RENDICONTI del Seminario Matematico della Università di Padova

ATTILIO LE DONNE On prime ideals of C(X)

Rendiconti del Seminario Matematico della Università di Padova, tome 58 (1977), p. 207-214

http://www.numdam.org/item?id=RSMUP_1977_58_207_0

© Rendiconti del Seminario Matematico della Università di Padova, 1977, tous droits réservés.

L'accès aux archives de la revue « Rendiconti del Seminario Matematico della Università di Padova » (http://rendiconti.math.unipd.it/) implique l'accord avec les conditions générales d'utilisation (http://www.numdam.org/conditions). Toute utilisation commerciale ou impression systématique est constitutive d'une infraction pénale. Toute copie ou impression de ce fichier doit contenir la présente mention de copyright.

\mathcal{N} umdam

Article numérisé dans le cadre du programme Numérisation de documents anciens mathématiques http://www.numdam.org/ REND. SEM. MAT. UNIV. PADOVA, Vol. 58 (1977)

On prime ideals of C(X)

ATTILIO LE DONNE (*)

Introduction.

In the paper [D0] De Marco and Orsatti have studied the mapping $\sigma: P \leftrightarrow P \cap C^*(X)$ of $\mathscr{G}(C(X))$ into $\mathscr{G}(C^*(X))$, the spectra of the prime ideals of C(X) and $C^*(X)$ respectively.

If M is a maximal ideal of C(X), $\sigma(M) = M \cap C^*$ is comparable with every prime ideal $P^* \subset M^*$ if M^* is the unique maximal ideal of C^* containing σ M. σ subordinates a bijection preserving inclusion between the prime ideals of C(X) contained in M and the prime ideals of $C^*(X)$ contained in $M \cap C^*(X)$.

 σM is the minimum prime ideal of $C^*(X)$ comparable with every prime ideal contained in M^* iff M has the same property in C(X); in this case M will be called ramified. We generalize the definition at every prime ideal (necessarily z-ideal) of C(X): that is, a prime ideal P of C(X) is ramified if it is the minimum prime ideal comparable with every prime ideal contained in P. We give several equivalent conditions for a prime z-ideal to be ramified; we produce a result, due to De Marco and independent from the remaining work, stating that every maximal fixed ideal of a space satisfying the first axiom of countability is ramified.

The main result of this paper is the theorem stating that every prime z-ideal in a metric space is ramified.

I. X denotes a T_2 completely regular topological space, C(X) the ring of continuous functions, βX the Stone — Čech compactifi-

^(*) Current address : Seminario Matematico Università di Padova, via Belzoni 7-Padova.

Lavoro eseguito nell'ambito dei gruppi di Ricerca Matematica del C.N.R.

cation (βX is a subspace of Spec (C(X)), the set of prime ideals of C(X) with spectral topology). For every $p \in \beta X$, M^p will be the maximal ideal associated to it. For every ideal P of C(X), Z[P] is the z-filter of P. If \mathfrak{F} is a z-filter, $Z^{\leftarrow}[\mathfrak{F}]$ is the z-ideal of \mathfrak{F} .

PROPOSITION. Let Q be a prime ideal of C(X). Let R(Q) denote the ideal sum of all the minimal prime ideals contained in P; R(Q) is smallest among the prime ideals comparable with every prime ideal contained in Q.

PROOF. Let $P \subset Q$ be prime. P contains a minimal ideal P_{α} . As either P or R(Q) contain P_{α} , they are comparable. If now P is comparable with every prime contained in Q, then it contains the minimal prime ideals contained in Q, then $P \supset R(Q)$.

DEFINITION 1. Let Q be a prime ideal of C(X). We say Q is *ramified* if Q = R(Q).

DEFINITION 2. Let $p \in \beta X$. We say p is ramified if M^p is ramified.

DEFINITION 3. Let $p \in \beta X$. We say p is totally ramified if every prime z-ideal Q is ramified, with $Q \subset M^p$.

Analogously X is said to be ramified (r. totally ramified) if every $p \in \beta X$ is ramified (r. totally ramified).

COROLLARY. A ramified prime ideal is necessarily a z-ideal.

PROOF. A minimal prime ideal is a z-ideal. [GJ 14.7].

LEMMA. If I and J are z-ideals then Z [I + J] = (Z [I], Z [J])(the z-filter generated by Z[I] and Z [J]) and every element of Z [I + J]is the intersection of two elements of Z [I] and Z [J].

PROOF. Trivial.

THEOREM. Let Q be a non-minimal prime z-ideal. The following conditions are equivalent:

(a) Q is ramified;

(b) for every $Z \in Z[Q]$ there exist $Z_1, Z_2 \in Z[Q]$ such that $Z_1 \cap Z_2 \subset Z$; and, if $Z' \in Z(X)$ is such that $Z' \supset Z_1 \setminus Z_2$ or $Z' \supset Z_2 \setminus Z_1$, then $Z' \in Z[Q]$;

(c) for every $Z \in Z[Q]$ there exist $Z_1, Z_2 \in Z[Q]$ such that $Z_1 \cap Z_2 \subset CZ$ and $Q \in cl_{Spec(C(X))}$ $(Z_1 \setminus Z_2) \cap cl_{Spec(C(X))}$ $(Z_2 \setminus Z_1)$;

(d) every cozero set $A = X \setminus Z$ with $Z \in Z[Q]$ is containded in a $B = X \setminus Z_0$ with $Z_0 \in Z[Q]$ and B non C^* – embedded in $B \cup \{Q\} \subset \subset Spec(C(X));$

(e) Q is generated by the functions of Q that change their sign in every zero set of $O_Q = \cap \{P_{\alpha} : P_{\alpha} \text{ minimal prime ideals contained in } Q\}$.

PROOF.

 $(b) \iff (c).$

A base of neighborhoods of Q in Spec (C(X)) is produced by the sets $V_f = \{P \in \text{Spec } (C(X)): P \not\ni f\}$ with $f \notin Q$. But $V_f \cap X = \{p \in X : M_p \not\ni f\} = \{p \in X : f(p) \neq 0\} = X \setminus Z(f) \text{ (with } Z(f) \notin Z[Q])$. Then we have $Q \in cl_{SpecC(X)}(Z_1 \setminus Z_2)$ iff for each $Z' \notin Z[Q]$ it is $(X \setminus Z') \cap (Z_1 \setminus Z_2) \neq \emptyset$ i.e. iff for each $Z' \notin Z[Q]$ it is $Z' \not\Rightarrow Z_1 \setminus Z_2$.

 $(a) \Rightarrow (b).$

Call P_{α} $(\alpha \in I)$ the minimal prime ideals. Put $Z \in Z[Q] = Z\left[\sum_{P_{\alpha} \subset Q} P_{\alpha}\right]$. Let $\alpha_{1}, \ldots, \alpha_{n}$ a set of indexes minimal for the property: $Z \in Z\left[P_{\alpha_{1}} + \ldots + P_{\alpha_{n}}\right]$. If n > 1, $Z = Z_{1} \cap Z_{2}$ with $Z_{1} \in Z\left[P_{\alpha_{1}} + \ldots + P_{\alpha_{n-1}}\right]$ and $Z_{2} \in Z\left[P_{\alpha_{n}}\right]$ by lemma. Then Z_{1}, Z_{2} satisfy the hypothesis of (b). In fact they belong to Z[Q] and if $Z' \in Z(X) \setminus Z[Q]$ is such that, for example, $Z' \supset Z_{1} \setminus Z_{2}$ i.e. $Z' \cup Z \supset Z_{1} \in Z\left[P_{\alpha_{1}} + \ldots + P_{\alpha_{n-1}}\right]$ being $P_{\alpha_{1}} + \ldots + P_{\alpha_{n-1}}$ a prime z-ideal, then $Z \in Z\left[P_{\alpha_{1}} + \ldots + P_{\alpha_{n-1}}\right]$ against the hypothesis. Analogously if $Z' \cup Z \supset Z_{2} \in Z\left[P_{\alpha_{n}}\right]$ and $Z' \notin Z\left[Q\right]$ then $Z \in Z[P_{\alpha_{n}}]$. If now n = 1 i.e. if $Z \in Z[P_{\alpha_{n}}]$, $P_{\alpha} \subset Q$ being Q not minimal there exists $P_{\beta} \neq P_{\alpha}$, $P_{\beta} \subset Q$. Let $Z_{0} = Z \cap Z' \cap Z''$ with $Z' \in Z[P_{\alpha}] \setminus Z[P_{\beta}]$ and $Z'' \in Z[P_{\beta}] \setminus Z[P_{\alpha}]$: then $Z_{0} \in Z[P_{\alpha} + P_{\beta}] \setminus (Z[P_{\alpha}] \cup Z[P_{\beta}])$, and we can apply to Z_{0} the previous argument.

 $(b) \Rightarrow (a).$

Put $Z \in Z[Q]$ and let $Z_1, Z_2 \in Z[Q]$ satisfy the property (b) for Z. Let $I = Z^{\leftarrow}[(Z_1)]$ (where (Z_1) is the z-filter generated by Z_1) and $S = \{h \cdot k : \text{with } Z(h) = Z_0 \text{ and } k \notin Q \} \cup (C(X) \setminus Q) \text{ with } Z_0 = Z_1 \cap Z_2$. S is closed under multiplication and disjoint from I; in fact $I \subset Q$ and if $h \cdot k \in I$ with $Z(h) = Z_0$ and $k \notin Q$, we have $Z(h \cdot k) \supset Z_1, Z(h) \cup Z(k) \supset Z_1, Z(k) \supset Z_1 \setminus Z_0$ and for (b) we have $Z(k) \in Z[Q]$. Then there is an ideal Q_1 containing I, disjoint from S and maximal with respect to this property: namely $Z[Q_1] \ni Z_1$, $Z[Q_1] \not\ni Z_0$ and $Q_1 \in Q$ (such an ideal is prime and a z-ideal because

 $Z^{\star}[Z[Q_1]]$ has the same property). Doing the same for Z_2 , we obtain a prime z-ideal Q_2 such that $Z[Q_2] \ni Z_2$, $Z[Q_2] \not\ni Z_0$ and $Q_2 \subset Q$. Then $Z_0 = Z_1 \cap Z_2 \in Z[Q_1 + Q_2] = (Z[Q_1], Z[Q_2])$ so that Q is ramified.

 $(b) \Rightarrow (d).$

Let $A = X \setminus Z$ with $Z \in Z[Q]$; then there exist Z_1, Z_2 satisfying the property (b). Put $B = X \setminus Z_0$ with $Z_0 = Z_1 \cap Z_2$. Being $Z_0 \subset Z$, it is $B \supset A$; now $Z_1 \setminus Z_0$ and $Z_2 \setminus Z_0$ are disjoint zero sets of B, but their closure in $B \cup \{Q\}$ contains the point Q.

 $(d) \Rightarrow (c).$

Let $Z \in Z[Q]$. Put $A = X \setminus Z$ and take $B = X \setminus Z_0$ with $Z_0 \in Z[Q]$ satisfying (d). Then there is a bounded function on B, not extensible to $B \cup \{Q\}$, hence as x approximates Q, f has two limit points, i.e. there are two disjoint zero-sets Z'_1, Z'_2 of B, containing Q in their closure. With $Z_1 = Z'_1 \cup Z_0$ and $Z_2 = Z'_2 \cup Z_0$ we have (c).

 $(a) \Rightarrow (e).$

It is sufficient to see that every $f \in P_{\alpha} \subset Q$, with P_{α} a minimal prime ideal and f > 0, is a sum of functions that change their sign on every zero-set of O_Q . If $f \notin O_Q$, there is $P_{\beta} \subset Q$ such that $f \notin P_{\beta}$; hence if $g \notin P_{\alpha}$, g > 0 is such that fg = 0 then $g \in P_{\beta} \subset Q$ and f == (2f - g) - (f - g); and if $h \in O_Q$ it is $Z(f) \supset Z(h)$ and $Z(g) \supset Z(h)$. If $f \in O_Q$ let $f' \in P_{\beta} \setminus P_{\alpha}$ with P_{α} , $P_{\beta} \subset Q$; put $g' \notin P_{\alpha}$, f'g' = 0; then $g' \in P_{\beta}$ and f = (f + f' - g') - (f' - g'), and, as f vanishes on every zero set of O_Q , we have (f).

 $(e) \Rightarrow (a).$

Let $f \in Q$ be a function that changes its sign on every zero set of O_Q . Put $f = f^+ - f^-$ (where $f^+ = f \lor 0$ and $f^- = (-f) \lor 0$), it is $f^+ f^- = 0$ hence if $P_{\alpha} \subset Q$ we have, for example, $f^+ \in P$ but $f^+ \notin O_Q$ and then there is a $P_{\beta} \subset Q$ such that $f^+ \notin P_{\beta}$; hence $f^- \in P_{\beta}$ and $f \in P_{\alpha} + P_{\beta} \subset Q$. (q.e.d.).

In the special case where $Q = M^p$, (c) and (f) take the form:

- (e') M^p is generated by the functions of M^p that change their sign on every zero-set of O^p .

One may wonder whether in this theorem, if $Z \notin Z[O_Q]$, $Z_1 \cap Z_2 = Z$ can be assumed; this is true only if $Z \notin \bigcup_{P_{\alpha} \subset Q} Z[P_{\alpha}]$,

otherwise it may be not true. In fact let $\sigma \notin N$, put $X = N \cup \{\sigma\}$ with every point of N isolated, and let the neighborhoods of σ the $\{\sigma\} \cup H_1 \cup H_2$, with $H_1 \in \mathfrak{U}_1$ and $H_2 \in \mathfrak{U}_2$ two distinct free ultra-filters on N. For σ there are tree prime z-ideals:

$$\begin{split} M_{\sigma} &= Z^{\leftarrow} \left(\left\{ \sigma \right\} \right), \quad P_1 = Z^{\leftarrow} \left\{ \left\{ \sigma \right\} \cup H_1 : H_1 \in \mathcal{U}_1 \right\}, \\ P_2 &= Z^{\leftarrow} \left\{ \left\{ \sigma \right\} \cup H_2 : H_2 \in \mathcal{U}_2 \right\}. \end{split}$$

It is $P_1 + P_2 = M_{\sigma} \cdot P_1$, P_2 are minimal and M_{σ} is ramified. If $f \in M_{\sigma}$ with $\cos f \in \mathfrak{U}_1 \setminus \mathfrak{U}_2$ (or $\cos f \in \mathfrak{U}_2 \setminus \mathfrak{U}_1$) then $\cos f$ is C^* – embedded in the whole X.

We note that in this space every finitely generated ideal is generated by two functions.

2. PROPOSITION. (De Marco). Let X satisfy the first axiom of countability. Then for every non-isolated point $p \in X$, there are non-maximal prime ideals P_1 and P_2 such that $P_1 + P_2 = M_p$.

PROOF. Let $(x_n)_{n \in N}$ be a sequence of distinct points, converging to p in X $(x_n \neq p)$. Select on $D = \{x_n : n \in N\}$ two distinct free ultrafilters $\mathfrak{U}_1, \mathfrak{U}_2$. For i = 1, 2, put:

 $\begin{array}{l} P_i = \{f \in C(\bar{X}) : Z(f) \supset A \text{ for an } A \in \mathfrak{U}_i\}; \ P_i \text{ is a prime } z\text{-ideal of } \\ C(X). \text{ In fact } P_i \text{ is clearly a } z\text{-ideal and if } Z(fg) \supset A \text{ and } A \in \mathfrak{U}_i \text{ we } \\ \text{have } \left(Z(f) \cap D\right) \cup (Z(g) \cap D) \supset A: \text{ this implies that either } Z(f) \cap D \\ \text{or } Z(g) \cap D \text{ belongs to } \mathfrak{U}_i; \text{ hence, for example, } Z(f) \supset Z(f) \cap D \in \mathfrak{U}_i, \\ \text{then } f \in P_i \text{ . Hence } P_i \text{ is prime. For the continuity of the } f, f(p) = 0 \\ \text{for every } f \in P_i, \text{ hence } P_i (i = 1, 2) \text{ is contained in } \mathcal{M}_p. \end{array}$

Suppose now that D is chosen as follows. Let $g \in C(X)$, $g \ge 0$ be such that $Z(g) = \{p\}$ (this is possible because in a $T_{3\frac{1}{2}}$ space every compact G_{δ} — set is a zero-set).

Let $V_1 \supset V_2 \supset \ldots$ be a base of neighborhoods of p and (a_n) a real sequence constructed inductively in the following way:

$$0 < a_1^{}, a_1^{} \in g[V_1^{}]; 0 < a_2^{} < a_1^{}, a_2^{} \in g[V_2^{}] ext{ etc.}$$

For every n, let $x_n \in V_n$ such that $g(x_n) = a_n$. Let D be the set of the x_n . Clearly $(x_n)_{n \in N}$ is formed of distinct points and converges to p. Take now $A_1 \in \mathfrak{U}_1$, $A_2 \in \mathfrak{U}_2$ such that $A_1 \cap A_2 = \emptyset$ and let $B_1 = g[A_1]$, $B_2 = g[A_2]$. Finally let $\varphi_i \in C(R)$ (i = 1, 2) such that $Z(\varphi_i) = B_i \cup \{0\}$ and $\varphi_1 + \varphi_2 = 1$. Put $u_i = \varphi_i g$. Then $u_i \in P_i$ because $Z(u_i) \supset A_i$; and we have that $u_1 + u_2 = g((u_1 + u_2)(x) = (\varphi_1 + \varphi_2)g(x) = g(x))$.

3. – Theorem on metric spaces.

LEMMA. Let X be a perfectly normal space, Q a prime z-ideal of C(X). If Z[Q] contains no nowhere dense set, then Q is minimal.

PROOF. Take $f \in Q$ and let $g \in C(X)$ be such that $Z(g) = cl_X(X \setminus Z(f))$; $g \notin Q$ because int $(Z(g) \cap Z(f)) = \emptyset$. Being fg = 0, f belongs to every prime ideal contained in Q. Hence Q is minimal.

THEOREM. Every metric space is totally ramified.

PROOF. Let Q be a non-minimal prime z-ideal of C(X). For the lemma Z[Q] contains a nowhere dense zero-set Z. For a lemma given by Hausdorff [W 4.39] there exists a discrete set $D \subset X \setminus Z$ with $cl_X D = D \cup Z$.

We want to find two disjoint subsets D_1 and D_2 of D such that $Z = cl D_1 \cap cl D_2$. Putting $Z_1 = Z \cup D_1$, $Z_2 = Z \cup D_2$ for (b) of theorem at n. 1 we have that Q is ramified.

Put $Y = D \cup Z$. For every $x \in Y$, define $\eta(x) = \min_{\varepsilon > \delta(x)} w(B(x, \varepsilon))$ where $\delta(x)$ is the distance of x from Z; $B(x, \varepsilon)$ is the open ball in Y of center x and radius ε ; w is the weight.

It is $\aleph_0 \leq \eta(x) \leq |D|$. For each $H \subset Y$ and each infinite cardinal $a \leq |D|$, put $H_{\alpha} = \{x \in H : \eta(x) = a\}$. We prove that: $Z_{\alpha} \subset l \bigcup_{\alpha \in I} Z_{\beta} \subseteq cl \ D_{\alpha} \subset cl(D \setminus D_{\alpha}).$

In fact if $z \in Z$ there exists $\varepsilon > 0$ such that $w(B(z, \varepsilon)) = a$, if $d \in D$ with $d \in B(z, \varepsilon/2)$ it is $\varepsilon/2 > \delta(d)$, $B(d, \varepsilon/2) \subseteq B(z, \varepsilon)$ and hence $\eta(d) \le a$, i.e. $z \notin cl \bigcup_{\beta > \alpha} D_{\beta}$; now if $z \in cl \bigcup_{\beta < \alpha} D_{\beta}$ for each $\varepsilon' > 0$ there exists $d \in D$ with $\eta(d) < a$ and $d \in B(z, \varepsilon'/2)$, hence there exists $\varepsilon'' \le \varepsilon'/2$ such that $\varepsilon'' > \delta(d)$; $w(B(d, \varepsilon'')) =$ $= \eta(d) < a$; then there is $z' \in Z$ with $z' \in B(d, \varepsilon'')$; we have $z' \in \bigcup_{\beta < \eta(d)} z_{\beta}$ and $z' \in B(z, \varepsilon')$; hence $z \in cl \bigcup_{\beta < \alpha} Z$.

Now, for a generalization of an exercise of $[E \ 4c]$, there is a partition of Y_{α} with $Y_{\alpha}^{i}(i \in I_{\alpha})$ clopen sets of Y_{α} that have a dense subset of cardinality not bigger than α .

Let us prove that for each $\alpha \leq |D|$, there exist two sets D^1_{α} , $D^2_{\alpha} \subset D_{\alpha}$ such that $D^1_{\alpha} \cap D^2_{\alpha} = \emptyset$ and $Z_{\alpha} \subseteq (cl \bigcup_{\beta < \alpha} Z_{\beta}) \cup cl D^i_{\alpha}$ for i = 1, 2; in fact $Z_{\alpha} = \bigcup_i (Y^i_{\alpha} \cap Z_{\alpha})$; $Y^i_{\alpha} \cap Z_{\alpha}$ contains a dense subset of cardinality a^i with $a^i \leq a$. Consider a^i as an ordinal (i.e. the minimum ordinal of cardinality a^i). We can write : $Y^i_{\alpha} \cap Z_{\alpha} = cl_{Z_{\alpha}} \{ y^i_1, y^i_2, \dots, y^i_r, \dots \}_{v < \alpha^i \leq \alpha}$.

 $= cl_{Z_{\alpha}} \{ y_{1}^{i}, y_{2}^{i}, \dots, y_{r}^{i} \dots \}_{r < \alpha^{i} \leq \alpha} .$ Now for each $y_{\nu}^{i} \notin cl \bigcup_{\beta < \alpha} Z_{\beta}$ take a sequence of distinct points, $(d_{\nu}^{in})_{n} \rightarrow y_{\nu}^{i}$ with $d_{\nu}^{in} \in D_{\sigma} \cap Y_{\alpha}^{i}$ such that $d_{\nu}^{in} \notin \{ d_{\nu'}^{im} : \nu' < \nu, m \in N \} .$ This is possible because y_{ν}^{i} has a neighborhood disjoint from $D \setminus D_{\alpha}$, and besides, if $\alpha > \aleph_{0}$, every neighborhood of it has weight $\geq \alpha$ and card $\{ d_{\nu'}^{im} : \nu' < \nu, m \in N \} < \alpha$; if $\alpha = \aleph_{0}$ then there exists a neighborhood of y^{i} disjoint from $\{ d_{\nu'}^{im} : \nu' < \nu, m \in N \}$, as ν is in this case finite.

 $\begin{array}{ll} \text{If now} \ D_1 = \bigcup_{\alpha \,\leqslant\, \mid\, D\mid} D_{\alpha}^1\,,\, D_2 = \bigcup_{\alpha \,\leqslant\, \mid\, D\mid} D_{\alpha}^2\,, \,\, \text{we have} \,\, D_1 \cap \,\, D_2 = \varnothing \ \text{ and} \\ Z = cl \,\, D_1 \,\cap\, cl \,\, D_2\,. \end{array}$

4. – Some problems.

PROBLEM 1. Is there a relation for a space X between being totally ramified and having particular ramified subsets ?

PROBLEM 2. Is it equivalent to ask that every cozero set of X be ramified and that X be totally ramified ?

We have only a partial answer for these problems, namely.

PROPOSITION: Let X be ramified. Every cozero set of X is ramified iff: (i) for each prime z-ideal Q, between Q and R(Q) there are no(prime) z-ideal; (ii) if Q has an immediate successor in the z-ideal then it is ramified (Q = R(Q)).

PROOF. As a zero-set we consider for (i) a set A belonging to Z[Q] but not to the z-filter of a prime between Q and R(Q); for (ii), a set A belonging to the z-filter of the successor of Q but not to Z[Q]: if ι is the immersion of $X \setminus A$ in X we consider the lattice-isomorfism ι^{\sharp} of [GJ 4, 12].

REFERENCES

- [DO] G. DE MARCO A. ORSATTI, Commutative rings in which every prime ideal is contained in a unique maximal ideal, Proc. Amer. Math. Soc. - Vol. 30 Nov. 1971, 459-466.
- [E] R. ENGELKING, Outline of General Topology, New York, John Wiley and Sons, Inc. 1968.
- [GJ] L. GILLMAN and M. JERISON, Rings of continuous functions, Princeton, Van Nostrand, 1960.
- [W] RUSSEL C. WALKER, The Stone-Čech Compactification, Springer-Verlag 1974.

Manoscritto pervenuto in redazione l'11 ottobre 1977.