Rendiconti

del
 SEMINARIO MATEMATICO della Università di Padova

Attilio Le Donne

On prime ideals of $C(X)$
Rendiconti del Seminario Matematico della Università di Padova, tome 58 (1977), p. 207-214
http://www.numdam.org/item?id=RSMUP_1977__58_207_0
© Rendiconti del Seminario Matematico della Università di Padova, 1977, tous droits réservés.

L'accès aux archives de la revue «Rendiconti del Seminario Matematico della Università di Padova» (http://rendiconti.math.unipd.it/) implique l'accord avec les conditions générales d'utilisation (http://www.numdam.org/conditions). Toute utilisation commerciale ou impression systématique est constitutive d'une infraction pénale. Toute copie ou impression de ce fichier doit contenir la présente mention de copyright.

Numdam

Article numérisé dans le cadre du programme

On prime ideals of $\mathbf{C}(X)$

Attilio Le Donne (*)

Introduction.

In the paper [DO] De Marco and Orsatti have studied the mapping $\sigma: P \longrightarrow P \cap C^{*}(X)$ of $\mathfrak{J}(C(X))$ into $\mathfrak{J}\left(C^{*}(X)\right)$, the spectra of the prime ideals of $C(X)$ and $C^{*}(X)$ respectively.

If M is a maximal ideal of $C(X), \sigma(M)=M \cap C^{*}$ is comparable with every prime ideal $P^{*} \subset M^{*}$ if M^{*} is the unique maximal ideal of C^{*} containing $\sigma M . \sigma$ subordinates a bijection preserving inclusion between the prime ideals of $C(X)$ contained in M and the prime ideals of $C^{*}(X)$ contained in $M \cap C^{*}(X)$.
σM is the minimum prime ideal of $C^{*}(X)$ comparable with every prime ideal contained in M^{*} iff M has the same property in $C(X)$; in this case M will be called ramified. We generalize the definition at every prime ideal (necessarily z-ideal) of $C(X)$: that is, a prime ideal P of $C(X)$ is ramified if it is the minimum prime ideal comparable with every prime ideal contained in P. We give several equivalent conditions for a prime z-ideal to be ramified; we produce a result, due to De Marco and independent from the remaining work, stating that every maximal fixed ideal of a space satisfying the first axiom of countability is ramified.

The main result of this paper is the theorem stating that every prime z-ideal in a metric space is ramified.
I. X denotes a T_{2} completely regular topological space, $C(X)$ the ring of continuous functions, βX the Stone - Čech compactifi-

[^0]cation (βX is a subspace of Spec $(C(X))$, the set of prime ideals of $C(X)$ with spectral topology). For every $p \in \beta X, M^{p}$ will be the maximal ideal associated to it. For every ideal P of $C(X), Z[P]$ is the z-filter of P. If \mathcal{F} is a z-filter, $Z^{\star}[\mathcal{F}]$ is the z-ideal of \mathcal{F}.

Proposition. Let Q be a prime ideal of $C(X)$. Let $R(Q)$ denote the ideal sum of all the minimal prime ideals contained in $P ; R(Q)$ is smallest among the prime ideals comparable with every prime ideal contained in Q.

Proof. Let $P \subset Q$ be prime. P contains a minimal ideal P_{α}. As either P or $R(Q)$ contain P_{α}, they are comparable. If now P is comparable with every prime contained in Q, then it contains the minimal prime ideals contained in Q, then $P \supset R(Q)$.

Definition 1. Let Q be a prime ideal of $C(X)$. We say Q is ramified if $Q=R(Q)$.

Definition 2. Let $p \in \beta X$. We say p is ramified if M^{p} is ramified.
Definition 3. Let $p \in \beta X$. We say p is totally ramified if every prime z-ideal Q is ramified, with $Q \subset M^{p}$.

Analogously X is said to be ramified (r. totally ramified) if every $p \in \beta X$ is ramified (r. totally ramified).

Corollary. A ramified prime ideal is necessarily a z-ideal.
Proof. A minimal prime ideal is a z-ideal. [GJ 14.7].
Lemma. If I and J are z-ideals then $Z[I+J]=(Z[I], Z[J])$ (the z-filter generated by $Z[I]$ and $Z[J])$ and every element of $Z[I+J]$ is the intersection of two elements of $Z[I]$ and $Z[J]$.

Proof. Trivial.
Theorem. Let \mathbf{Q} be a non-minimal prime z-ideal. The following conditions are equivalent:
(a) Q is ramified;
(b) for every $Z \in Z[Q]$ there exist $Z_{1}, Z_{2} \in Z[Q]$ such that $Z_{1} \cap Z_{2} \subset Z ;$ and, if $Z^{\prime} \in Z(X)$ is such that $Z^{\prime} \supset Z_{1} \backslash Z_{2}$ or $Z^{\prime} \supset Z_{2} \backslash Z_{1}$, then $Z^{\prime} \in Z[Q]$;
(c) for every $Z \in Z[Q]$ there exist $Z_{1}, Z_{2} \in Z[Q]$ such that $Z_{1} \cap Z_{2} \subset$ $\subset Z$ and $Q \in c l_{S p e c(C(X))}\left(Z_{1} \backslash Z_{2}\right) \cap c l_{S p e c(C(X))}\left(Z_{2} \backslash Z_{1}\right) ;$
(d) every cozero set $A=X \backslash Z$ with $Z \in Z[Q]$ is containded in a $B=X \backslash Z_{0}$ with $Z_{0} \in Z[Q]$ and B non C^{*} - embedded in $B \cup\{Q\} \subset$ $\subset S p e c(C(X))$;
(e) Q is generated by the functions of Q that change their sign in every zero set of $O_{Q}=\cap\left\{P_{\alpha}: P_{\alpha}\right.$ minimal prime ideals contained in $Q\}$.

Proof.

$(b) \Leftrightarrow(c)$.
A base of neighborhoods of Q in $\operatorname{Spec}(C(X))$ is produced by the sets $V_{f}=\{P \in \operatorname{Spec}(C(X)): P \nexists f\}$ with $f \notin Q$. But $V_{f} \cap X=$ $=\left\{p \in X: M_{p} \neq f\right\}=\{p \in X: f(p) \neq 0\}=X \backslash Z(f) \quad$ (with $Z(f) \notin$ $\notin Z[Q])$. Then we have $Q \in \operatorname{cl}_{\operatorname{Spec}(X)}\left(Z_{1} \backslash Z_{2}\right)$ iff for each $Z^{\prime} \notin Z[Q]$ it is $\left(X \backslash Z^{\prime}\right) \cap\left(Z_{1} \backslash Z_{2}\right) \neq \varnothing$ i.e. iff for each $Z^{\prime} \notin Z[Q]$ it is $Z^{\prime} \neq Z_{1} \backslash Z_{2}$.
$(a) \Rightarrow(b)$.
Call $P_{\alpha}(\alpha \in I)$ the minimal prime ideals. Put $Z \in Z[Q]=$ $=Z\left[\sum_{P_{\alpha} \subset Q} P_{\alpha}\right]$. Let $\alpha_{1}, \ldots, \alpha_{n}$ a set of indexes minimal for the property : $Z \in Z\left[P_{\alpha_{1}}+\ldots+P_{\alpha_{n}}\right]$. If $n>1, Z=Z_{1} \cap Z_{2}$ with $Z_{1} \in$ $\in Z\left[P_{\alpha_{1}}+\ldots+P_{\alpha_{n-1}}\right]$ and $Z_{2} \in Z\left[P_{\alpha_{n}}\right]$ by lemma. Then Z_{1}, Z_{2} satisfy the hypothesis of (b). In fact they belong to $Z[Q]$ and if $Z^{\prime} \in Z(X) \backslash Z[Q]$ is such that, for example, $\boldsymbol{Z}^{\prime} \supset Z_{1} \backslash Z_{2}$ i.e. $Z^{\prime} \cup Z \supset Z_{1} \in Z\left[P_{\alpha_{1}}+\ldots+P_{\alpha_{n-1}}\right]$ being $P_{\alpha_{1}}+\ldots+P_{\alpha_{n-1}}$ a prime z-ideal, then $Z \in Z\left[P_{\alpha_{1}}+\ldots+P_{\alpha_{n-1}}\right]$ against the hypothesis. Analogously if $Z^{\prime} \cup Z \supset Z_{2} \in Z\left[P_{\alpha_{n}}\right]$ and $Z^{\prime} \notin Z[Q]$ then $Z \in Z\left[P_{\alpha_{n}}\right]$. If now $n=1$ i.e. if $Z \in Z\left[P_{\alpha}\right], P_{\alpha} \subset Q$ being Q not minimal there exists $P_{\beta} \neq P_{\alpha}, P_{\beta} \subset Q$. Let $Z_{0}=Z \cap Z^{\prime} \cap Z^{\prime \prime}$ with $Z^{\prime} \in Z\left[P_{\alpha}\right] \backslash Z\left[P_{\beta}\right]$ and $Z^{\prime \prime} \in Z\left[P_{\beta}\right] \backslash Z\left[P_{\alpha}\right]:$ then $Z_{0} \in Z\left[P_{a}+P_{\beta}\right] \backslash\left(Z\left[P_{\alpha}\right] \cup Z\left[P_{\beta}\right]\right)$, and we can apply to Z_{0} the previous argument.
$(b) \Rightarrow(a)$.
Put $Z \in Z[Q]$ and let $Z_{1}, Z_{2} \in Z[Q]$ satisfy the property (b) for Z. Let $I=Z^{\leftarrow}\left[\left(Z_{1}\right)\right]$ (where $\left(Z_{1}\right)$ is the z-filter generated by Z_{1}) and $S=\left\{h \cdot k:\right.$ with $Z(h)=Z_{0}$ and $\left.k \notin Q\right\} \cup(C(X) \backslash Q)$ with $Z_{0}=$ $=Z_{1} \cap Z_{2} . S$ is closed under multiplication and disjoint from I; in fact $I \subset Q$ and if $h \cdot k \in I$ with $Z(h)=Z_{0}$ and $k \notin Q$, we have $Z(h \cdot k) \supset Z_{1}, Z(h) \cup Z(k) \supset Z_{1}, Z(k) \supset Z_{1} \backslash Z_{0}$ and for (b) we have $Z(k) \in Z[Q]$. Then there is an ideal Q_{1} containing I, disjoint from S and maximal with respect to this property: namely $Z\left[Q_{1}\right] \ni Z_{1}$, $Z\left[Q_{1}\right] \nexists Z_{0}$ and $Q_{1} \in Q$ (such an ideal is prime and a z-ideal because
$Z^{+}\left[Z\left[Q_{1}\right]\right]$ has the same property). Doing the same for Z_{2}, we obtain a prime z-ideal Q_{2} such that $Z\left[Q_{2}\right] \ni Z_{2}, Z\left[Q_{2}\right] \nRightarrow Z_{0}$ and $Q_{2} \subset Q$. Then $Z_{0}=Z_{1} \cap Z_{2} \in Z\left[Q_{1}+Q_{2}\right]=\left(Z\left[Q_{1}\right], Z\left[Q_{2}\right]\right)$ so that Q is ramified.
$(b) \Rightarrow(d)$.
Let $A=X \backslash Z$ with $Z \in Z[Q]$; then there exist Z_{1}, Z_{2} satisfying the property (b). Put $B=X \backslash Z_{0}$ with $Z_{0}=Z_{1} \cap Z_{2}$. Being $Z_{0} \subset Z$, it is $B \supset A$; now $Z_{1} \backslash Z_{0}$ and $Z_{2} \backslash Z_{0}$ are disjoint zero sets of B, but their closure in $B \cup\{Q\}$ contains the point Q.

$$
(d) \Rightarrow(c) .
$$

Let $Z \in Z[Q]$. Put $A=X \backslash Z$ and take $B=X \backslash Z_{0}$ with $Z_{0} \in Z[Q]$ satisfying (d). Then there is a bounded function on B, not extensible to $B \cup\{Q\}$, hence as x approximates Q, f has two limit points, i.e. there are two disjoint zero-sets $Z_{1}^{\prime}, Z_{2}^{\prime}$ of B, containing Q in their closure. With $Z_{1}=Z_{1}^{\prime} \cup Z_{0}$ and $Z_{2}=Z_{2}^{\prime} \cup Z_{0}$ we have (c).

$$
(a) \Rightarrow(e) .
$$

It is sufficient to see that every $f \in P_{\gamma} \subset Q$, with P_{α} a minimal prime ideal and $f>0$, is a sum of functions that change their sign on every zero-set of O_{Q}. If $f \notin O_{Q}$, there is $P_{\beta} \subset Q$ such that $f \notin P_{\beta}$; hence if $g \notin P_{\alpha}, g>0$ is such that $f g=0$ then $g \in P_{\beta} \subset Q$ and $f=$ $=(2 f-g)-(f-g)$; and if $h \in O_{Q}$ it is $Z(f) \supset Z(h)$ and $Z(g) \supset Z(h)$. If $f \in O_{Q}$ let $f^{\prime} \in P_{\beta} \backslash P_{\alpha}$ with $P_{\alpha}, P_{\beta} \subset Q$; put $g^{\prime} \notin P_{\alpha}, f^{\prime} g^{\prime}=0$; then $g^{\prime} \in P_{\beta}$ and $f=\left(f+f^{\prime}-g^{\prime}\right)-\left(f^{\prime}-g^{\prime}\right)$, and, as f vanishes on every zero set of O_{Q}, we have (f).

$$
(e) \Rightarrow(a) .
$$

Let $f \in Q$ be a function that changes its sign on every zero set of O_{Q}. Put $f=f^{+}-f^{-}$(where $f^{+}=f \vee 0$ and $f^{-}=(-f) \vee 0$), it is $f^{+} f^{-}=0$ hence if $P_{\alpha} \subset Q$ we have, for example, $f^{+} \in P$ but $f^{+} \notin O_{Q}$ and then there is a $P_{\beta} \subset Q$ such that $f^{+} \notin P_{\beta}$; hence $f^{-} \in P_{\beta}$ and $f \in P_{\alpha}+P_{\beta} \subset Q$. (q.e.d.).

In the special case where $Q=M^{p},(c)$ and (f) take the form:
(c^{\prime}) for each $Z \in Z\left[M^{p}\right]$ there exist $Z_{1}, Z_{2} \in Z\left[M^{p}\right]$ such that $Z_{1} \cap Z_{2} \subset Z \quad$ and $\quad p \in c l_{\beta X}\left(Z_{1} \backslash Z_{2}\right) \cap c l_{\beta X}\left(Z_{2} \backslash Z_{1}\right)$
(e^{\prime}) M^{p} is generated by the functions of M^{p} that change their sign on every zero-set of O^{p}.

One may wonder whether in this theorem, if $Z \notin Z\left[O_{Q}\right]$, $Z_{1} \cap Z_{2}=Z$ can be assumed; this is true only if $Z \notin \bigcup_{P_{\alpha} \subset Q} Z\left[P_{\alpha}\right]$,
otherwise it may be not true. In fact let $\sigma \notin N, \operatorname{put} X=N \cup\{\sigma\}$ with every point of N isolated, and let the neighborhoods of o the $\{\sigma\} \cup H_{1} \cup H_{2}$, with $H_{1} \in \mathcal{U}_{1}$ and $H_{2} \in \mathcal{U}_{2}$ two distinct free ultrafilters on N. For σ there are tree prime z-ideals:

$$
\begin{aligned}
& M_{\sigma}=Z^{\leftarrow}(\{\sigma\}), \quad P_{1}=Z^{\leftarrow}\left\{\{\sigma\} \cup H_{1}: H_{1} \in \mathcal{U}_{1}\right\}, \\
& P_{2}=Z^{\leftarrow}\left\{\{\sigma\} \cup H_{2}: H_{2} \in \mathcal{U}_{2}\right\} .
\end{aligned}
$$

It is $P_{1}+P_{2}=M_{\sigma} . P_{1}, P_{2}$ are minimal and M_{σ} is ramified. If $f \in M_{\sigma}$ with $\operatorname{coz} f \in \mathcal{U}_{1} \backslash \mathcal{U}_{2}$ (or $\operatorname{coz} f \in \mathcal{U}_{2} \backslash \mathcal{U}_{1}$) then $\operatorname{coz} f$ is C^{*} - embedded in the whole X.

We note that in this space every finitely generated ideal is generated by two functions.
2. Proposition. (De Marco). Let X satisfy the first axiom of countability. Then for every non-isolated point $p \in X$, there are non-maximal prime ideals P_{1} and P_{2} such that $P_{1}+P_{2}=M_{p}$.

Proof. Let $\left(x_{n}\right)_{n \in N}$ be a sequence of distinct points, converging to p in $X\left(x_{n} \neq p\right)$. Select on $D=\left\{x_{n}: n \in N\right\}$ two distinct free ultrafilters $\mathcal{U}_{1}, \mathcal{U}_{2}$. For $i=1,2$, put:
$P_{i}=\left\{f \in C(X): Z(f) \supset A\right.$ for an $\left.A \in \mathcal{U}_{i}\right\} ; P_{i}$ is a prime z-ideal of $C(X)$. In fact P_{i} is clearly a z-ideal and if $Z(f g) \supset A$ and $A \in \mathcal{U}_{i}$ we have $(Z(f) \cap D) \cup(Z(g) \cap D) \supset A$: this implies that either $Z(f) \cap D$ or $Z(g) \cap D$ belongs to \mathcal{U}_{i}; hence, for example, $Z(f) \supset Z(f) \cap D \in \mathcal{U}_{i}$, then $f \in P_{i}$. Hence P_{i} is prime. For the continuity of the $f, f(p)=0$ for every $f \in P_{i}$, hence $P_{i}(i=1,2)$ is contained in M_{p}.

Suppose now that D is chosen as follows. Let $g \in C(X), g \geq 0$ be such that $Z(g)=\{p\}$ (this is possible because in a $T_{3 \frac{1}{2}}$ space every compact G_{δ} - set is a zero-set).

Let $V_{1} \supset V_{2} \supset \ldots$ be a base of neighborhoods of p and $\left(a_{n}\right)$ a real sequence constructed inductively in the following way:

$$
0<a_{1}, a_{1} \in g\left[V_{1}\right] ; 0<a_{2}<a_{1}, a_{2} \in g\left[V_{2}\right] \text { etc. }
$$

For every n, let $x_{n} \in V_{n}$ such that $g\left(x_{n}\right)=a_{n}$. Let D be the set of the x_{n}. Clearly $\left(x_{n}\right)_{n \in N}$ is formed of distinct points and converges to p. Take now $A_{1} \in \mathcal{U}_{1}, A_{2} \in \mathcal{U}_{2}$ such that $A_{1} \cap A_{2}=\varnothing$ and let $B_{1}=g\left[A_{1}\right], B_{2}=g\left[A_{2}\right]$. Finally let $\varphi_{i} \in C(R)(i=1,2)$ such that $Z\left(\varphi_{i}\right)=B_{i} \cup\{0\}$ and $\varphi_{1}+\varphi_{2}=1$. Put $u_{i}=\varphi_{i} g$. Then $u_{i} \in P_{i}$ because $Z\left(u_{i}\right) \supset A_{i}$; and we have that $u_{1}+u_{2}=g\left(\left(u_{1}+u_{2}\right)(x)=\right.$ $\left.=\left(\varphi_{1}+\varphi_{2}\right) \boldsymbol{g}(x)=\boldsymbol{g}(x)\right)$.

3. - Theorem on metric spaces.

Lemma. Let X be a perfectly normal space, Q a prime z-ideal of $C(X)$. If $Z[Q]$ contains no nowhere dense set, then Q is minimal.

Proof. Take $f \in Q$ and let $g \in C(X)$ be such that $Z(g)=$ $=c l_{X}(X \backslash Z(f)) ; g \notin Q$ because $\operatorname{int}(Z(g) \cap Z(f))=\varnothing$. Being $f g=0$, f belongs to every prime ideal contained in Q. Hence Q is minimal.

Theorem. Every metric space is totally ramified.
Proof. Let Q be a non-minimal prime z-ideal of $C(X)$. For the lemma $Z[Q]$ contains a nowhere dense zero-set Z. For a lemma given by Hausdorff [$W 4.39$] there exists a discrete set $D \subset X \backslash Z$ with $c l_{X} D=D \cup Z$.

We want to find two disjoint subsets D_{1} and D_{2} of D such that $Z=c l D_{1} \cap c l D_{2}$. Putting $Z_{1}=Z \cup D_{1}, Z_{2}=Z \cup D_{2}$ for (b) of theorem at n. 1 we have that Q is ramified.

Put $Y=D \cup Z$. For every $x \in Y$, define $\eta(x)=\min _{\varepsilon>\delta(x)} w(B(x, \varepsilon))$ where $\delta(x)$ is the distance of x from $Z ; B(x, \varepsilon)$ is the open ball in Y of center x and radius $\varepsilon ; w$ is the weight.

It is $\aleph_{0} \leq \eta(x) \leq|D|$. For each $H \subset Y$ and each infinite cardinal $\alpha \leq|D|$, put $H_{\alpha}=\{x \in H: \eta(x)=\alpha\}$. We prove that: $Z_{\alpha} \backslash c l \bigcup_{\beta<\alpha} Z_{\beta} \subseteq c l D_{\alpha} \backslash c l\left(D \backslash D_{\alpha}\right)$.

In fact if $z \in Z$ there exists $\varepsilon>0$ such that $w(B(z, \varepsilon))=\alpha$, if $d \in D$ with $d \in B(z, \varepsilon / 2)$ it is $\varepsilon / 2>\delta(d), B(d, \varepsilon / 2) \subseteq B(z, \varepsilon)$ and hence $\eta(d) \leq \alpha$, i.e. $z \notin c l \bigcup_{\beta>\alpha} D_{\beta}$; now if $z \in c l \bigcup_{\beta<\alpha} D_{\beta}$ for each $\varepsilon^{\prime}>0$ there exists $d \in D$ with $\eta(d)<\alpha$ and $d \in B\left(z, \varepsilon^{\prime} / 2\right)$, hence there exists $\varepsilon^{\prime \prime} \leq \varepsilon^{\prime} / 2$ such that $\varepsilon^{\prime \prime}>\delta(d) ; w\left(B\left(d, \varepsilon^{\prime \prime}\right)\right)=$ $=\eta(d)<\alpha$; then there is $z^{\prime} \in Z$ with $z^{\prime} \in B\left(d, \varepsilon^{\prime \prime}\right)$; we have $z^{\prime} \in \bigcup_{\beta \leqslant \eta(d)} z_{\beta}$ and $z^{\prime} \in B\left(z, \varepsilon^{\prime}\right) ;$ hence $z \in c l \bigcup_{\beta<\alpha} Z$.

Now, for a generalization of an exercise of $[E 4 c]$, there is a partition of Y_{α} with $Y_{\alpha}^{i}\left(i \in I_{\alpha}\right)$ clopen sets of Y_{α} that have a dense subset of cardinality not bigger than α.

Let us prove that for each $\alpha \leq|D|$, there exist two sets D_{α}^{1}, $D_{\alpha}^{2} \subset D_{\alpha}$ such that $D_{\alpha}^{1} \cap D_{\alpha}^{2}=\varnothing$ and $Z_{\alpha} \subseteq\left(c l \bigcup_{\beta<\alpha} Z_{\beta}\right) \cup c l D_{\alpha}^{i}$ for $i=1,2 ;$ in fact $Z_{\alpha}=\bigcup_{i}\left(Y_{\alpha}^{i} \cap Z_{\alpha}\right) ; Y_{\alpha}^{i} \cap Z_{\alpha}$ contains a dense
subset of cardinality α^{i} with $\alpha^{i} \leq \alpha$. Consider α^{i} as an ordinal (i.e. the minimum ordinal of cardinality a^{i}). We can write : $Y_{\alpha}^{i} \cap Z_{\alpha}=$ $=c l_{z_{\alpha}}\left\{y_{1}^{i}, y_{2}^{i}, \ldots y_{v}^{i} \ldots\right\}_{\nu<\alpha i \leqslant \alpha}$.

Now for each $y_{\nu}^{i} \notin c l \bigcup_{\beta<\alpha} Z_{\beta}$ take a sequence of distinct points, $\left(d_{\nu}^{i n}\right)_{n} \rightarrow y_{\nu}^{i}$ with $d_{\nu}^{i n} \in D_{\alpha} \cap \bar{Y}_{\alpha}^{i}$ such that $d_{\nu}^{i n} \notin\left\{d_{\nu^{\prime}}^{i m}: \nu^{\prime}<\nu, m \in N\right\}$. This is possible because y_{v}^{i} has a neighborhood disjoint from $D \backslash D_{\alpha}$, and besides, if $\alpha>\boldsymbol{\aleph}_{0}$, every neighborhood of it has weight $>\alpha$ and card $\left\{d_{\nu^{\prime}}^{i m}: \nu^{\prime}<\nu, m \in N\right\}<\alpha$; if $\alpha=\mathbf{N}_{0}$ then there exists a neighborhood of y^{i} disjoint from $\left\{d_{\nu^{\prime}}^{i m}: \nu^{\prime}<v, m \in N\right\}$, as ν is in this case finite.

Put then $D_{\alpha}^{1}=\left\{d_{\nu}^{i(2 n)}: n \in N, \nu<\alpha^{i}, i \in I_{\alpha}\right\}$ and

$$
D_{\alpha}^{2}=\left\{d_{\nu}^{i(2 n+1)}: n \in N, \nu<a^{i}, i \in I_{\alpha}\right\}
$$

If now $D_{1}=\bigcup_{\alpha \leqslant|D|} D_{\alpha}^{1}, D_{2}=\bigcup_{\alpha \leqslant|D|} D_{\alpha}^{2}$, we have $D_{1} \cap D_{2}=\varnothing$ and $Z=c l D_{1} \cap c l D_{2}$.

4. - Some problems.

Problem 1. Is there a relation for a space X between being totally ramified and having particular ramified subsets?

Problem 2. Is it equivalent to ask that every cozero set of X be ramified and that X be totally ramified ?

We have only a partial answer for these problems, namely.
Proposition : Let X be ramified. Every cozero set of X is ramified iff: (i) for each prime z-ideal Q, between Q and $R(Q)$ there are no(prime) z-ideal; (ii) if Q has an immediate successor in the z-ideal then it is ramified $(Q=R(Q))$.

Proof. As a zero-set we consider for (i) a set A belonging to $Z[Q]$ but not to the z-filter of a prime between Q and $R(Q)$; for (ii), a set A belonging to the z-filter of the successor of Q but not to $Z[Q]$: if ι is the immersion of $X \backslash A$ in X we consider the lattice-isomorfism $l^{\#}$ of [GJ 4, 12].

REFERENCES

[D0] G. De Marco A. Orsatti, Commutative rings in which every prime ideal is contained in a unique maximal ideal, Proc. Amer. Math. Soc. - Vol. 30 Nov. 1971, 459-466.
[E] R. Engelking, Outline of General Topology, New York, John Wiley and Sons, Inc. 1968.
[GJ] L. Gillman and M. Jerison, Rings of continuous functions, Princeton, Van Nostrand, 1960.
[W] Russel C. Walker, The Stone-C̆ech Compactification, SpringerVerlag 1974.

Manoscritto pervenuto in redazione l'11 ottobre 1977.

[^0]: (*) Current address : Seminario Matematico Università di Padova, via Belzoni 7-Padova.

 Lavoro eseguito nell'ambito dei gruppi di Ricerca Matematica del C.N.R.

