see easily that $F_1: S_1 \to S_1$ is continuous, consequently F_1 has a fixed point in S_1 .

Hence equation (7.3), (7.4) has a local solution $\theta(t) \in C^{1+\lambda}$. We want to prove that $\theta(t)$ is a global solution.

From (7.3) we have

$$egin{aligned} 0 = & \left(ar{arrho}\left[rac{\partial ar{v}}{\partial t} + (ar{v}\cdot
abla)ar{v} - b
ight], v'
ight) = & \left(ar{arrho}rac{\partial v'}{\partial t}, v'
ight) + \left(ar{arrho}rac{\partial v}{\partial t}, v'
ight) + \\ & + \left(ar{arrho}(ar{v}\cdot
abla)v', v'
ight) + \left(ar{arrho}(ar{v}\cdot
abla)v, v'
ight) - \left(ar{arrho}b, v'
ight). \end{aligned}$$

Moreover

$$ig(ararrho(ar v\cdot
abla)v',v'ig)=-rac12ig((ar v\cdot
ablaararrho)v',v'ig)$$
 ,

and from (7.2)

$$\frac{1}{2}\,\frac{d}{dt}(\bar\varrho v',v') = \!\left(\bar\varrho\,\frac{\partial v'}{\partial t},v'\right) \!-\! \frac{1}{2}\left((\bar v\!\cdot\!\nabla\bar\varrho)v',v'\right)\,.$$

Hence

$$0=rac{1}{2}\,rac{d}{dt}(ararrho v',\,v')+\left(ararrho\,rac{\partial v}{\partial t},\,v'
ight)+\left(ararrho(v'\cdot
abla)v,\,v'
ight)+\left(ararrho(v\cdot
abla)v,\,v'
ight)-\left(ararrho b,\,v'
ight),$$

i.e.

$$\begin{split} \frac{1}{2}\,\frac{d}{dt} \sum_{k,s} & \mu_{ks}(t)\theta_k(t)\theta_s(t) = \\ & = -\sum_k \mu_k(t)\theta_k(t) - \sum_{k,s} \eta_{ks}(t)\theta_k(t)\theta_s(t) - \sum_k \nu_k(t)\theta_k(t) - \sum_k \eta_k(t)\theta_k(t) \;. \end{split}$$

Consequently

$$\begin{split} &\frac{1}{2} \frac{d}{dt} [\boldsymbol{M}(t)\boldsymbol{\theta}(t) \cdot \boldsymbol{\theta}(t)] \leqslant &\tilde{c}_{6} \|\varrho_{0}\|_{\infty} [\boldsymbol{A} |\boldsymbol{\theta}(t)|^{2} + (\boldsymbol{A}^{2} + \boldsymbol{B} + 1) |\boldsymbol{\theta}(t)|] \leqslant \\ &\leqslant &\tilde{c}_{6} \|\varrho_{0}\|_{\infty} \left[\frac{\boldsymbol{A}}{\min \varrho_{0}} \boldsymbol{M}(t)\boldsymbol{\theta}(t) \cdot \boldsymbol{\theta}(t) + \frac{(\boldsymbol{A}^{2} + \boldsymbol{B} + 1)}{\sqrt{\min \varrho_{0}}} \sqrt{\boldsymbol{M}(t)\boldsymbol{\theta}(t) \cdot \boldsymbol{\theta}(t)} \right], \end{split}$$

 $M(0)\theta(0)\cdot\theta(0)\leqslant \tilde{c}_7\|\varrho_0\|_{\infty}\|a\|_{\infty}^2$.

Set

$$lpha_1 \! \equiv \! 2 ilde{c}_6 rac{\|arrho_0\|_{\infty}}{\sqrt{\min\limits_{ar{\Omega}} arrho_0}} (A^{\,2} + B + 1) \,, \qquad lpha_2 \! \equiv \! 2 ilde{c}_6 rac{\|arrho_0\|_{\infty}}{\min\limits_{ar{\Omega}} arrho_0} A \,\,;$$

the solution y(t) of

$$\begin{cases} y'(t) = \alpha_1 \sqrt{y(t)} + \alpha_2 y(t), \\ y(0) = \tilde{c}_7 \|\varrho_0\|_{\infty} \|a\|_{\infty}^2, \end{cases}$$

satisfies

$$\alpha_1 + \alpha_2 \sqrt{y(t)} = \left[\alpha_1 + \alpha_2 \sqrt{y(0)}\right] \exp\left[\left(\alpha_2/2\right)t\right],$$

Hence by comparison theorems

$$|\theta(t)| \leq \frac{A^2 + B + 1}{A} \left(\exp\left[\frac{\alpha_2}{2}t\right] - 1 \right) + \sqrt{\tilde{c}_{7} \frac{\|\varrho_{0}\|_{\infty}}{\min \varrho_{0}}} \|a\|_{\infty} \exp\left[\frac{\alpha_2}{2}t\right]$$

$$\forall t \in [0, T],$$

i.e. $\theta(t)$ is a global solution in [0, T] and

Define

(7.21)
$$K_3 = m! \frac{\|\varrho_0\|_{\infty}^m}{(\min_{\overline{\Omega}} \varrho_0)^m} K_2^{2m-1} |\Omega|^{\frac{1}{2}}.$$

From (7.12), (7.15) and (7.18) one has

$$\|\bar{\mu}_k\|_{\infty} \leqslant K_3 K_1 B$$
.

Consequently, from (7.17) and (7.15), (7.16)

(7.22)
$$\left\| \frac{d\theta}{dt} \right\|_{\infty} < \tilde{c}_{9} (\|\theta\|_{\infty}^{2} + A^{2} + 1) + K_{3}K_{1}B,$$

(7.23)
$$\left[\frac{d\theta}{dt} \right]_{\lambda} < \tilde{c}_{10} (A^2 + A \|\theta\|_{\infty} + 1) + K_3 K_1 D + \\ + \tilde{c} T^{1-\lambda} ([\overline{U}]_{\text{lip,0}} + \|\theta\|_{\infty} + A) (\|\theta\|_{\infty}^2 + A^2 + B + 1) .$$

Finally, define

(7.24)
$$K_4 \equiv \sqrt{2} \left[\sum_k \|u^{(k)}\|_{\infty}^2 \right]^{\frac{1}{2}};$$

from (7.1) and (3.8) one has,

$$\begin{split} \|\overline{v}\|_{0,2+\lambda} & < \widetilde{c}(A + \|\theta\|_{\infty}), \\ \|D_{t}\overline{v}\|_{\infty} & < K_{1}B + K_{4} \left\| \frac{d\theta}{dt} \right\|_{\infty}, \\ \|D_{t}\overline{v}\|_{0,1+\lambda} < \widetilde{c}\left(C + \left\| \frac{d\theta}{dt} \right\|_{\infty}\right), \\ [D_{t}\overline{v}]_{\lambda,0} & < K_{1}D + K_{4} \left[\frac{d\theta}{dt} \right]_{\lambda}, \\ [D_{t}\overline{v}]_{0,\lambda} & < \widetilde{c}\left(B + \left\| \frac{d\theta}{dt} \right\|_{\infty}\right), \end{split}$$

which replace estimates (3.8).

Set

$$\bar{\gamma} \equiv \beta + \frac{\operatorname{Rot} \bar{\varrho}}{\bar{\varrho}} \cdot \left[\frac{\partial \bar{v}}{\partial t} + (\bar{v} \cdot \nabla) \, \bar{v} - b \right] \qquad \text{in } Q_T \, ;$$

by replacing v, U, ϱ , γ with \overline{v} , \overline{U} , $\overline{\varrho}$, $\overline{\gamma}$ in the proofs of Lemmas 3.2, 3.3, 4.1 and by using (7.25) one obtains:

LEMMA 7.1. Let $\bar{\zeta}(t,x)$ be the solution of

$$\left\{egin{array}{l} rac{\partial ar{\xi}}{\partial t} + ar{v}\!\cdot\!
ablaar{\xi} = ar{\gamma} & in \ Q_{\scriptscriptstyle T}\,, \ ar{\xi}|_{t=0} & = lpha & in \ ar{arOmega}\,. \end{array}
ight.$$

Then Lemma 4.2 is true if we substitute in (4.5), (4.6), (4.7) and (4.8) ζ with $\overline{\zeta}$, A with $A + \|\theta\|_{\infty}$, K_1B with $K_1B + K_4\|d\theta/dt\|_{\infty}$, B with $B + \|d\theta/dt\|_{\infty}$, C with $C + \|d\theta/dt\|_{\infty}$, K_1D with $K_1D + K_4[d\theta/dt]_{\lambda}$. Constants c and \overline{c} , c_i and \overline{c}_i must be replaced respectively by \widetilde{c} , \widetilde{c}_i . We will denote these new estimates by (4.5)', (4.6)', (4.7)' and (4.8)'.

Hence the existence of a solution of system (4.17) will be a consequence of the existence of a fixed point for the map $\overline{F}: \varphi \mapsto \overline{\xi}$.

First of all, we prove that there exists $T_1 \in]0, T]$ such that $\overline{F}(S) \subset S$, provided that A, B, C, D are chosen in a suitable way in (4.11).

By using (7.20), (7.22) and (7.23), we obtain from Lemma 7.1

that in Q_T one has

(7.36)
$$\begin{split} \|\xi\|_{0,1+\lambda} &\leq f_1(T,A,B,C) ,\\ \|D_t \xi\|_{\infty} &\leq f_2(T,A,B,C) ,\\ \|D_t \xi\|_{0,\lambda} &\leq f_3(T,A,B,C) ,\\ [D_t \xi]_{\lambda,0} &\leq f_4(T,A,B,C,D) , \end{split}$$

where the functions f_i are continuous, non-negative, and non-decreasing with respect to each variable. Hence, if we fix A, B, C, D such that

there exists $T_1 \in (0, T)$ for which

$$\begin{aligned} \|\xi\|_{0,1+\lambda} &< f_1(T_1, A, B, C) &< A, \\ \|D_t \xi\|_{\infty} &< f_2(T_1, A, B, C) &< B, \\ \|D_t \xi\|_{0,\lambda} &< f_3(T_1, A, B, C) &< C, \\ [D_t \xi]_{\lambda,0} &< f_4(T_1, A, B, C, D) &< D, \end{aligned}$$

in Q_{T_1} .

It is easy to verify that (7.27) has a solution, provided that condition (A) is satisfied. For example, one can choose successively

$$A > 2 \|\alpha\|_{1+\lambda},$$

$$B > \left\|\frac{D\varrho_{0}}{\varrho_{0}}\right\|_{\infty} K_{1}(1 + K_{3}K_{4})B + \tilde{c}_{1}(A + \tilde{c}_{8})\|D\alpha\|_{\infty} + \\
+ \tilde{c}_{1}[(A + c_{8})^{2} + 1] + \left\|\frac{D\varrho_{0}}{\varrho_{0}}\right\|_{\infty} K_{4}\tilde{c}_{9}(\tilde{c}_{8}^{2} + A^{2} + 1),$$

$$C > B + 2\tilde{c}_{2}(A + \tilde{c}_{8})\|D\alpha\|_{\lambda} + \\
+ \tilde{c}_{2}\{(A + \tilde{c}_{8})^{2} + B + \tilde{c}_{9}(\tilde{c}_{8}^{2} + A^{2} + 1) + K_{3}K_{1}B + 1\},$$

$$D > \left\|\frac{D\varrho_{0}}{\varrho_{0}}\right\|_{\infty} K_{1}(1 + K_{3}K_{4})D + \tilde{c}_{3}\tilde{c}_{4}(A + \tilde{c}_{8})^{1+\lambda}[D\alpha]_{\lambda} + \\
+ \tilde{c}_{3}[(A + \tilde{c}_{8})^{2} + B + \tilde{c}_{9}(\tilde{c}_{8}^{3} + A^{2} + 1) + K_{3}K_{1}B + 1]\cdot \\
\cdot (A + \tilde{c}_{8})^{\lambda} + \tilde{c}_{3} + \left\|\frac{D\varrho_{0}}{\varrho_{0}}\right\|_{\infty} K_{4}\tilde{c}_{10}(A^{2} + \tilde{c}_{8}A + 1).$$

Lemma 4.3 is proved as before, provided that $\overline{F}: S \mapsto S$ is continuous from $C^1(Q_{T_1})$ in $C^0(Q_{T_1})$.

Hence, we must prove that if $\varphi_n \to \varphi$ in $C^1(Q_{T_n})$, $\varphi_n \in S$, then \overline{v}_n and \overline{v} satisfy (4.14) and (4.15). Since v^n and v satisfy these last conditions, it is sufficient to prove that

$$egin{aligned} heta^n &
ightarrow heta & ext{uniformly in } [0,\,T_1]\,, \ & rac{d heta^n}{dt}
ightarrow rac{d heta}{dt} & ext{uniformly in } [0,\,T_1]\,; \end{aligned}$$

we begin by recalling that \bar{v}^n and ϱ_n satisfy

$$\begin{cases}
\frac{\partial \overline{\varrho}_{n}}{\partial t} + \overline{v}^{n} \cdot \nabla \overline{\varrho}_{n} = 0 & \text{in } Q_{T_{1}}, \\
\overline{\varrho}_{n}|_{t=0} = \varrho_{0} & \text{in } \overline{\Omega},
\end{cases}$$

$$(7.31) \qquad \left(\overline{\varrho}_{n} \left[\frac{\partial \overline{v}^{n}}{\partial t} + (\overline{v}^{n} \cdot \nabla) \overline{v}^{n} - b \right], u^{(k)} \right) = 0 \qquad \forall t \in [0, T_{1}], \\
(7.32) \qquad \left(\overline{v}^{n}|_{t=0} - a, u^{(k)}\right) = 0,$$

for each $k=1,\ldots,m$.

Set now $\eta \equiv \overline{\varrho}_n - \overline{\varrho}, \quad u' \equiv v'^n - v', \quad u \equiv v^n - v, \quad \overline{u} \equiv \overline{v}^n - \overline{v} = u + u';$ one obtains from (7.3)

$$(7.33) \qquad \left(\bar{\varrho}_n \left[\frac{\partial \bar{v}}{\partial t} + (\bar{v} \cdot \nabla) \bar{v} - b \right], \, u^{\scriptscriptstyle (k)} \right) - \left(\eta \left[\frac{\partial \bar{v}}{\partial t} + (\bar{v} \cdot \nabla) \bar{v} - b \right], \, u^{\scriptscriptstyle (k)} \right) = 0 \; .$$

On substrating (7.33) from (7.31) one has

$$\left(ar{arrho}_nigg[rac{\partial\overline{u}}{\partial t}+(ar{v}^n\cdot
abla)ar{u}+(ar{v}\cdot
abla)ar{v}
ight],\,u^{(k)}
ight)\!=\!-igg(\etaigg[rac{\partial\overline{v}}{\partial t}+(ar{v}\cdot
abla)ar{v}-bigg],\,u^{(k)}
ight),$$

and multipling by $\theta_k^n - \theta_k$

$$(7.34) \qquad \left(\bar{\varrho}_n \left[\frac{\partial u'}{\partial t} + (\bar{v}^n \cdot \nabla) u' + (u' \cdot \nabla) \bar{v} \right], u' \right) = \\ = -\left(\bar{\varrho}_n \left[\frac{\partial u}{\partial t} + (\bar{v}^n \cdot \nabla) u + (u \cdot \nabla) \bar{v} \right], u' \right) - \left(\eta \left[\frac{\partial \bar{v}}{\partial t} + (\bar{v} \cdot \nabla) \bar{v} - b \right], u' \right).$$

From $(7.30)_1$

$$\left(ar{arrho}_{n}rac{\partial u'}{\partial t},u'
ight) = rac{1}{2}rac{d}{dt}(ar{arrho}_{n}u',u') + rac{1}{2}\left((ar{v}^{n}\!\cdot\!
ablaar{arrho}_{n})u',u'
ight)$$

and moreover

$$\left(\bar{\varrho}_{n}(\bar{v}^{n}\cdot\nabla)u',u'\right)=\frac{1}{2}\sum_{i,j}\int_{\Sigma}\bar{\varrho}_{n}\bar{v}_{i}^{n}\frac{\partial u'_{j}^{2}}{\partial x_{i}}dx=-\frac{1}{2}\left((\bar{v}^{n}\cdot\nabla\bar{\varrho}_{n})u',u'\right).$$

Hence (7.34) becomes

$$(7.35) \qquad \frac{1}{2} \frac{d}{dt} (\bar{\varrho}_n u', u') + (\bar{\varrho}_n (u' \cdot \nabla) \bar{v}, u') =$$

$$= -\left(\bar{\varrho}_n \left[\frac{\partial u}{\partial t} + (\bar{v}^n \cdot \nabla) u + (u \cdot \nabla) \bar{v} \right], u' \right) - \left(\eta \left[\frac{\partial \bar{v}}{\partial t} + (\bar{v} \cdot \nabla) \bar{v} - b \right], u' \right).$$

On other hand, from (7.30) and (7.2) one obtains

$$rac{\partial \eta}{\partial t} + ar{v} \cdot
abla \eta = - u' \cdot
abla ar{arrho}_n - u \cdot
abla ar{arrho}_n \, ,$$

and taking the scalar product with η

(7.36)
$$\frac{1}{2}\frac{d}{dt}(\eta,\eta) = -(\eta u',\nabla \bar{\varrho}_n) - (\eta u,\nabla \bar{\varrho}_n).$$

Set $f(t) \equiv \frac{1}{2}(\bar{\varrho}_n u', u') + \frac{1}{2}(\eta, \eta)$: from (7.35) and (7.36) one has

$$\begin{split} \frac{d}{dt}f(t) &\leqslant c(\bar{\varrho}_n u', u') + \left\| \frac{\partial v^n}{\partial t} - \frac{\partial v}{\partial t} \right\|_{\infty} \int_{\Omega} \bar{\varrho}_n |u'| \, dx + \\ &+ c \|Dv^n - Dv\|_{\infty} \int_{\Omega} \bar{\varrho}_n |u'| \, dx + c \|v^n - v\|_{\infty} \int_{\Omega} \bar{\varrho}_n |u'| \, dx + \\ &+ c \int_{\Omega} |\eta| \, |u'| \, dx + c \|v^n - v\|_{\infty} \int_{\Omega} |\eta| \, dx \, , \end{split}$$

since $\|\overline{v}^n\|_{\infty}$ and $\|\nabla \overline{\varrho}_n\|_{\infty}$ are bounded, and $0 < \min_{\overline{\Omega}} \varrho_0 \leqslant \overline{\varrho}_n(t, x) \leqslant \|\varrho_0\|_{\infty}$. Hence

$$\begin{cases} f'(t) \leqslant cf(t) + c_n \sqrt{f(t)}, \\ f(0) = 0 \end{cases}$$

where $c_n \to 0$, and consequently by comparison theorems

(7.37)
$$f(t) \leqslant \left(\frac{c_n}{c}\right)^2 \left(\exp\left[\frac{ct}{2}\right] - 1\right)^2 \quad \text{in } [0, T_1].$$

Estimate (7.37) gives

(7.38)
$$\sup_{\substack{t \in [0,T_1]}} \|v'^n - v'\|_{L^{2}(\Omega)} \xrightarrow{n} 0 , \\ \sup_{t \in [0,T_1]} \|\bar{\varrho}_n - \bar{\varrho}\|_{L^{2}(\Omega)} \xrightarrow{n} 0 ,$$

i.e.

(7.39)
$$\sup_{t \in [0,T_1]} |\theta^n(t) - \theta(t)| = \sup_{t \in [0,T_1]} ||v'^n - v'||_{L^2(\Omega)} \xrightarrow{n} 0.$$

Moreover from (7.5) one has

$$\|\mu_{ks}^n - \mu_{ks}\|_{\infty} \leq c \sup_{t \in [0,T,1]} \|\tilde{\varrho}_n - \tilde{\varrho}\|_{L^2(\Omega)} \xrightarrow{n} 0$$

and analogously for the other coefficients.

Consequently from (7.14) it follows that

$$\|\bar{\mu}_{ks}^n - \bar{\mu}_{ks}\|_{\infty} \xrightarrow{n} 0$$
 ,

and the same is true for each coefficient in (7.17); hence we conclude that

$$\left\|\frac{d\theta^n}{dt} - \frac{d\theta}{dt}\right\|_{\infty} \to 0.$$

As in § 4, we have proved that

$$\mathrm{rot}\left\{ \overline{\varrho} \left[\frac{\partial \overline{v}}{\partial t} + (\overline{v} \cdot \nabla) \overline{v} - b \right] \right\} = 0 \qquad \text{ in } Q_{T_1} \,,$$

and moreover

$$egin{aligned} \left(\overline{arrho} \left[rac{\partial \overline{v}}{\partial t} + (\overline{v} \cdot
abla) \overline{v} - b
ight], u^{(k)}
ight) = 0 & \forall t \in [0, T_1], \\ \left(\overline{v}|_{t=0} - a, u^{(k)}
ight) = 0, \end{aligned}$$

for each k=1,...,m.

As in Kato [5], Lemma 1.6 (see also Hopf [4]), it follows that there exists a scalar function $\bar{\pi} \in C^{0,1}(Q_{T_1})$ such that (E)₁ holds in Q_{T_1} . The further regularity properties of $\bar{\pi}$ are proved as in § 4, since \bar{v} has the same regularity of v.

Finally, by using (7.4) one obtains that $\overline{v}|_{t=0} = a$ in $\overline{\Omega}$, i.e. we have found a solution $(\overline{v}, \overline{\pi}, \overline{\varrho})$ of system (E) in $Q_{T,}$.

REFERENCES

- C. Bardos, Existence et unicité de la solution de l'équation d'Euler en dimension deux, J. Math. Anal. Appl., 40 (1972), pp. 769-790.
- [2] K. K. Golovkin, Vanishing viscosity in Cauchy's problem for hydromechanics equations, Proc. Steklov Inst. Math., 92 (1966), pp. 33-53 (previously in Trudy Mat. Inst. Steklov, 92 (1966), pp. 31-49 [russian]).
- [3] E. HÖLDER, Über die unbeschränkte Fortsetzbarkeit einer stetigen ebenen Bewegung in einer unbegrenzten inkompressiblen Flüssigkeit, Math. Z., 37 (1933), pp. 727-738.
- [4] E. Hopf, Über die Anfangswertaufgabe für die hydrodynamischen Grundgleichungen, Math. Nachr., 4 (1950-51), pp. 213-231.
- [5] T. Kato, On Classical Solutions of the Two-Dimensional Non-Stationary Euler Equation, Arch. Rat. Mech. Anal., 25 (1967), pp. 188-200.
- [6] J. LERAY, Sur les mouvements des liquides illimites, C.R.A.S. Paris, 194 (1932), 1892-1894.
- [7] L. LICHTENSTEIN, Neuere entwicklung der Potentialtheorie. Konforme Abbildung, Encycl. Math. Wiss., II C 3 (1918), pp. 177-377.
- [8] J. E. Marsden, Well-posedness of the equations of a non-homogeneous perfect fluid, Comm. Partial Diff. Eq., 1 (1976), pp. 215-230.
- [9] F. J. Mc Grath, Nonstationary Plane Flow of Viscous and Ideal Fluids, Arch. Rat. Mech. Anal., 27 (1967), pp. 329-348.
- [10] A. C. Schaeffer, Existence theorem for the flow of an ideal incompressible fluid in two dimensions, Trans. Amer. Math. Soc., 42 (1937), pp. 497-513,

- [11] J. SERRIN, On the uniqueness of compressible fluid motions, Arch. Rat. Mech. Anal., 3 (1959), pp. 271-288.
- [12] A. Valli, Soluzioni classiche dell'equazione di Eulero dei fluidi bidimensionali in domini con frontiera variabile, Ricerche di Mat., 26 (1977), pp. 301-333.
- [13] W. WOLIBNER, Un theorème sur l'esistence du mouvement plan d'un fluide parfait, homogène. incompressible, pendant un temps infiniment long, Math. Z., 37 (1933), pp. 698-726.
- [14] V. I. Yudovich, Non-stationary flows of ideal incompressible fluids, Zhur. Vych. Mat. i Mat. Fiz., 3 (1963), pp. 1032-1066 [russian].
- [15] V. I. Yudovich, A two dimensional problem of unsteady flow of an ideal incompressible fluid across a given domain, Amer. Math. Soc. Translations, 57 (1966), pp. 277-304 (previously in Mat. Sb., 64 (1964), pp. 562-588 [russian]).
 - Added in proof: the analytic case in compact manifolds without boundary was studied in
- [16] M. S. BAOUENDI C. GOULAOUIC, Solutions analytiques de l'equation d'Euler d'un fluide incompressible, Seminaire Goulaouic-Schwartz, 1976-77 (Paris).

Manoscritto pervenuto in redazione il 20 luglio 1978.