RENDICONTI del SEMINARIO MATEMATICO della UNIVERSITÀ DI PADOVA

EMMA PREVIATO

Gruppi nel cui reticolo duale la relazione di Dedekind è transitiva

Rendiconti del Seminario Matematico della Università di Padova, tome 58 (1977), p. 287-308

http://www.numdam.org/item?id=RSMUP 1977 58 287 0>

© Rendiconti del Seminario Matematico della Università di Padova, 1977, tous droits réservés.

L'accès aux archives de la revue « Rendiconti del Seminario Matematico della Università di Padova » (http://rendiconti.math.unipd.it/) implique l'accord avec les conditions générales d'utilisation (http://www.numdam.org/conditions). Toute utilisation commerciale ou impression systématique est constitutive d'une infraction pénale. Toute copie ou impression de ce fichier doit contenir la présente mention de copyright.

$\mathcal{N}_{\text{UMDAM}}$

Article numérisé dans le cadre du programme Numérisation de documents anciens mathématiques http://www.numdam.org/

Gruppi nel cui reticolo duale la relazione di Dedekind è transitiva.

EMMA PREVIATO (*)

Nel presente lavoro vengono esaminati i gruppi iperciclici (1) nel cui reticolo $\tilde{\Sigma}$ (G), duale del reticolo Σ (G) di tutti i sottogruppi di G, la relazione di Dedekind è transitiva (\check{D} -gruppi).

Si ottiene una descrizione completa di tali gruppi, contenuta negli enunciati dei teoremi 2.3, 3.8, 4.1 e 4.2; tali gruppi costituiscono una sottoclasse propria della classe dei gruppi iperciclici in cui la relazione di Dedekind è transitiva ([6]).

1. - Elementi di Dedekind-duali.

Un elemento h di un reticolo $\mathfrak L$ si dice elemento di Dedekindduale in $\mathfrak L$ (brevemente $\check d$ -elemento) se e solo se h è elemento di Dedekind nel reticolo duale di $\mathfrak L$; in forma esplicita, dati comunque gli elementi a, b di $\mathfrak L$, sono soddisfatte le relazioni seguenti:

- i) da $a \ge b$ segue $(b \cup h) \cap a = b \cup (h \cap a)$.
- ii) da $h \ge b$ segue $(b \cup a) \cap h = b \cup (h \cap a)$.

^(*) Indirizzo dell'A.: Seminario Matematico dell'Università, Padova. Lavoro eseguito nell'ambito dei Gruppi di Ricerca Matematica del C.N.R.

⁽¹⁾ Un gruppo G si dice iperciclico se e solo se ogni immagine omomorfa non identica di G possiede un sottogruppo normale ciclico non identico.

OSSERVAZIONE 1. Da i), ii) si deduce immediatamente che h è d-elemento in $\mathfrak L$ se per ogni $k \leq h$ risulta k di Dedekind in $\mathfrak L$.

OSSERVAZIONE 2. $\mathfrak L$ è un reticolo modulare se e solo se ogni elemento di $\mathfrak L$ è $\check d$ -elemento.

Ci saranno utili le seguenti proprietà dei d-elementi di un reticolo, ottenute dualizzando proprietà analoghe relative ad elementi di Dedekind in un reticolo ([10], pp. 74-76, e [5], paragrafo 1).

1.1. Sia h un elemento del reticolo \mathfrak{L} .

- i) h è d-elemento in $\mathfrak L$ se e solo se per ogni $k \in \mathfrak L$ l'applicazione $\varphi^k \colon x \longmapsto x \cup k$ realizza un isomorfismo tra gli intervalli $[h/h \cap k]$ e $[h \cup k/k]$; il suo inverso è dato da $\varphi_h \colon x \longmapsto x \cap h$.
 - ii) se h e k sono \check{d} -elementi, allora $h \cap k$ è \check{d} -elemento.
- iii) se h è \check{d} -elemento in $\mathfrak L$ e se $k \leq h$ è \check{d} -elemento nel reticolo $[h] = \{x \in \mathfrak L \mid x \leq h\}$, allora k è \check{d} -elemento in $\mathfrak L$.
- iv) se h è \check{d} -elemento in $\mathfrak L$ e $k \in \mathfrak L$, allora $h \cap k$ è \check{d} -elemento in [k].
- v) se h è \check{d} -elemento in $\mathfrak L$ e $k \in \mathfrak L$, allora $h \cup k$ è \check{d} -elemento nel reticolo $[\mathfrak L/k] = \{x \in \mathfrak L \mid x \geq k\}.$

Daremo ora alcune proprietà dei \check{d} -elementi in un \check{D} -reticolo, ossia un reticolo $\mathfrak L$ avente in $\check{\mathfrak L}$ la relazione di Dedekind transitiva : se h è \check{d} -elemento in $\mathfrak L$ e k è \check{d} -elemento in $[\mathfrak L/h]$, allora k è \check{d} -elemento in $\mathfrak L$.

1.2. Proposizione. In un \breve{D} -reticolo $\mathfrak L$ l'insieme dei \breve{d} -elementi costituisce un sottoreticolo.

DIMOSTRAZIONE. Siano h, k \check{d} -elementi in \mathfrak{L} . Allora $h \cup k$ è \check{d} -elemento in $[\mathfrak{L}/h]$ (1.1 v)); poichè \mathfrak{L} è un \check{D} -reticolo, è dunque $h \cup k$ \check{d} -elemento, come pure $h \cap k$ per 1.1 ii).

1.3. Proposizione. In un \check{D} -reticolo algebrico (2) \mathfrak{L} , una unione qualsiasi di \check{d} -elementi, è un \check{d} -elemento.

⁽²⁾ Diremo algebrico un reticolo che sia completo, e in cui ogni elemento sia unione di elementi compatti (per una definizione di elemento compatto cfr. [2], p. 186). Ricordiamo che, se G è un gruppo, $\mathfrak{L}(G)$ è algebrico.

DIMOSTRAZIONE. Sia $\{h_{\alpha}\}$ una famiglia di \bar{d} -elementi, sia k un elemento qualunque di \mathcal{L} , e poniamo $h=\cup_{\alpha}h_{\alpha}$. Usiamo la condizione i) di 1.1. Se $h\cap k\leq x\leq h$, risulta $(x\cup k)\cap h\geq x$; viceversa, se y è un elemento compatto contenuto in $(x\cup k)\cap h$, allora $y\leq (\cap x_{\beta})\cup k$, ove F è un insieme finito e $\{x_{\beta}\}$ è una famiglia di elementi compatti la cui unione è x. Sia ora F' un insieme finito tale che $\bar{h}=\bigcup_{\alpha\in F'}h_{\alpha}\geq y$, e $\bar{h}\geq \bar{x}=\bigcup_{\beta\in F}x_{\beta}$. Ora, tenuto conto di 1.2, risulta $y\leq (\bar{x}\cup k)\cap \bar{h}=\bar{x}\cup (k\cap \bar{h})\leq x$, e in conclusione $(x\cup k)\cap \bar{h}\leq x$. L'applicazione $\varphi^k:[h/h\cap k]\to[h\cup k/k]$ è pertanto iniettiva, e la sua inversa sinistra è data da φ_h ; si dimostra analogamente che è suriettiva.

1.4. Proposizione. Il prodotto cartesiano di una famiglia di $reve{D}$ -reticoli è un $reve{D}$ -reticolo.

DIMOSTRAZIONE. Verifica immediata.

1.5. PROPOSIZIONE. Sia $\mathfrak L$ un reticolo algebrico, e sia $\{g_{\alpha}\}_{\alpha\in I}$ la famiglia degli elementi compatti di $\mathfrak L$. Dato un elemento h di $\mathfrak L$, sia $\{h_{\beta}\}_{\beta\in J}$ la famiglia degli elementi compatti contenuti in h. Allora h è un d-elemento in $\mathfrak L$ se e solo se per ogni insieme finito $F\subseteq I$, ed $F'\subseteq J$, posto $\overline{g}=\bigcup_{\alpha\in F}g_{\alpha}$, $\overline{h}=\bigcup_{\beta\in F'}h_{\beta}$, $s=h\cap \overline{g}$, l'applicazione $\varphi_{\overline{h}\cup s}$ risulta isomorfismo fra i reticoli $[\overline{h}\cup \overline{g}/\overline{g}]$ e $[\overline{h}\cup s/s]$.

DIMOSTRAZIONE. La necessità si prova osservando che la $\varphi_{\bar{h} \cup s}$ è una restrizione dell'isomorfismo $\varphi_h: [h \cup \bar{g}/\bar{g}] \to [h/s]$. Per la sufficienza, usiamo 1.1); sia k un qualunque elemento di \mathfrak{L} , e sia $h \cap k \leq x \leq h$. Allora $(x \cup k) \cap h \geq x$; viceversa, se $y \leq (x \cup k) \cap h$ è un elemento compatto, sia $y \leq (\bigcup_{x \in F} x_y) \cup (\bigcup_{x \in F} y_x) = (\bigcup_{x \in F} x_y) \cup (\bigcup_{x \in F} y_x) = (\bigcup_{x \in F} x_y) = (\bigcup_{x \in F}$

Si verifica infine, utilizzando 1.1:

1.6. PROPOSIZIONE. Se $\mathfrak L$ è un \check{D} -reticolo e se h è \check{d} -elemento in $\mathfrak L$, allora [h] ed $[\mathfrak L/h]$ sono entrambi \check{D} -reticoli.

2. - Ď-gruppi iperciclici aperiodici.

2.1. Proposizione. Sia G un \check{D} -gruppo e sia $\{H_{\alpha}\}_{\alpha \leqslant \gamma}$ una serie ascendente di G, invariante e a fattori ciclici. Allora $H_{\alpha} \leq \check{d} G(H_{\alpha})$ è \check{d} -elemento in $\mathfrak{L}(G)$ per ogni $\alpha \leq \gamma$.

DIMOSTRAZIONE. Usiamo induzione (transfinita) su α ; se $\alpha=1$, H_1 è un sottogruppo normale ciclico di G, e $H_1 \leq_{\widetilde{G}} G$ (Osservazione 1), Se $\alpha=\beta+1$, allora $H_{\beta+1}/H_{\beta} \leq_{\widetilde{G}} G/H_{\beta}$ (Osservazione 1), e dunque $H_{\beta+1} \leq_{\widetilde{G}} G$, in quanto G è D-gruppo. Infine, se α è un ordinale limite, $H_{\alpha} \leq_{\widetilde{G}} G$ per 1.3.

2.2. Proposizione. Sia G un \check{D} -gruppo aperiodico, e sia $\{H_{\alpha}\}_{\alpha\leqslant\gamma}$ una serie ascendente di G, invariante e a fattori ciclici. Se H_{α_o} è abeliano, per un $a_o\leq\gamma$, allora ogni elemento c di G induce su H_{α_o} un automorfismo potenza.

DIMOSTRAZIONE. Usiamo induzione su a_o ; H_1 è normalizzato da c, ed è ciclico, quindi l'affermazione è vera. Se a_o è ordinale limite, c normalizza ogni sottogruppo ciclico di H_{α_o} , e questo prova di nuovo l'asserto. Sia dunque $a_o=\beta+1$, e sia $H_{\alpha_o}=< b$, $H_{\beta}>$; c normalizza ogni sottogruppo di H_{β} (ipotesi iduttiva), inoltre ogni sottogruppo di $H_{\beta+1}$ è d-elemento in G, essendo $H_{\beta+1}$ abeliano e $H_{\beta+1}\leq_{d}G(2.1)$. Se $b^n\in H_{\beta}$ per un n>0, si conclude facilmente avendosi $c^{-1}bc=b^rh$, per un $h\in H_{\beta}$, e dunque $c^{-1}b^nc=b^{\pm n}==(b^rh)^n$, per cui $(b^{r\pm 1}h)^n=1$, e dunque $h\in < b>$. Se invece $H_{\beta+1}/H_{\beta}$ è aperiodico, risulta $c^{-1}bc=b^{\varepsilon_1}h$, con $\varepsilon_1=\pm 1$, $h\in H_{\beta}$. Distinguiamo due casi :

a)
$$< c > \wedge H_{\beta+1} = \{1\}$$
.

Da $h \in \langle b \rangle$, $c > \text{ si deduce } \langle b \rangle$, $h > \cup \langle c \rangle = \langle b \rangle \cup \langle c \rangle$ e poichè $\langle b \rangle$, $h > \leq b \langle c \rangle$, come si voleva.

$$b) \ < c > \ \cap \ H_{\beta+1} = \ < c^s > \ , \ \ {\rm con} \ \ s > 1 \ .$$

Sarà $c^{-1}hc=h^{\varepsilon_2}$, e dunque $b=c^{-s}bc^s=b^{\varepsilon_1}h^{\varepsilon_1}$, b^{ε_1} , b^{ε_2} , b^{ε_2} ; risulta allora $\varepsilon_1^s=1$, essendo $< b> \cap < h> = \{1\}$ e, se $h\neq 1$, $\varepsilon_1^{s-1}+\varepsilon_1^{s-2}\varepsilon_2+\ldots+\varepsilon_2^{s-1}=0$, quindi $\varepsilon_1=-\varepsilon_2$, ed s pari. Escludiamo anzitutto il caso $\varepsilon_2=-1$. Infatti, posto $s=2^mt$, con t dispari, è $(2^m+1)t$ dispari, e dunque $(h\neq 1)< c^{2^mt}h> \cap$

 $0 < c^{(z^m+1)t} \, h > = \{1\};$ d'altra parte, $< c^{z^m t} \, h > \cup < c^{(z^m+1)t} \, h > = < c^t,$ h >, quindi essendo $< c^{z^m t} \, h > \leq_{\widetilde{d}} G$ risulta $[< c^{z^m t} \, h > /\{1\}] \simeq \simeq [< c^t, \, h > / < c^{(z^m+1)t} \, h >]$, mentre il fatto che $(c^t \, h)^{z^m+1} = c^{t(z^m+1)} \, h$ dice che il secondo reticolo ha elementi periodici non nulli, una contraddizione. Dovrà quindi essere $\varepsilon_2 = 1$, $\varepsilon_1 = -1$.

$$b_1$$
) $< h > \ \delta < c > .$

Allora $[< b \ , c > / < h \ , c >]$ è un reticolo finito, dato che $[< b \ , c > / < c >]$ è il reticolo di un gruppo ciclico; pertanto $|< b \ , c > : < h \ , c >| < \infty$ (come si può vedere ad esempio ragionando modulo < h >); $[< h \ , c > / < h \ , c^2 >]$ ha lunghezza ≤ 1 quindi in conclusione $|< b \ , c > : < h \ , c^2 >| < \infty$. Ma allora il gruppo aperiodico $< b \ , c >$ è abeliano perchè $< h \ , c^2 >$ è contenuto nel suo centro e un gruppo il cui centro ha indice finito ha il derivato di ordine finito ([7]. Theorem 4.12); assurdo.

$$b_2$$
) $< h > \le < c >$.

Risulta c^{-1} $bc = b^{-1}$ c^m , $m \neq 0$; $b = c^{-m}$ $bc^m = b^{(-1)^m}$, dunque m è pari. Risulta inoltre (2+m)m+1 dispari, dunque $< c^{(2+m)m}$ $b > \cap < c^{(2+m)m+1}$ $b > = \{1\}, < c^{(2+m)m}$ $b > \cup < c^{(2+m)m+1}$ b > = < c, b >, da cui, essendo $< c^{(2+m)m}$ $b > \le \tilde{d}$ G, segue $[< c^{(2+m)m}$ $b > /\{1\}] \cong \cong [< c$, $b > /c^{(2+m)m+1}$ b >], mentre si ha $(cb)^{2m+1} = c^{(2+m)m+1}$ b, e dunque a < cb > corrisponde un elemento ciclico finito in $\mathcal{L} < c^{(2+m)m}$ b >, una contraddizione. Pertanto $< b > \lhd < b$, c >.

2.3. Teorema. Un gruppo iperciclico aperiodico G è \widecheck{D} -gruppo se e solo se è abeliano.

Dimostrazione. Proviamo la necessità. Sia $\{H_{\alpha}\}_{\alpha\leqslant\gamma}$ una serie ascendente di G, invariante e a fattori ciclici, tale che \cup $H_{\alpha}=G$.

Proviamo, per induzione su α , che H_{α} è abeliano. Se $\alpha=1$, H_{α} è ciclico; se α è ordinale limite, è possibile trovare un sottogruppo abelliano che contenga due elementi generici di H_{α} . Sia dunque $\alpha=\beta+1$ e sia $H_{\alpha}=< H_{\beta}$, c>. Per 2.2, c induce su H_{β} un automorfismo potenza. Se tale potenza non è 1, allora c non induce su $< c^2$, $H_{\beta}>$ un automorfismo potenza, mentre $< c^2$, $H_{\beta}>$ è abeliano normale: ciò è in contraddizione con 2.2.

3. - D-gruppi iperciclici periodici.

3.1. Lemma. Un gruppo finito supersolubile G è un \check{D} -gruppo se e solo se è modulare.

DIMOSTRAZIONE. Proviamo anzitutto, usando induzione sulla classe di nilpotenza, che un p-gruppo finito P che sia \check{D} -gruppo è modulare. P/Z(P) è modulare per ipotesi induttiva (per l'Osservazione 1 è $Z(P) \leq_{\check{a}} P$); allora per la \check{D} -proprietà è $< Z(P), x > \leq_{\check{a}} P$ per ogni $x \in P$, e da $< x > \leq_{\check{a}} < Z(P), x > \leq_{\check{a}} P$ segue $x \leq_{\check{a}} P$. Ne segue che ogni sottogruppo di P è \check{d} -elemento (1.2), e dunque P è modulare (Osservazione 2).

Sia ora G un D-gruppo supersolubile finito; proviamo che G è modulare per induzione sull'ordine di G. Sia < g > un sottogruppo normale di ordine primo p di G. Allora G/< g > è D-gruppo, quindi è modulare, da cui per ogni $h \in G$ è < g, $h > \leq_{\overline{d}} G$. La conclusione si otterrà provando che $< h > \leq_{\overline{d}} < g$, h >, nè è restrittivo supporre $|h| = q^n$, q un numero primo (1.2). Se p = q, allora < g, h > è modulare, essendo un p-gruppo con proprietà D. Sia ora $p \neq q$; usiamo induzione su n per provare che $< h > \leq_{\overline{d}} < g$, h >. Se n = 1 < g, h > è un gruppo modulare avendo ordine pq. Se n > 1, per la D-proprietà e l'ipotesi induttiva si avrà $< h^q > \leq_{\overline{d}} < g$, $h^q > \leq_{\overline{d}} < g$, h >. Infine, il reticolo [< g, $h > / < h^q >]$ ha lunghezza due e dunque è modulare, così < h > è d-elemento in [< g, $h > / < h^q >]$, da cui $< h > \leq_{\overline{d}} < h$, g >, come si voleva.

- **3.2.** LEMMA. Sia G un \check{D} -gruppo iperciclico periodico; se N è il sottogruppo di G generato dagli elementi $g \in G$ tali che $< g > \le \check{a} G$, allora:
 - i) N è reticolarmente invariante in G,
 - ii) N è modulare,
 - iii) per $H \leq N$ è $H \leq \tilde{d} G$.

DIMOSTRAZIONE. i) è ovvia. iii) ogni elemento x di N è contenuto in un sottogruppo $< g_1$,..., $g_t >$ con $< g_t > \leq_{\overline{d}} G$; ora $< g_1$,..., $g_t >$ è un D-gruppo (1.2) ed è finito essendo G localmente finito. Per 3.1 $< g_1$,..., $g_t >$ è modulare, per cui $< x > \leq_{\overline{d}} < g_1$,..., $g_t > \leq_{\overline{d}} G$, da cui $< x > \leq_{\overline{d}} G$. Tenuto conto di 1.3, la iii) è dimostrata; ii) ne segue usando l'Osservazione 2.

3.3. Proposizione. Un p-gruppo iperciclico G con $p \neq 2$ è \check{D} -gruppo se e solo se è modulare.

DIMOSTRAZIONE. Dimostriamo la necessità. Il sottogruppo Ndi G generato dagli elementi $g \in G$ tali che $\langle g \rangle \leq \mathcal{J} G$ è modulare per 3.2. Supponiamo per assurdo $N \neq G$ e consideriamo un elemento $x \in G$ tale che $\langle x, N \rangle / N \triangleleft G/N$ e $|\langle x, N \rangle / N| = p$. Supponiamo anzitutto |x| = p. x normalizza ogni elemento y di N, avendosi |< x, y> : < y>| = p; essendo poi $p \neq 2$, il gruppo < x, y > è modulare ([9]); ne segue $< x > \le_q < x, y >$, dunque $< x > \le_q < x, N >$ e infine $< x > \le_{\overline{q}} < x, N >$ (Osservazione 1). Ma $\langle x \rangle \leq \zeta \langle x, N \rangle \leq \zeta G$ comporta $\langle x \rangle \leq \zeta G$, in contraddizione col fatto che $x \notin N$. Sia ora $|x| = p^n, n > 1$; possiamo usare induzione su n per dimostrare $\langle x \rangle \leq x \langle x, N \rangle$, nelle ipotesi $\langle x, N \rangle \leq d G$ e $\langle y \rangle \leq d G$ per ogni $y \in N$. Il caso n = 1è risolto per quanto visto sopra. Consideriamo il sottogruppo $\Omega_1(N)$ di N generato dagli elementi di ordine p. N è modulare, quindi $\Omega_1(N)$ è abeliano elementare, inoltre $\Omega_1(N) \leq \widetilde{d} G$, pertanto il gruppo $G/\Omega_1(N)$ è ancora un \check{D} -gruppo, $N/\Omega_1(N)$ è tale che ogni suo sottogruppo è \check{d} -elemento, quindi in $G/\Omega_1(N)$ si può applicare l'ipotesi induttiva per concludere $\langle x, \Omega_1(N) \rangle / \Omega_1(N) \leq \ddot{d} \langle x, N \rangle / \Omega_1(N)$, da cui per la $reve{D}$ -proprietà < x , $\Omega_{\scriptscriptstyle 1}(N) > \leq \check{a} < x$, N > . Ma < x >è normalizzato da ogni elemento z di $\Omega_1(N)$ essendo |< x, z> : $|< x>| \le p$, quindi è anche $|< x> \le \frac{1}{d} < x$, $\Omega_1(N) > e$ infine $\langle x \rangle \leq dG$, come si voleva.

La sufficienza è ovvia.

3.4. Proposizione. Un 2-gruppo iperciclico G non modulare è D-gruppo se e solo se è un (q)-gruppo $G = \langle c, A \rangle$, con A 2-gruppo divisibile (non identico), c^{-1} $ac = a^{-1}$ per ogni $a \in A$ (3).

DIMOSTRAZIONE. Necessità. Sia G un 2-gruppo iperciclico, non modulare con proprietà \check{D} ; consideriamo il sottogruppo N di G generato dagli elementi $g \in G$ tali che $< g > \le_{\check{d}} G$. N è modulare (3.2), quindi $N \neq G$. Sia c un elemento di G tale che |< c, N > |N| = 2 e < c, $N > \lhd G$; proviamo che, se N ha esponente finito, allora $< c > \le_{\check{d}} G$. Infatti, se < g > è un \check{d} -elemento di ordine 2, risulta

⁽³⁾ Per una descrizione dei 2-gruppi (risolubili) con proprietà (q), cfr. [3]. Per gruppo divisibile si intende sempre gruppo abeliano divisibile.

 $|< c\;, g>: < c>| \le 2\;;$ ne segue $< c\;, \varOmega_{i-1}(N)> \le \breve{a} < c\;, \varOmega_{i}(N)>,$ e dunque $< c> \le \breve{a} < c\;, \varOmega_{1}(N)> \le \breve{a} < c\;, \varOmega_{2}(N)> \le \breve{a}\;... \le \breve{a} < c\;, \varOmega_{t}(N)> = < c\;, N>\;;$ per la transitività, $< c> \le \breve{a}\;G\;.$ Ma allora per definizione di N sarebbe $c\in N\;,$ contro l'ipotesi. Pertanto N non ha esponente finito, ed essendo modulare è abeliano.

Possiamo quindi considerare il quoziente < c, $N > / < c > \cap N$, che è ancora D-gruppo (3.2) ; per semplicità di scrittura, supponiamo $< c > \cap N = \{1\}$, quindi |c| = 2. Essendo |< c, g > : < g > | = 2 per ogni $g \in N$, c induce su N un automorfismo potenza di ordine 2. Supponiamo che sia $N^2 \neq N$, e sia $h \in N$, $h \in N^2$. Essendo < c, $N > /N^2$ un gruppo abeliano elementare, risulta < c, $N^2 > \leq \overline{a}$ < c, N > ; da $< ch > \cap < c$, $N^2 > = \{1\}$ segue dunque $[< cg > / \{1\}] \simeq [< cg$, ch > / < ch >] per ogni $g \in N$, mentre |cg| = 2 e, per |g| > 2, risulta |< cg, ch > : < ch > | > 2 in quanto $g^{-1}h \in < cg$, ch > :, assurdo. N è dunque divisibile.

Abbiamo ragionato modulo $< c > \cap N$; nel caso generale, proviamo che c induce su A un automorfismo potenza, ove $N = A \times B$, ed A è il massimo sottogruppo divisibile di N. Infatti, sia $|c| = 2^n$ e sia $a \in A$ arbitrario. Se a_1 è tale che $a = a_1^{2^n}$, da $c^{-1} a_1 c = a_1^{-1} c^m$ $(c^m \in N)$ segue $c^{-1} ac = (a_1^{-1}c^m)^{2^n} = (a_1^{2^n})^{-1} = a^{-1}$, come si voleva.

Proviamo infine che $G = \langle A, c \rangle$; anzitutto è $\langle N, c \rangle =$ $= \langle A, c \rangle$, infatti, se $\langle c \rangle \cap N = \langle ab \rangle$, $a \in A$, $b \in B$ risulta $N = A \times \langle b \rangle$. Supponiamo per assurdo che esista un $d \in G$ tale che $\langle c, N \rangle$ ha indice 2 in $\langle d, c, N \rangle$ e $\langle d, c, N \rangle$ è un \check{D} -gruppo (basta scegliere < d, c, $N > \lhd G$). Se < d, c, N > /Nè abeliano elementare, allora < d, $N > \leq_{\breve{d}} G$ e dunque, per quanto visto sopra per il gruppo < c , N > d induce su A un automorfismo potenza non identico (se fosse identico, sarebbe $\langle d \rangle \leq d$); ma allora $\langle cd, A \rangle$ è un gruppo abeliano, e dunque $\langle cd \rangle \leq J$ < cd, $A > \leq_{\vec{d}} < cd$, $N > \leq_{\vec{d}} G$, per cui $cd \in N$, assurdo. Sia dunque < d, c, N > /N un gruppo ciclico; se si prova che d induce su A un automorfismo potenza, allora si perviene ad un assurdo, in quanto $c = d^2 h \in \mathcal{C}(A)$. A tale scopo possiamo ragionare modulo $< d > \cap N$, quindi supporre |d|=4. Allora ogni elemento di $\Omega_1(N)$ induce su < d > l'identità (diversamente non darebbe luogo a un d-elemento). Supponiamo ora che d normalizzi ogni sottogruppo ciclico di N di ordine 2^s, e sia $|a| = 2^{s+1}$; allora $d^{-1} ad = aa_1$, con $|a_1| \le 2^s$; ma essendo $< a, a_1 > \cup < d > = < a > \cup < d > e < d > \cap < a, a_1 > =$ $= \{1\} \text{ deve risultare } < a, a_1 > = < a > , \text{ in quanto } < a, a_1 > = < a > \}$ è d-elemento; quindi d normalizza $\langle a \rangle$, come si voleva. Risulta

dunque $\langle A, c \rangle = G$, $\mathcal{C}_G(A) = \langle A, c^2 \rangle = N$ ha indice 2 in G, ogni sottogruppo di N è d-elemento, e qunque è quasi normale in G (è immediato verificare che in un p-gruppo finito un d-elemento è quasi normale), ma allora G è un (q)-gruppo ([3], Teorema C2, sufficienza).

Sufficienza. Consideriamo nel (q)-gruppo $G=\langle A\ ,c>$ un \check{d} -elemento H, e in [G/H] un \check{d} -elemento K. Essendo $\mathcal{C}_G(A)=\langle A\ ,c^2>$ normale in G, e abeliano, ogni suo sottogruppo risulta quasi normale in G, e dunque \check{d} -elemento (Osservazione 1). Non è pertanto restrittivo assumere $c\in K$. Se anche H contiene c, allora $A\leq H=G$; infatti supponiamo $a\notin H$, e scegliamo $a_1\in A$ tale che $a=a_1^{2^r}$, $2^r>|c|$; allora $[<c>/<ca_1>\cap H]\simeq [<c,a_1>/<ca_1>]$, ma il primo reticolo ha lunghezza 1 essendo $<ca_1>\cap H=< c^2>$, una contraddizione. Supponiamo ora $c\notin H$, dunque $H\leq \mathcal{C}_G(A)$. Anche in questo caso, vogliamo provare che $K\geq A$, ossia K=G. A tale scopo non è restrittivo suppore |c|=2, infatti $c^2\in K$, d'altra parte modulo $<c^2>H$ è ancora \check{d} -elemento e K è \check{d} -elemento in [G/H].

Supponiamo dunque $a \notin K$; il reticolo $[< c > \cup H/H]$, che ha lunghezza 1 essendo H quasinormale, deve essere isomorfo a $[< c, a > \cup H/< ca > \cup H]$; quest'ultimo reticolo, per la quasinormalità di H, è isomorfo a $[< c, a > /< ca > \cup (< c, a > \cap H)]$; poichè $H \leq \mathcal{C}_G(A)$ risulta $< c, a > \cap H = < a > \cap H$, e dunque, avendo < ca > ordine 2, con una scelta opportuna di a si perviene a una contraddizione. Il teorema è quindi dimostrato.

3.5. LEMMA. Un \check{D} -gruppo iperciclico periodico G che sia privo di sottogruppi divisibili è modulare.

DIMOSTRAZIONE. Consideriamo il sottogruppo N di G definito da $N=< g\in G/< g> \le_{\tilde{d}} G>$. Supponiamo per assurdo $N\neq G$ e scegliamo un p-elemento $x\in G$ tale che < x, $N>/N\lhd G/N$ e |< x, N>/N|=p. Proviamo che risulta $< x> \le_{\tilde{d}} G$, una contraddizione. Il gruppo N, essendo modulare (3.2) e risolubile, sarà prodotto diretto di P_0^* -gruppi generalizzati di tipo A< g>, con A abeliano elementare, di gruppi primari di esponente finito e di gruppi primari di esponente infinito, quindi abeliani ([9]). Tali sottogruppi sono caratteristici in N, e dunque normali in G; consideriamo un tale sottogruppo L di N tale che, eventualmente, $x^p\neq 1$ appartenga ad L; < x> L è un D-gruppo, essendo isomorfo al quoziente di < x, N> su un d-elemento (il complemento di L in N). Se L è

del tipo A < g >, risulta $< x > \leq \breve{a} < x$, $A > \leq \breve{a} < x > (A < g >)$, in quanto si posono formare quozienti finiti, che sono D-gruppi e dunque modulari (3.1). Se L è q-gruppo, L < x > risulta modulare in virtù di 3.3 e 3.4. Risulta dunque, detto L_1 il complemento di L in N, 0 < x , $L_1 > |L_1 \le \ddot{a} < x$, $N > |L_1 (= < x , \hat{L} > \cup L_1 | L_1 \simeq < x , \hat{L} >)$; quindi $\langle x, L_1 \rangle$ è un \check{D} -gruppo e $\langle x \rangle \cap L_1 = \{1\}$. Possiamo considerare ora i D-gruppi $< x > L_2$, ove L_2 è P_o^* -gruppo o gruppo primario modulare; se L_2 è P_o^* -gruppo, come sopra si conclude che $< x > L_2$ è modulare ; se $L_2 = Q$ è q-gruppo di esponente finito si ha $< x > \leq_{m{d}} < x > \Omega_1(Q) \leq_{m{d}} < x > \Omega_2(Q) \leq_{m{d}} ... \leq_{m{d}} < x > Q$, da cui $\langle x \rangle \leq Q \langle x \rangle$, e dunque $\langle x \rangle Q$ è modulare; se $Q = L_2$ ha esponente infinito, allora x induce l'identità su Q poichè evidentemente $\langle x, Q \rangle / Q^{q^n}$ è abeliano, non appena n > 1. D'altra parte, x centralizza ogni gruppo L_2 , eccetto al più uno, infatti $<\!x\!>$ $(L_2 imes \tilde{L_2})$ deve risultare modulare non appena ha esponente finito. Il reticolo di < x , $L_{\scriptscriptstyle 1}> \,\,$ si scompone pertanto nel prodotto diretto di due reticoli, uno dei quali contiene < x > come d-elemento. Si può concludere che $\langle x \rangle \leq d G$.

Facciamo a questo punto un'osservazione che ci sarà utile più volte nel seguito: sia N un sottogruppo normale del gruppo periodico iperciclico G. Se N è modulare, si può parlare del massimo sottogruppo divisibile di N, diciamolo N_1 . Allora, se G/N è privo di sottogruppi divisibili, anche G/N_1 ne è privo. Infatti, se A/N_1 è divisibile, lo è anche A/N per cui $A \leq N$; ora A è abeliano perchè i suoi sottogruppi di Sylow non hanno esponente finito, e dunque A è divisibile ($A \ni a = x^n \ y = x^n \ z^n = (xz)^n$, $y \in N_1$).

3.6. LEMMA. Sia G un D-gruppo iperciclico periodico. Posto N= $=< g \in G/< g> \le _{\overline{d}} G>$, G/N risulta modulare, inoltre ogni elemento non identico di G/N induce un automorfismo potenza non identico sul massimo sottogruppo divisibile di N.

Dimostrazione. Diciamo N_1 il massimo sottogruppo divisibile di N .

Sia inoltre M il sottogruppo di G/N generato dai d-sottogruppi ciclici. Proviamo che $M/N \simeq \leq AutN_1$; infatti se $x \in M$ ed $x \notin N$, allora $x \notin \mathcal{C}(N_1)$. Diversamente, si avrebbe $< x > \leq_{\overline{d}}^{\omega} < x$, $N_1 > \leq \leq_{\overline{d}}^{\omega} < x$, $N > \leq_{\overline{d}}^{\omega} G$ (3.5 e osservazione successiva), e dunque $< x > \leq_{\overline{d}}^{\omega} G$, ma allora $x \in N$. Osserviamo inoltre che ogni elemento di M/N induce su N_1 un automorfismo potenza. Sia infatti $x \in M-N$

e $|x|=p^n$. Se $y\in N_1$ e $|y|=q^m$ con $p\neq q$, non può essere $< y>^{\times} \neq < y>$, altrimenti il gruppo $< y>^{\times} \cup < y>$ avrebbe ordine $q^m p^{\alpha}$, assurdo essendo contenuto nel q-sottogruppo di Sylow di N_1 . Se p=q, consideriamo in N_1 il sottogruppo C, complemento del q-sottogruppo di Sylow; risulta < x, $N_1>\leq_{\tilde{d}}G$ (3.5) e dunque < x, $N_1>/C$ un \check{D} -gruppo primario. In virtù di 3.3, 3.4, x induce un automorfismo potenza su N_1/C . In conclusione M/N è isomorfo a un sottogruppo di $AutP(N_1)$, quindi non può avere un sottogruppo divisibile, e dunque M deve coincidere con G (3.5); questo prova entrambe le affermazioni.

- **3.7.** Proposizione. Sia G un gruppo iperciclico periodico non modulare, con $\mathfrak{L}(G)$ indecomponibile. G è un \check{D} -gruppo se e solo se soddisfa alle seguenti condizioni : G possiede un sottogruppo divisibile B, B è privo di 2-elementi, B è di Hall in G, ogni sottogruppo di B è normale in G (ma $\mathfrak{L}(B) \neq G$), e per G/B si verifica uno dei seguenti tre casi :
 - i) G/B è ciclico di ordine p^n , oppure;
- ii) G/B è 2-gruppo (iperciclico) non modulare con proprietà $reve{D},$ oppure ;
- iii) $G/B = \langle x \rangle E/B$ è un P^* -gruppo (generalizzato), con $|x| = q^m$, $E \leq \mathfrak{C}(B)$ e, per ogni $b \in B$ di ordine r^s potenza di un primo r, risulta x^{-1} $bx = b^{m_s}$. con $m^q \not\equiv 1 \mod r$. (4).

DIMOSTRAZIONE. Dato il gruppo G come nell'enunciato, dimostriamo la necessità; sia $N=< g\in G \ | \ < g> \le \ _{o} G>$, sia N_1 il massimo sottogruppo divisibile di N, e sia B il sottogruppo di N_1 generato dagli elementi di ordine dispari. Verifichiamo che il sottogruppo B soddisfa le condizioni enunciate.

Dalla definizione di B segue che esso è divisibile; per dimostrare che è di Hall in G vediamo anzitutto che:

(1) se $p \in \omega(G/N)$ e $p \neq 2$, allora $p \notin \omega(N_1)$.

Ricordiamo che, in conseguenza di 3.6, è $N_1 \neq \{1\}$ e ogni elemento di G induce su N_1 un automorfismo potenza. Ora, supponiamo per

⁽⁴⁾ Poichè x induce su B un automorfismo potenza, per ogni intero positivo s esiste un intero m_s tale che $0 < m_s < r^s$, $m_s \equiv m_{s-1} \mod r^{s-1}$ e per ogni elemento di B di ordine p^s , è $x^{-1}bx = b^ms$ ([8], 4.1.1).

assurdo che un sottogruppo (divisibile) di N_1 sia p-gruppo ; sia P il p-Sylowgruppo di N e sia $1 \neq \overline{x} \in G/N$ tale che $|x| = p^n$ e $|< x \,,\, N > /N| = p$; risulta P < x > un p-gruppo abeliano, infatti è D-gruppo, essendo isomorfo al quoziente di < x > N sul complemento di P in N, e $p \neq 2$. Sia Q un q-Sylowgruppo di N tale che x non centralizzi $Q \cap N_1$ (un tale Q esiste per 3.6); essendo $< x > (Q \times P)$ un D-gruppo, risulta $< Q \,,\, x > \leq \overline{a} < Q \,,\, P \,,\, x >$. Non è restrittivo suppore $< x > \cap P = \{1\}$, essendo un D-gruppo anche $< x > (Q \times P)/< x > \cap P$. Se ora $z \in P$ e |z| > |x|, risulta $< zx > \cap Q < x > = \{1\}$, e dunque i reticoli $[< yx > /\{1\}]$ e $[< yx \,,\, zx > /< zx >]$ sono isomorfi, per ogni $y \in Q$. Ma questo non è vero, non appena l'altezza di < y > supera quella di < x >, infatti |yx| = |x|, mentre $yz^{-1} \in < yx \,,\, zx >$.

Sia ora $2 \neq p \in \omega(N/N_1)$; se risulta anche $p \in \omega(N_1)$, vediamo che P, il p-Sylowgruppo di N, è contenuto in Z(G), quindi, essendo P di Hall per (1), il reticolo di G è decomponibile, assurdo. Sia x un elemento di G che non centralizza P, e sia $|x|=q^n$; risulta $q \neq p$, in virtù di (1), perchè $x \notin N$ e $p \neq 2$; inoltre x induce un automorfismo potenza su P, infatti : P è abeliano, ogni $< y > \le P$ è d-elemento, per cui < x, y > = < x > < y >, e $< x, y > \cap N = < x^t > \times < y >$, abeliano e normale in < x, y >. Detto P_1 il massimo sottogruppo divisibile di P, il D-gruppo $< x > P/P_1$ risulta modulare (3.5), quindi $< x, P_1 > \le x < x, P >$. Non è restrittivo supporre |x| = q, infatti si può ragionare modulo C(P), che è d-elemento in < x, P >.

Se $y \in P \setminus P_1$, risulta $\langle xy \rangle \cap \langle x \rangle P_1 = \{1\}$, e dunque $[\langle xz \rangle / \{1\}] \simeq [\langle xz, xy \rangle / \langle xy \rangle]$ per ogni $z \in P_1$, assurdo perchè $\langle xz, xy \rangle$ contiene zy^{-1} che può avere ordine comunque grande, mentre |xz| = q = |xy|.

Resta così provato che B è di Hall in G. G/N_1 per 3.5 e per l'osservazione seguente, è modulare. Supponiamo che in G/N_1 un fattore diretto sia un P_o^* -gruppo generalizzato $< x > E/N_1$, con E/N_1 p-gruppo abeliano elementare, $|x| = q^n$. Proviamo che

$$(3) E \leq \mathfrak{C}(N_1).$$

Supponiamo che un $a \in E$, |a| = p, non centralizzi un r-Sylow-gruppo R di N_1 . R non è un 2-gruppo, perchè p > 2 e a induce su R un automorfismo potenza ; pertanto, $R \le B$ è di Hall in G. Nel quoziente sul complemento di R in N_1 , abbiamo un D-gruppo 0 < x > E ove risulta $0 < a > R \le d$ 0 < x > E, per cui $0 < a > |\{1\}\} = (0 < a < x > |\{1\}\}$, quindi 0 < a < a > 0 < a > 0 < a > 0 < a > 0

< a, x >. Inoltre $[< za > / \{1\}] \simeq [< za > \cup < x > / < x >]$, per $z \in R$; se $x \in \mathcal{C}(R)$, allora $< x > \cup < za > \ni x$, x^{∂} e dunque anche a, assurdo perchè < za > ha ordine p. Se poi x non centralizza R, la contraddizione sta nel fatto che il gruppo < z, a > < x > ha i sottogruppi di Sylow ciclici, mentre z non centralizza a e x non centralizza nè z nè a. Pertanto $E \leq \mathcal{C}(N_1)$.

Supponiamo ora che x non centralizzi un r-Sylowgruppo R di B; se $x^{-1}zx=z^m$, per $z\in R$, dimostriamo che $m^q \not\equiv 1$ mod. r. Infatti, se ciò non avviene, non è restrittivo assumere |z|=r, e dunque $(xz)^q=x^q$; ma, essendo < x, $R>\check{d}$ -elemento in < x, E>, allora $[< xz>/< x^q>] \cong [< xz$, xa>/< xa>], il che è assurdo perchè in <math>< xz, xa> c'è un sottogruppo in cui < xa> ha indice p, e uno in cui ha indice r.

Vediamo ora che

(4) un p-gruppo P/N_1 che sia fattore diretto in G/N_1 è ciclico.

Nel caso p=2 e P/B \check{D} -gruppo non modulare, l'affermazione segue da 3.4.

Supponiamo dunque $p \neq 2$, oppure p = 2 e P/B modulare. In ogni caso P/B è fattore diretto in G/B. Se fosse $P \leq \mathcal{C}(B)$, il reticolo di G sarebbe decomponibile, quindi esiste un $k \in P$ che non centralizza un r-Sylowgruppo R di B, $|k| = p^n$. Ragioniamo nel quoziente di G sul complemento di R in B, e supponiamo che k^p centralizzi R. Ora supponiamo per assurdo di poter scegliere un elemento g tale che |g| = p e | < g , $k > R/R | = p^{n+1}$. Poichè < k , R > è \check{d} -elemento, è $[< k > / \{ 1 \}] \simeq [< g, k > / < g >], quindi <math> | < g, k > | = p^{n+1}$ e g normalizza $\langle k \rangle$. Allora possiamo ragionare modulo $\langle k^p \rangle$, che è d-elemento. Ora g centralizza k; essendo anche (< xk > / $\{1\}$ $\simeq [\langle xk, g \rangle / \langle g \rangle], g$ deve centralizzare x per ogni $x \in R$, e infine $[\langle xk \rangle/\{1\}] \simeq [\langle xk, gk \rangle/\langle gk \rangle]$, mentre $\langle xk, gk \rangle$ contiene qx^{-1} che ha ordine p|x|, assurdo. Rimane da escludere la possibilità che P/B sia il gruppo dei quaternioni di ordine 8. Siano a, b generatori di P/B, con |a| = |b| = 4. Si possono scegliere a, b in modo che $a^2 = b^2$; infatti se $b^2 = a^2 z$, per $z \in B$, basta prendere per a un opportuno generatore di un sottogruppo di Sylow di $\langle a, z \rangle$. Allora, essendo $[\langle a \rangle / \langle a^2 \rangle] \cong [\langle a, b \rangle / \langle b \rangle]$, risulta $\langle a, b \rangle \simeq P/B$. Sia R un Sylowgruppo di B che non è nel centro di P; poichè il gruppo degli automorfismi potenza di R è abeliano, a^2 deve centralizzare R, dunque a induce su R l'inversione. Da $| \langle az \rangle / \langle a^2 \rangle | \simeq | \langle az, b \rangle / \langle b \rangle |$ segue che $| \langle az, b \rangle | = 8,$

ossia b induce su az l'inversione, ma allora b centralizza z; sostituendo b con ab, si perviene ad un assurdo.

Vediamo ora che nel gruppo G/B c'è un solo fattore diretto. Innanzitutto, poichè G/N_1 è modulare, e quindi prodotto di gruppi coprimi modulari, allora G/B è prodotto di gruppi coprimi modulari e di un 2-gruppo, che è D-gruppo non modulare oppure, come si è visto, è ciclico. Infatti non può presentarsi il caso di un P_a^* -gruppo < x > E/N_1 con $|x|=2^n$, se il 2-sottogruppo T di N_1 è non banale. Altrimenti x, dovendo centralizzare gli elementi di ordine 2 in T, deve centralizzare T per la condizione vista in (3). Ma allora, ragionando modulo il complemento di T in N_1 , ogni 2-sottogruppo è \check{d} -elemento, essendo contenuto in $\langle x, T \rangle$ che è abeliano, ogni p-sottogruppo è d-elemento perchè $E \leq \mathfrak{C}(N_1)$, quindi il gruppo $\langle x, E \rangle$ sarebbe modulare, un assurdo. Ora, se $p \neq q$ sono elementi di $\omega(G/B)$, relativi a fattori distinti, allora ogni p-elemento k centralizza ogni q-elemento q. Infatti, sia p > q; risulta $\langle B, k \rangle \leq d G$ e $\langle B, k \rangle \cap$ $< g > = \{1\}, \text{ quindi } [< g, k > / < g >] \simeq [< k > / \{1\}], \text{ il che im-}$ plica $|\langle g, k \rangle| = |g| \cdot |k|$ e $\langle g, k \rangle \simeq \langle g, k \rangle B/B$, abeliano. Allora, siano P/B e Q/B due fattori diretti di G/B; P/B e Q/B possono essere gruppi primari o P^* -gruppi; in ogni caso, per quanto visto, esiste un p-elemento $k \in P$ che non centralizza B e tale che $P/B = \langle k, L \rangle/B$, con $L \leq \mathfrak{C}(B)$. Ma se diciamo $B_1 = \mathfrak{C}_R(k)$, risulta $B = B_1 \times B_2$, e il sottogruppo S di G generato da tutti i p-elementi è un fattore diretto di Hall in G, che non contiene q-elementi: è di Hall in quanto contiene B_2 e centralizza B_1 , ed ogni q-elemento centralizza ogni p-elemento. Allora $\mathfrak{L}(G)$ sarebbe decomponibile, una contraddizione. Anche iii) risulta ora completamente provata, nel senso che x non può centralizzare alcun Sylowgruppo di N_1 , altrimenti (essendo anche $E \leq \mathcal{C}(N_1)$) tale sottogruppo sarebbe un sottogruppo di Hall centrale ed $\mathfrak{L}(G)$ sarebbe decomponibile, contro l'ipotesi.

Dimostriamo ora che la condizione è sufficiente. A tale scopo, consideriamo un \check{d} -sottogruppo H di G e un sottogruppo K che sia d-elemento in [G/H]; il nostro scopo è provare $K \leq \check{d} G$. Diciamo N_1 il sottogruppo divisibile di G tale che, nel caso ii), N_1/B sia il massimo sottogruppo divisibile di G/B (tale « massimo » esiste data la struttura del gruppo, cfr. 3.4), negli altri casi $N_1 = B$. È chiaro che ogni sottogruppo di $\mathfrak{C}_G(N_1)$ è quasinormale in G, essendo G un G-gruppo (cfr. [3]), e G-gruppo (cfr. [3]), e G-elemento e dunque non è restrittivo

supporre $K \not \oplus \mathcal{C}_G(N_1)$. Allora esiste un $k \in K$ tale che $K = \langle k , T \rangle$, con $R \leq \mathcal{C}_G(N_1)$; decomponiamo $N_1 = N_2 \times N_3$, ove $k \in \mathcal{C}(N_2)$, mentre k induce su ogni Sylowgruppo di N_3 un automorfismo potenza non identico. Vediamo anzitutto che $K \geq N_3$. Non è restrittivo supporre che N_3 si riduca ad un sottogruppo di Sylow P di N_1 , ragionando in un opportuno quoziente; inoltre, sostituendo k con una sua potenza, possiamo supporre che l'automorfismo indotto su P sia di ordine primo q, e ragionare modulo $k \geq k$. Se anche $k \geq k$ contiene $k \geq k$ devono essere isomorfi i reticoli $k \geq k$ e $k \geq k$ e $k \geq k$ e $k \geq k$ in non contiene $k \geq k$ deve essere $k \geq k$ esserdo per $k \geq k$ opportuno. Se $k \geq k$ non contiene $k \geq k$ deve essere $k \geq k$ esserdo $k \geq k$ esserdo esse

Dobbiamo ora provare che $K \leq \check{d}G$, sapendo che $K \leq \mathfrak{C}(N_2)$ e $N_3 \leq K$. In base alla proposizione 1.5, è sufficiente provare che, dato un insieme finito di elementi di $K k_1, \dots, k_m$, e dato un insieme finito di elementi di $G h_1, \ldots, h_n$, risulta (*) $[\langle k_1, ..., k_m \rangle \cup S/S] \simeq [\langle k_1, ..., k_m, h_1, ..., h_n \rangle / \langle h_1, ..., h_n \rangle],$ ove $S = K \cap \langle h_1, ..., h_n \rangle$. Ma chiaramente è sufficiente provare che ogni sottogruppo di K contenente S è permutabile con $< h_1, \dots, h_n >$, e dunque che $\langle S, k \rangle$ è permutabile con $\langle h \rangle$, se $\langle h \rangle \cap K = S$. Trattiamo anzitutto i primi casi, i) e ii). Se $|k| = q^n, k_1^{q^m} = k$ e $< k_1 > N_1 = G$, allora consideriamo $< k_1^{\beta} y > \cap K$, per $y \in N_1$. Possiamo supporre $|\langle k_1^{\beta} y \rangle|$ una potenza di q, dal momento che ogni sottogruppo di N_1 è quasinormale; sia $\beta = q^r \gamma$, con γ primo con q; se r>m, allora evidentemente $k_1^{\beta}y\in K$, poichè K contiene N_3 . Se $r \le m$, allora $(k_1^{\beta} y)^{q^{m-r}} = k^{\gamma} y'$, ove $y' \in N_3$, perchè k centralizza N_2 . Ma allora nulla cambia sostituendo k con $k^{\gamma}y'$, e possiamo supporre che $\langle k_1^{\beta} y \rangle$ contenga $\langle k \rangle$; allora un sottogruppo ciclico di Kunito con $\langle k \rangle = S = \langle k_1^{\beta} y \rangle \cap K$ dà un gruppo del tipo $< z > < k > , z \in N_1$, che è permutabile con $< k_1^{\beta} y >$, come si voleva. Rimane da trattare il caso iii). Supponiamo dapprima $x \notin K$, ma $x^{q^n} \in K$. Un elemento di R, di ordine potenza di q, è del tipo $x^{\alpha}a^{\beta}y$, con |a| = p, $y \in B$; naturalmente, se $a \equiv 0 \mod q$, è $\beta \equiv 0 \mod p$. Allora, se $\alpha = q^m \gamma$, γ primo con q, e se m < n, risulta $(x^{\alpha} a^{\beta} y)^{q^{n-m}} =$ $=x^{q^n\gamma}y'\in K$, e si conclude come sopra. Se invece $x\in K$, non possiamo sperare di avere ancora la situazione $S \cup \langle k \rangle$ permutabile con < h >, per ogni $k \in K$; basta pensare a < x > e < xa >, che non sono permutabili per |a| = p, mentre se $a \notin K$ è $\langle xa \rangle \cap$

 $\cap K = \langle x^q \rangle$. Dovremo quindi verificare direttamente l'isomorfismo tra i reticoli (\star); osserviamo anzitutto che $N_1 \leq K$, e dunque se nella scrittura di h_1, \ldots, h_n compaiono almeno potenze q-esime di x, il gruppo $\langle h_1, \ldots, h_n \rangle$ è prodotto di un sottogruppo di K per un sottogruppo (normale) di ordine p^r . Pertanto supporremo $h_1 = x^a$ ay con $a \equiv 0$ mod. q, |a| = p, $y \in N_1$; non è restrittivo, sostituendo x con x^a y, assumere a = 1, y = 1.

In particulare, il gruppo $\bar{H} = \langle h_1, \dots, h_n \rangle$ contiene x^q . Ora, se $h_i = x^{\beta} a' y'$, con |a'| = p, $y' \in N_1$, $\beta \neq 0$ mod. q, risulta $(x^{\beta} a' y')^q =$ $=x^{\beta q}y'^{\gamma}\cos(\gamma,|y'|)=1$ per ipotesi, dunque $y'\in \overline{H}$, ossia il gruppo \vec{H} è generato da xa e da un sottogruppo $E_1 \times B_1$, ove $|E_1| = p^s$, $B_1 \leq B$. Analogamente, un sottogruppo \overline{K} contenuto in K e contenente $S = \overline{H} \cap K$ e $x^{\beta} bz$, |b| = p, $z \in B$, $\beta \not\equiv 0$ mod. q (altrimenti \overline{K} sarebbe permutabile con \overline{H}), conterrà in particolare $x^{\beta}b$, che non è restrittivo assumere uguale a x^{β} , e dunque $x \in \overline{K}$, per cui $\overline{K} =$ $\langle x \rangle$ $(E_2 \times B_2)$, $|E_2| = p^t$, $B_2 \leq B$. Dobbiamo ora verificare che risultano isomorfi gli intervalli $[\overline{K}/S]$ e $[\overline{K} \cup \overline{H}/\overline{H}]$ (tramite gli isomorfismi $\varphi^{\overline{H}} \in \varphi_{\overline{K}}$). A tale scope, verifichiamo che per $S \leq X \leq \overline{K}$ risulta $(X \cup \overline{H}) \cap K \leq X$ (condizione sufficiente per l'iniettività di $\varphi^{\overline{H}}$); poichè questo è ovvio se X è permutabile con \overline{H} , supponiamo che anche X sia del tipo $\langle x \rangle$ ($E_2 \times B_2$); allora un elemento di $(\langle x \rangle (E_2 \times B_2) \cup \langle ax \rangle (E_1 \times B_1)) \cap K = (\langle x, a \rangle ((E_1 \cup E_2) \times A_2))$ $\times (B_1 \cup B_2) \cap K$ è del tipo x^{α} a^{β} $cy \in K$ con $c \in E_1 \cup E_2$, $y \in B_1 \cup B_2 \leq K$, e dunque $a^{\beta} c \in K$. Poichè $B_1 \leq K$, allora $B_1 \leq \overline{H}$ $\cap K = S \leq \overline{K}$, dunque $B_1 \leq B_2$. Per concludere che $x^{\alpha} a^{\beta} c y \in \langle x \rangle$ $(E_2 \times B_2)$, basterà quindi provare che $a^{\beta} c \in E_2$. Consideriamo a tale scopo il p-Sylowgruppo A di K, abeliano elementare. Poichè il gruppo $\langle x, A \cup E_1 \cup \langle a \rangle \rangle$ è modulare, e poichè $\langle xa \rangle E_1 \cap \langle x \rangle A \leq$ $\leq < x > E_2$, risulta $(< x > E_2 \cup < xa > E_1) \cap < x > A = < x > E_2$, come si voleva. Per provare la suriettività di $\varphi \overline{H}$, scelto un X= $= < ax > (E_3 \times B_3)$, tale che $< ax > (E_1 \times B_1) \le X \le < a$, $x > (E_1 \times B_2) \times B_1 = (ax + bx) =$ $\times (B_1 B_2)$, vediamo che risulta $B_3 \leq B_2$ e dunque $(B_3 \cap \overline{K}) \cup B_1 = B_3$; per gli elementi di $\langle ax \rangle E_3$, si ragiona come sopra nel gruppo modulare $\langle x, a, A, E_1 \rangle$.

3.8. TEOREMA. Sia G un gruppo iperciclico periodico. G è un D-gruppo se e solo se è un prodotto (discreto) di una famiglia $\{R_i\}$ di sottogruppi di Hall in G, ove R_i è un p-gruppo modulare o un P_o^* -gruppo (generalizzato), oppure ha la struttura descritta in 3.7.

DIMOSTRAZIONE. Si applica 1.4 ad una decomposizione di $\mathfrak{L}(G)$ in reticoli indecomponibili, e si conclude usando 3.7.

4. – D-gruppi misti iperciclici.

È conveniente distinguere in due classi i gruppi misti: quelli separati, in cui l'insieme degli elementi periodici è un sottogruppo (e che sono dunque generati dagli elementi aperiodici), e quelli non separati.

Osserviamo che un gruppo iperciclico misto e separato G possiede un sottogruppo finito e non identico che sia \check{d} -elemento; infatti il sottogruppo T generato dagli elementi periodici è normale in G, quindi esiste un sottogruppo normale ciclico, e non identico, contenuto in T ([1], Lemma 2); questo sottogruppo è un \check{d} -elemento finito.

- 4.1. TEOREMA. Sia G un gruppo misto iperciclico, separato. G è un D-gruppo se e solo se è modulare, oppure :
 - i) il sottogruppo periodico T di G è abeliano,
 - ii) G/T è abeliano di rango uno,
- iii) ogni elemento aperiodico $g \in G$ induce sul p-Sylowgruppo T_p di T un automorfismo potenza $a_p: x \longmapsto x^{m_p}$ tale che $m_p \equiv 1 \mod p$, $m_2 \not\equiv 1 \mod p$ di $m_p \equiv 1 \mod p$.

DIMOSTRAZIONE. Proviamo dapprima la necessità della condizione. Sia N il sottogruppo di G unione di tutti i sottogruppi ciclici finiti che sono \check{d} -elementi, M il sottogruppo tale che M/N sia l'unione di tutti i sottogruppi ciclici finiti di G/N che sono \check{d} -elementi. Il \check{D} -gruppo G/M è aperiodico in virtù di 3.6, perciò abeliano (2.3), M è un \check{D} -gruppo periodico. Proviamo che M è abeliano.

Decomposto M nel prodotto diretto di gruppi coprimi reticolarmente indecomponibili, se uno di tali gruppi, diciamolo R, è modulare, allora, modulo il complemento di R in M, ogni sottogruppo ciclico di R è \check{d} -elemento ; ma allora è normalizzato da ogni elemento aperiodico : infatti se a è aperiodico e < g > è finito, nel gruppo < a, g > anche il gruppo < g > \cup < g > a è \check{d} -elemento, ma allora [< a, $g > /< a >] <math>\simeq$ $[< g > /\{1\}] \simeq$ $[< g > \cup < g >^a/\{1\}]$; e dunque < g > è normale. Allora, essendo il gruppo generato dagli ele-

menti aperiodici, ogni sottogruppo di R è normale, pertanto R è abeliano o Hamiltoniano. Poichè un gruppo Hamiltoniano è privo di automorfismi potenza, non è possibile che R sia Hamiltoniano. altrimenti sarebbe centralizzato dagli elementi aperiodici, e dunque nel centro di G. Supponiamo ora che R sia del tipo descritto in 3.7, quindi $R = \langle k \rangle EN_1$, ove N_1 è divisibile (e coincide con il sottogruppo B nei casi i) e iii) di 3.7, mentre nel caso ii) N_1/B è il massimo sottogruppo divisibile di R/B), $|k| = q^n$, E è un p-gruppo, p>q, eventualmente identico. Consideriamo un \check{D} -gruppo < a> $(\langle k \rangle EN_1)$, con a aperiodico; non è restrittivo supporre che a centralizzi $\langle k \rangle EN_1/N_1$, sostituendo eventualmente a con una sua potenza opportuna. Allora $\langle a \rangle N_1 \leq \tilde{a} \langle a, k \rangle EN_1$; ragionando modulo $\langle k \rangle \cap N_1$, si ha $[\langle a \rangle / \{1\}] \simeq [\langle a, k \rangle / \langle k \rangle]$, reticolo di un gruppo infinito, e dunque $\langle k \rangle^a$ non può essere diverso da < k > in quanto il gruppo $< k > \cup < k > a$ è finito. Ma allora < k > deve essere normale in $< k > N_1$, assurdo. Pertanto il sottogruppo di torsione M = T di G è abeliano; inoltre ogni elemento aperiodico induce su T un automorfismo potenza. Se ora $p \neq 2$ e P è il p-Sylowgruppo di T, nel quoziente di G sul complemento di P in T consideriamo il \check{D} -gruppo $\langle a \rangle P$, con a apedico. Se a non induce su P una potenza $m \equiv 1 \mod p$, esiste un r primo con p tale che a induca su P una tale potenza ([8], 4.1.2). Allora $\langle a^r, P \rangle$ è un gruppo quasi-Hamiltoniano, e dunque ogni suo sottogruppo è d-elemento. Se $x \in P$, |x| = p, risulterà dunque $[\langle x a^r \rangle / \langle a^r \rangle] \simeq [\langle x a^r, a^p \rangle / \langle a^p \rangle]$ un reticolo di lunghezza l. Ma, detti l ed n due numeri interi tali che lr + np = 1, si ha $(xa^r)^l a^{np} = x^l a^{rl} a^{np} = x^l a \in (xa^r, a^p);$ ora, se $a^{-1} xa = x^m$, risulta $(x^l a)^p = x^{l(1+m+...+m^{p-1})} a^p$; ma $1+m+...+m^{p-1} = \frac{m^p-1}{m-1} \neq 0$ mod. p, infatti $m^p \equiv m \equiv 1 \mod p$; allora $\langle xa^p, a^p \rangle$ contiene $\langle x \rangle$, e dunque anche $\langle a \rangle$, quindi ci sono due gruppi diversi che contengono $\langle a^p \rangle$, assurdo. Se ora P è un 2-gruppo, a centralizza i sottogruppi di ordine 2, poichè li normalizza; se la potenza indotta da a non è $\equiv 1 \mod 4$, deve risultare anzitutto $P^2 = P^4$, altrimenti il D-gruppo periodico $\langle a, P \rangle / \langle a^2, P^4 \rangle$ non sarebbe modulare pur avendo esponente finito. Ora, se ci fosse un elemento $y \in P$ di ordine 2 non appartenente a P^2 , essendo $\langle a, P^2 \rangle \leq \overline{a}$ $< a, P > (< a, P > /P^2$ è abeliano) dovrebbe risultare [< ax > /P] $|\langle a^2 \rangle| \simeq [ax, ay \rangle/\langle ay \rangle]$ per ogni $x \in P^2$, con |x| = 4, mentre $\langle ax, ay \rangle$ contiene xy^{-1} , che ha ordine 4.

Proviamo ora che, se G non è abeliano, G/T ha rango uno. Sia a un elemento aperiodico che non centralizza T, e supponiamo per assurdo che esista un elemento aperiodico b tale che $< a > \cap < b > =$ $= \{1\}$. Possiamo supporre che < b, T > sia quasi-Hamiltoniano, sostituendo eventualmente b con b^2 . Risulta quindi $< bx > \le \overline{a} G$ per ogni $x \in T$; ora, se $a^{-1}ba = bt$ con $1 \neq t \in T$, risulta $t \in < a, b >$, mentre il reticolo $[< a, b > / < a >] \simeq [< b > / \{1\}]$ deve essere il reticolo di un gruppo ciclico infinito. Pertanto a centralizza b, e analogamente centralizza bx per ogni $x \in T$, il che è assurdo perchè ne segue che a centralizza T.

Sufficienza della condizione: consideriamo un gruppo G, non modulare e soddisfacente a i)-iii). Siano $H \leq \tilde{d} G$ e K \tilde{d} -elemento in [G/H]. Proviamo che, se $K \subseteq G^2$, allora K contiene il 2-Sylowgruppo^P di T. K contiene un elemento aperiodico a che induce su P una potenza $\neq 1$ mod. 4, e supponiamo che K non contenga x^2 , |x| = 4. Se $a \in H$, risulta $(< a > / < a^2 >) \simeq (< a, ax > / < ax >)$, assurdo; allora sia $H \leq G^2$, e dunque $H \leq_{\sigma} G$ ([4], Teorema 1.3). Dimostriamo che $\langle ax \rangle \cap H = \langle a, x \rangle \cap H$; infatti da $\langle ax \rangle \cap H \subseteq$ $\leq < a, x > \cap H$ segue $(< a, x > \cap H) \cup < ax > = < a, x > \cap H$ $(H \cup \langle ax \rangle) \ge \langle ax, x^2 \rangle > \langle ax \rangle$. Ma da $x^2 \in H \cup \langle ax \rangle$ segue $x^2 = h(ax)^m$; se $(m, 2) \neq 1$, $x^2 = ha^m$ implies $x^2 \in K$, contro l'ipotesi se invece (m, 2) = 1, $x^2 = ha^m x$ e dunque $x \in K$, ancora contro l'ipotesi. Allora, essendo H un elemento di Dedekind, il reticolo $[< a, x> \cup H/< ax> \cup H] \simeq [< a, x>/< ax>]$ ha lunghezza due, mentre il reticolo $[< a > \cup H | < a^2 > \cup H]$ ha lunghezza minore di o uguale a uno, e dunque K, che contiene $\langle a \rangle$, non può essere un d-elemento in [G/H]. K deve pertanto contenere tutti gli elementi di ordine 2, ma lo stesso ragionamento vale in $G/\Omega_1(P)$, e per induzione si conclude $K \ge P$. Ora, per provare $K \le d$, in base alla proposizione 1.5 è sufficiente provare che, dato un insieme finito h_1, \ldots, h_n di elementi di G, e posto $S = K \cap \langle h_1, \ldots, h_n \rangle$, e dato un insieme finito di elementi di $K k_1, \dots, k_m$, risulta $[< k_1, ..., k_m > \cup S/S] \simeq [< k_1, ..., k_n, k_1, ..., k_m > / < k_1, ..., k_n >].$ Ma chiaramente è sufficiente provare che ogni sottogruppo di Kcontenente S è permutabile con $< h_1, \dots, h_n >$, e dunque che < S, k >è permutabile con < h >, se < h > $\cap K = S$. Sia dun-cui h e k soso due elementi aperiodici. Poichè < h , k > T/T è ciclico, sarà $h = c^r$, $k = c^s t$, con c aperiodico, $t \in T$, (r, 2) = (s, 2) = 1. Sia $t=t_1,t_2$, con $(|t_1|,|t_2|)=1$, $|t_2|$ una potenza di 2. Poichè $K \geq P$, allora $K \cap < h > \geq < c^{sm} >$, con m numero dispari opportuno tale che $(c^s t_1)^m = c^{sm} = c^{rn}$. Ma allora $< k > \cup S$ contiene $(c^s t_1 t_2)^m = c^{sm} t_2^{\alpha^{m-1}+\dots+\alpha+1}$, se $c^{-s}t_2 c^s = t_2^{\alpha}$; essendo per ipotesi $\alpha = -1 + 4\beta$, si avrà $t_2^{\alpha^{m-1}+\dots+\alpha+1} = (t_2 t_2^{-1+4\beta})^{1+\gamma\dots+\gamma^{(m-1)/2}}t_2$, e dunque $< k > \cup S$ contiene t_2 , ossia $< k > \cup S = < c^s t_1 > < t_2 > S$; ma < h > è permutabile con S, con $< t_2 >$ che è normale, e con $< c^s t_1 >$ perchè $c^s t_1 e$ h sono contenuti nel gruppo $< c > < t_1 >$, quasi-Hamiltoniano. Si è quindi dimostrato che $K \leq_{\overline{d}} G$.

4.2 TEOREMA. Sia G un gruppo iperciclico misto non separato. G è D-gruppo se e solo se G è un (q)-gruppo del tipo (c, A), con (a, b) gruppo (misto) divisibile, (a, c) (a, c) (a, c) per ogni (a, c) (a, c) (a, c) per ogni (a, c) (a, c

DIMOSTRAZIONE. Proviamo dapprima la necessità della condizione. Sia N il sottogruppo di G generato da tutti \check{d} -sottogruppi ciclici finiti, M il sottogruppo tale che M/N sia generato da tutti i $reve{d}$ -sottogruppi ciclici finiti di G/N. Allora G/M non ha $reve{d}$ -sottogruppi ciclici finiti, ed è un gruppo misto, altrimenti G sarebbe separato. Poniamo, per comodità, $M = \{1\}$, e consideriamo una serie ascendente di G, invariante e a fattori ciclici, $\{G_{\alpha}\}_{\alpha \leqslant \gamma}$; sia β_{o} il minimo ordinale tale che G_{β_0} contiene un elemento periodico; chiaramente $eta_o = eta + 1$, e non è restrittivo assumere $|G_{eta_o}/\hat{G}_{eta}| = p$, numero primo. Deve risultare p = 2 ([1]), e se $c \in G_{eta_o}$, con |c| = 2, allora c induce un automorfismo potenza non identico su G_{β} (2.2, caso a)). G_{β} è divisibile, infatti se $G^q_{\beta} \neq G_{\beta}$ per qualche numero primo q, allora < c, $G_{\beta} > |G_{\beta}^{q}|$ è \check{D} -gruppo di esponente finito, quindi modulare, e dunque $\langle c, G_{\beta}^q \rangle$ è d'elemento, ma allora $[\langle c \rangle / \{1\}] \simeq [\langle c, ca \rangle / \{1\}]$ < ca>], reticolo infinito, non appena $a \notin \tilde{G}^q_{\beta}$ e a è aperiodico, assurdo. Vediamo ora che $|G:G_{\theta}|=2$; infatti, se b è tale che $< b>G_{\theta\theta}/G_{\theta\theta}$ sia aperiodico, e normale in $G/G_{\theta\theta}$, allora al più b^2 centralizza $G_{m{ heta}}$, e dunque si avrebbe il $reve{D}$ -gruppo $< c \,,\, < b^2 > imes G_{m{ heta}} > \,$ con $\dot{<}$ $b^2>$ imes G_{eta} non divisibile, assurdo per quanto visto. Supponiamo dunque che vi sia un \check{D} -gruppo < b , c , $G_{\beta} >$ con |< b , c , $G_{\beta} > |$ $|G_{eta}>|=2q$. Sia $q \neq 2$; < b, $G_{eta}>$ è un \ddot{D} -gruppo; non è aperiodico per quanto visto sopra, infatti non è divisibile; allora contiene un elemento di ordine q, ed è abeliano (2.2, caso a)), assurdo perchè ci sarebbe un d-elemento ciclico finito in G/M. Sia q=2. Ogni 2-Sylowgruppo di < b , c , $G_{\beta} >$ deve avere ordine 2, perchè se avesse ordine 4 ci sarebbe un 2-elemento che centrallizza G_{β} , e allora dovrebbe stare in M. < b, $G_b >$ è un D-gruppo, e dunque non può

essere aperiodico; sia dunque d un elemento periodico in < b, $G_{\beta}>$; sarà |d|=2. Se ora $e^{-1}de=da$, con a aperiodico $\neq 1$, e se $a_1^2=a$, allora $|da_1| = 2$ e $e^{-1}(da_1)$ $e = daa_1^{-1} = da_1$, $\cos i < da_1 > i$ normalizzato da c. assurdo perchè darebbe luogo a un gruppo di ordine 4. Togliamo ora l'ipotesi $M = \{1\}$, e consideriamo il gruppo R tale che $R/M = G_{\rm e}$; R è un \tilde{D} -gruppo misto e separato, quindi sappiamo che la sua parte periodica è abelliana; proviamo che R è abeliano. Se P è un p-Sylowgruppo di R con $p \neq 2$, possiamo considerare il gruppo quoziente rispetto al complemento di P in M; $\langle c \rangle \cap P =$ $=\{1\}$, c normalizza ogni sottogruppo di P (tali sottogruppi sono d-elementi), dunque induce su P l'inversione. Ora $\langle a, P \rangle \leq d$ G per ogni $a \in R$ aperiodico. Non può essere $c^{-1}ac = a^{-1}t$ con $1 \neq t \in P$, altrimenti risulterebbe $[< a > / \{1\}] \neq [< a, c > / < c >]$. Quindi, per a aperiodico qualunque, c induce l'inversione su ta e dunque a centralizza t. Vediamo ora che $R^p = R$, ossia P è divisibile (ricordiamo che R/P era divisibile). Infatti, se $y \in R \setminus R^p$ è periodico, e se $a \in \mathbb{R}^p$ è aperiodico, da $\langle c, \mathbb{R}^p \rangle \leq d G$ segue $[\langle ca \rangle / \{1\}] \simeq$ $\simeq (\langle ca, cy \rangle)/\langle cy \rangle)$, mentre cy ha ordine 2 e $\langle ca, cy \rangle$ contiene $u^{-1}a$, aperiodico. Supponiamo ora che P sia il 2-Sylowgruppo di R: ragioniamo anzitutto modulo $\langle c^2 \rangle = \langle c \rangle \cap P$. Applicando lo stesso ragionamento usato nel caso $p \neq 2$, e osservando che c induce su P l'inversione perchè induce l'inversione su ta, per ogni $t \in P$ e a aperiodico, in particolare un a che centralizza t, si conclude che R è abeliano ed $R^2 = R$. Abbandoniamo ora l'ipotesi $c^2 = 1$. Di nuovo R è abeliano ; infatti essendo $< c^2 >$ un sottogruppo normale finito ed $R/\langle c^2 \rangle$ divisibile, si ha $\langle c^2 \rangle \leq Z(R)$; ora per $x, y \in R$ e $x_1^n e^{2\alpha} = x$, ove $n = |e^2|$, è $x^{-1} y x = x_1^{-n} y x_1^n = y$. Allora $R = A \times \langle d \rangle$, ove A è il massimo sottogruppo divisibile di R, $c^{-1}ac = a^{-1}$ per ogni $a \in A$ ed ogni sottogruppo di R è \check{d} -elemento, e di conseguenza quasinormale in G (i sottogruppi finiti di ordine dispari sono normali, quelli di ordine pari sono normalizzati dagli elementi di R e sono quasinormali nei 2-gruppi ; se $\langle x \rangle$ è aperiodico, allora x è centralizzato dagli elementi di R, mentre se yè un 2-elemento, allora $\langle x^{|d|} \rangle$ è normalizzato da y, $\langle x, y \rangle /$ $\langle x^{|d|} \rangle$ è un 2-gruppo, quindi $\langle x \rangle$ è quasinormale in esso.). Quindi G è un (q)-gruppo ([4], sufficienza del teorema 2.3).

Sufficienza della condizione. Siano $H \leq_{\breve{d}} G$, K \breve{d} -elemento in [G/H]; dal momento che ogni sottogruppo di $\mathfrak{C}_G(A)$ è \breve{d} -elemento in G, essendo G (q)-gruppo e $\mathfrak{C}_G(A)$ abeliano, supponiamo $c \in K$, e dimostriamo che allora $K \geq A$, ossia K = G. Infatti, se anche H

contiene c, dato un elemento aperiodico $a \in A$, se $a \notin H$ è $[< c > / < c^2 >] \cong [< a , c > / < ac >]$, assurdo. Supponiamo invece $H \leq \mathbb{C}_G(A)$, e ragioniamo modulo $< c^2 >$. Supponiamo $a \notin K$, $a \in A$. Dovendo risultare $[< H, c > / < c^2, H >] \cong [< H, c, a > / < H, ca >]$ ed essendo $H \leq_q G$, si ha pure $[< H, c, a > / < H, ca >] \cong [< c, a > / < ca > \cup (< a > \cap H)]$; quindi $a^p \in H$ per qualche numero primo p dipendente da a; ma allora $A \leq H$, come si voleva.

BIBLIOGRAFIA

- [1] R. BAER, Supersoluble groups, Proc. Amer. Math. Soc., 6 (1955), pp. 16-32.
- [2] G. Birkhoff, Lattice Theory, Amer. Math. Soc. (1967).
- [3] F. MENEGAZZO, Gruppi nei quali la relazione di quasi-normalità è transitiva, Rend. Sem. Mat. Padova, 40 (1968), pp. 1-15.
- [4] F. MENEGAZZO, Gruppi nei quali la relazione di quasi-normalità è transitiva, II, Rend. Sem. Mat. Padova, 42 (1969), pp. 389-399.
- [5] F. Menegazzo, Dual-Dedekind subgroups in finite groups, Rend. Sem. Mat. Padova, 45 (1971), pp. 99-111.
- [6] E. PREVIATO, Gruppi in cui la relazione di Dedekind è transitiva, Rend. Sem. Mat. Padova, 54 (1975), pp. 215-229.
- [7] D. J. S. Robinson, Finiteness conditions and generalized soluble groups, Erg. der Mathematik, Band 62, Springer Verlag, Berlin.
- [8] D. J. S. Robinson, Groups in which normality is a transitive relation, Proc. Cambridge Phil. Soc., 60, part 1 (1964), pp. 21-38.
- [9] M. Suzuki, Structure of a group and the structure of its lattice of subgroups, Springer (1958).
- [10] H. ZASSENHAUS, The theory of groups, Chelsea (1958).

Manoscritto pervenuto in redazione il 1º settembre 1977 e in forma revisionata il 29 maggio 1978.