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RexND. SEM. MAaT. UNiv. PApova, Vol. 57 (1977)

A sequence of theories for arithmetic
whose union is complete

A1LDO URSINI (*)

SoMMARIO - Si studia una successione di teorie formali del primo ordine,
secondo una proposta di R. Magari in [3] 8, n° 4. Si tratta di una
successione numerabile crescente costruita a partire dall’aritmetica
di PEaNo, ed aggiungendo al passo m+41—mo come assiomi le pro-
posizioni che sono, in un certo senso, dimostrabilmente falsificabili,
se false, entro il passo precedente, e la cui falsitd non & una tesi
nel passo precedente (cio® : che siano indecidibili nella n-ma teoria).
L’n-ma teoria @, & un insieme di X4, nella gerarchia aritmetica ;
in @, sono numerate — nel senso di 8. Feferman,[1],— tutte e sole
le relazioni di Zy47; @, & incompleta e la sua incompletezza & una
tesi di Qpn4+q: inoltre Q,4; dimostra la formalizzazione «standard »
della asserzione che @, & consistente, la quale, invece, non & dimo-

strabile in @, ; ¢ U @, & I'insieme delle proposizioni dell’aritmetica
Nnew
al I° ordine vere nel modello standard.

SumMARY - We study a sequence of formal theories of the first order,
following a proposal of R. Magari’s in [3], § 8, no 4. It is a de-
numarable encreasing sequence starting from PEaNo arithmetic, and
taking as axioms at the m-+1—st stage the set of those sentences
whose negation is not provable in the n—th and such that, if false,
they are provably falsifiable by the n—th theory. The n—th theory
Qn, is a set of X,;; in the arithmetical hyerarchy; in @, are
numerated — in the sense of [1] — exactly the relations of Xy, ;
Q, is incomplete and consistent (if PEANo arithmetic is consistent)
and cannot prove the «standard» formalization of its own consi-
stency ; @n+31 can prove the incompleteness and consistency of
Qn; U @ is the set of true sentences of first order arithmetic,

new

(*) Indirizzo dell’A.: Istituto Matematico - Univergitd di Siena.
Lavoro svolto nell’ambito delle attivitd del Comitato Nazionale per
la Matematica del C.N.R.
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Introduction.

The aim of the present paper is to investigate a proposal of
Magari’s ([3], § 8 N. 4). The present author found that the fra-
mework proposed there should be somehow modified in order to
get the desired results (i. e. results generalizing those obtained in
[3] when passing from T to V), (cfr. also [7]).

I employ two sequences of theories: one «principal» (Q,),c.
and one «ancillary» (T,),c,; @, Would correspond to the set V,
proposed in [3], loe. cit.; T, is a recursive extension of Peano
Arithmetie, T, < @,,,; and the role of T, is pretty strong: it
has to prove a restricted form of the w—consitency of @,. This
will be proved equivalent to :

i) T'n proves a restricted form of reflection principle for @, ;
as well as to:
ii) T, proves that @, has a truth definition for /I, -formulas.

Such a construction may be obtained in many trivial ways:
hence the interest of the one I give here, if any, lies in the way
the passage from @, to @,., is accomplished.

The principal result is Th. 21 below, which immediatly gives,
the completeness of |J @, -

new
Open problems are :

— To compare this (highly non-constructive) completion with
those achieved by Transfinite Recursive Progressions (see [2] and
6]) ;

) — To prove (or disprove) the following :
«Each relation of 3, nII, , is binumerable in @,, and
conversely ».

Apart from minor obvious changes in notation, I adopt the
terminology, symbolism and results of [1], [2] and occasionally
of [6]. V is the set of the sentences of K, which are true in the
standard model. A theory (A, K,) will be denoted simply by A4 ;
a formula ¢ with Po(p) = {v,,..., v, ,} is called a semirepresentative
(resp. a representative) in A (cfr [3]) if it numerates, (resp. binu-
merates) in A the relation ¢ defined by:

(Bg s ey o) € @ itE @(dgy ey Gp_y) € V.

The following conventions will be used thorough.
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1) PRF is the set of PR-formulas; 2,F is the set of the for-
mulas which in prenex form have the matrix in PRF and a prefix
which is 2, ; II,F is defined similarly.

2) It I claim that the formulas of some class X belong to a
class Y and this has to hold independently of the number of free
variables of the formulas involved, I assert something like the
following :

«If pe X, Fv(p) = (@} (or: = {&, y}) (ahronov), then pe Y »,
where « ahronov » is the famous russian word meaning : « a harmless
restriction on the number of free variables ».

3) Let ¢ € Fmy , with @ free; for y € Fmg , Fo(y) < |2, y}

(ahronov), then ¢(Vay (z,y)) stands for: ¢(g(y)), where g(y) =
= Vay (z,y). A similar convention for Jx.

4) Let o be a formula with one free variable; let A < Fmy ;
then A — w — con, is the set of the generalizations of all formulas :

Pr(= Vg, g}))—> - lefra(q')(a:v, g]))

where g A, Fv(p) < {x, y} (ahronov).
5) If A < Fmg,and @, ..., p; € Fmyg , then

Z 90> o
—> Qs

is an abbreviation of: « |A Po—> @1y LT Py —> Po s eoey ILZ Py —> Pi? 3
and lastly, for B < meo s |z B is an abbreviation of: « LT{ ¢ for
each pe B».

I want to define: a sequence of sets of sentences of K,

(Rn)nEw

and a sequence of formulae with only x free,

(@) new

with certain properties to be promptly specified.
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I put: @, = Prg,, and ¢, = Pr, . Moreover, let us define a
sequence (P,),., of auxiliary theories in K,:

P, = Peano’s Arithmetic P ;
Py, =P,uZ,, F—o—con, . .

EBach P, is a recursive extention of P, admitting a natural binu-
meration 7w, in R. Robinson Arithmetic @, 7, € PR-F. Let us put:

T, =Prp,(and T_, = Ty);
Tﬂ = I.),rn”
Hence 7, numerates 7T, in Q.

The properties R, and «, must satisfy, are the following:

4,) Each formula of 2, | F is a semirepresentative in R, ;

B,) For eachype 2, F, with at most x free —(ahronov)— :
D) 17, ¥ @) = Gu(9(@)) ,
i) |z, u(9(@)) = v (@) .
C,) A relation R e X2, iff it is numerable in R, .
D,) @, € Z,,, F, and @, numerates @, in R, .
E)R,c V.
For the step » = 0, we let:
R, = R.Robinson’s Arithmetic @ ;
a, = [Q].
Then it is well known that A,, ..., B, hold (cfr. [1], [2]).

Suppose now that R;, a; be given for ¢ < n, and that A4; -+ E,
hold for ¢2< m. Then let us define:

R, =laeSig|(@ac@Q,)or(ma¢Q,and ma— @(ma)e T,}.
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I will firstly give some properties of R, ,,. Let U,,, be the
smallest set Z = w such that:
(1) (@ U T,) n8tg, = Z;

@) if a € Stg,, ma¢Q, and = a— Q,(—a)c Z, then ac Z.

ProrosiTION 1. i) T, n8tg < V.

ii) T, n8tg, S Ry S Upyy;

ii) B, , € V;

iv) P"U,H_l = Qn+1 ;

V) B, S lalac Sy, ~a¢Q, and ma—
— @u(ma)e R I lalac Sig,—a¢
¢Q, and ma— Q,(na)€ @, | =
= @pia N StK., .

ProOF. i) By induction on h < n; it is true for h = 0 ; hence it
is enough to show that 2, , F — o — cong . < vV, assuming
that T, n8tg, =V (h <m). Let p € Xy, F, Fv(p) = {=,y} (ahro-
nov). By absurd, let b € w such that:

s (A Vo9 @ D) AV oGy, (7@ D)< Vs
then we would have:
~Vaop@b) €@, and for all a €w, ¢ (4, D) € Qpyy >
which is absurd, because of E,,, .

ii) Let a be a sentence of T, ; then — a is false and, by E,,
—1a ¢ Q, ; obviously, ma— ¢,(—a)eT,; therefore: ac R, .
Leta € R, ,, and let Z satisfy (1) and (2) ; then = a — Q,, (ma)eZ
because of (1), and = a € @, ; therefore a € Z, and also: ac U, ;.

iii) dbviously, V is one of the Z satisfying (1) and (2).

iv) It si enough to show that:

(3) @41 N Sty satisfies (1) and (2).
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From ii) it follows that @, , n 8t satisties (1). Now let p
be a sentence such that — p ¢ @, and —p — @, (= p) €Qyyy N Sy .
Then two cases are possible :

0) pe@,; then pe @, ,,.
00) p¢ Q,; then let r = = p— = @, (mp): it is enough
to show that re€@,,,. Two cases are possible :
00,) re@,, and then r€@, ., ;
00,) r ¢ @, ; then observe that — r ¢ @,, and moreover :

[z, (m 7 = @u(=7) <= (= 7= ¢, (27 ) ¢u (=)

> (=r— Q, (= D)
(that the last equivalence holds follows from :

I-E'n Qn () —> Qn (Qn (5"))
which follows, in turn, from D, , B, .)

But —r— Q,, (= p) is an instance of a logical axiom, therefore
—=r—>Q,(=7r)e T,; hence re Q,,,.

v) The only thing which requires a proof is the last equality.
Let a be a sentence, ma¢ @, and ma— Q,(ma) € Q,,,. Sup-
pose that = @, (ma) ¢ R, ; since ¢, (= a) — @, (¢, = (@) € Ty,
one should conclude that ¢,(=a)e @,, and, by D,, =ac @,.
‘Therefore — ¢, (= a) € R,,,; consequently a € @,,,. The reverse
inclusion is clear.

COROLLARY 2. If a is a sentence, a ¢ @, and ¢ — @, (@) € T,
(or: a— Q,(@) € Q,,,), then mac Q,.,.

PROPOSITION 3. i) (), binumerates @, in @, -
ii) If a,b are sentences, and b¢ @, and
—a—>Q,b) €Q,yy, then ac @, .
iii) If pe R,,, (or:p€ Q,,,) then mop¢ T ;
hence is ¢ € T,,, then - @ ¢ @, .
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PrOOF. (i) That ¢, numerates @, in @,,, follows from D, and
from Prop. 1 (iii). Let a ¢ @, ; then @, (@) ¢ @, ; but

Qn(d) - Qn(Q—n(Ti)) € Tn ’

therefore, by Cor. 2, = ,(@) € @, -
(ii) follows from (i).
(iii) Is immediate.

PRroPOSITION 4. For each h < n, |7, Con,,.

Proof. Observe that :
Iz, Con,, <~—> = @4(3z (x A+ 2)).

But: |7, (@~ a)—> ¢, (55. ), therefore
iz, Yoz ~ 2) — Va: Qh(w A2 w)
— - Qh(m)
- Qh(W)

And consequently |z, Con,,

ProposITION 5. (i) Each y X,  FUIl, ,F is a representative
in @,,,-

(ii) If ¥ is a semirepresentative in @,.,, then

also 329 is a semirepresentative in @, ., .

(iii) Bach pe 2,,, F is a semirepresentative
in @,,,-

ProoF. Let pelX, F, Fo(y) = {w| (ahronov); let acw; if
y(@) € V, then y(d) € @,, therefore (@) € @,,,. If =yp@ eV,
then y(d) ¢ @,, and y(@) — Q,(y (@) € T,: therefore — y(a) € Q,,,, .
For ypeIl, ,, apply the preceding result to =y ; Therefore (i)
holds.

(ii) Let Fv(d) = |z, y} (ahronov) ; let { = Ayd(x, y). If {(d) € V,
then for some b € w, & (a@,b) € V; hence #da,b)c Q,,H, by logie,
one gets Iy Ha,y) € @, .

(iii) is immediate from (i) and (ii).
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PROPOSITION 6. For i<n +1,Q,€2;,,.

PROOF. By induction on ¢: obviously @,€2;. Let us suppose
that @, €2,,,. Since R, , is Turing reducible to (T; X @,) U @,;
then R,,, is in A4,,,: therefore @,,, € Z;,.

PROPOSITION 7. A relation R is in X, , iff R is numerable
in @pyy -

Proor. If Re 2, ,, by Kleene’s Enumeration and Normal
Form Theorem, and by Prop. 5 (iii), B is numerable in @, ,. If
R is numerable in @, ,,, it is 1 —1 reducible to @,.,: by Prop. 6
Risin 2, ,.

Now let M, be a p.r. extention of P, which has any term repre-
senting p.r. functions necessary for arithmetization (say: M, con-
tains the set I of § 4 of [1], and moreover M, has two umnary
terms (n), Q,, , representing respectively the primitive recursive
functions mapping k € w into k — ¢ (k), and into: ¢ (k), respe-
ctively, and such that:

bz, () (@) ~ & — @, ()
and

G, (%) =1 ¢ @) ~ @, @)

for each formula ¢ with « free (ahronov), where

P = =9 @) —> G, (79 @).

Then, to be pedantically precise, I put

U1 = Stg, (@) A (Qn @) V (T () 1 @) A = @y (T12)) 5
i1 = (Gpeq)¥n.
PRrOPOSITION 8. a,,, binumerates E,,, in @,,, -

Proor. Firstly observe that a, ,€2,,, Fn II, , F; hence it
is a semirepresentative in @,,,, and obviously it numerates E,
in @,,,. Moreover, if a¢ R,,,, then a,,, (@ — @, (a,,, (@) is
a 2, , and true sentence : hence it belongs to @,,,, and therefore
=101 (@) € Qpyy -
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COROLLARY 9. ¢,,, is a Z

ni2 By and it numerates @, ,,in @, ,.

LemMmA 10. Let & € Fmg , then:
(@) tz, Azg, (V0,9 —> 9 (v5) 5
(ii) fz, Awg, (B (v5) —> 30, 9).

Let a be a formula of K,, Fv(a) = {»!| ; then for each ¢ € Fmg, ,
with Fo(p) = {@, y| (ahronov);

(iii) |z, 32 Pr, (9@ ,y)) > Pr, (3o ¢ (,9));
@v) bz, Pr,(Vo g (@ 9) - VYo Pr.(3 @, 7).

Proor. This is routine of arithmetization. For (i), remember
that :

l'i'o (V"'(w) A Emg (y) A meo(z)) — Azg (N y—> 8b 7 y)
x
and that: |5, 96 ~ vy;
and hence : h'o Vr (vr5) .
By induction one shows that |7 V& Img, (nm,) .

s . -
Therefore |7, Azg, (A ¢ —>8b ° °6y.
v nMy,

But: |z, 7;/-;\%5% V—’UOQ;; and (i) follows; (ii) is proved quite
similarly, a,nd' (iii), (iv) follow immediatly.
LeEMMA 11. For any formula ¢, with «# free (ahronov), one has:
[7, = @n (F9@) A T(Fa@) > G 1 (9@)

(where ¢, is as above).

ProOF. This follows from [1], Th. 4.6(iii), and from the fact
that .
Iz, Stg, (59 @)).
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LemMA 12. For h< n,

tTa Qn(@) A Th(—'_' T —> gn(— w)) - Qh+1(w)

ProrosiTION 13. For h< n,

|T’;, Qp(a) — Qn+1(”)

REMARK. Here, and in similar cases, one should add to the
premiss : « Fmg () » or something like that. This may easily supplied
by the reader in each case.

ProOF. By induction on h.Let h = 0; then remember that :

|7, Qo (@) = =1 Qu(12)

and that
|7, Gol@) = To@) 5 |7, Qol@) = To(F1 2 —> Go(— @) ;
therefore, by lemma 12,
[z, Qol@) — €1(a) -
Let us suppose that the theorem holds for h <n. We have :
. Q1 @) = Qpyy (1 0);

and hence :
I'T'o Th+1 (Q.n o) —> Q'h+1 (1 m)) .

li'o 41 (®) —> (= Q@) —> T (12— On(—1 2)))
g ("" Qh(w) —> T;,_H('-—l x—> Q',H_I(—.-ﬂ m))) ;
but one has:

[7, = ana(@) > (Tnyy 12> Qnr (1 2) = @y (F12)
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Therefore :

l?’o (a,hq A = Qh(w) A= ah+2($)) —> = C9na;,+,;

therefore :
|7';.+, Op (@) = (Qh(ac) % ah+2(w))

—> Oy (@) -
By Prop. 4. , one concludes:
’71;,4_, ap41(®) = a5 5(@)
which is something more then required to show the theorem.
COROLLARY 14. 7 ., Con, ., .

ProoF. We have :

7, %~ o—> Q,(@ ~ )
—> Qi (@ = @)
and from there on, the proof is quite similar to that of Prop. 4.

ProposITiON 15. For each v € X, . F U I, ,F, with « free
(ahronov), one has :

@) [F,,, Onss(A P @)= Gpyy (v @)
(i) 17, = Gpss(® @) > Gpir(79(@) .

ProoF. (i) follows from Cor. 14.

(ii) Let vy € 2, ,F ; then
Iz, ¥(@) — Gu(p(@))
whence :

Iz, T (%) ($(@)))
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But, by prop. 13,

|7 = Gna ($(@) > = G4 (4(2) -
therefore (ii) holds. To get (ii) for y € =, ,F, apply it to —y.

ProrosiTION 16. The following are equivalent (with ahronov of
formulas involved, when suitable) :

a) 7, Vw(Q,,(é(a:;))) — Vad() , for 9 X, | F;

b) |7, Vad(@) , for & € X, ,F and such that rf"_,v:c(,},,(?a(:é));
o) |r, Gu(3(@)) — 8(@) , for & € X, F;

d) |7, §@) —> Gnyy(E@) , for Ee IT, \F;

&) |7, @) > Gnyy C(@) , for L€ 2, F;
0 |7, Zni:F — w-con, ;
9 |z, I, ,F — w-con, .

ProoF.

(a) = (b) : this is obvious.
(b) = (¢) . To prove this, one employs an analogue of Lemma 2,18
of [2]; namely :

LemMMA. Let ¢ € Fmg , with » free (ahronov); put

y(@,y) =P, 3@,y —>¢@
then one has: . L.
7, Vo Vy @, (v @, )

The proof of the lemma is quite analogous to Feferman’s: only
observe that Prf, is in II, , F.

Having this lemma, one concludes just as in the proof of
Th. 2.19 of [2]. :

(¢) = (a) : This is obvious.

(¢) = (d) . By hypothesis,

7, & @) — = Gn (R € @) ;
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moreover :
7, = & @ — G, (= £@);
whence
bz, T (= & @) > G (= £ @)
Therefore (by Lemma (1):
7, & @) — Gns (E @)
(d) = (e) ; this is immediate, after lemma 10 (iii).

(¢e) = (¢) is obvious, by B, (ii).

(f) =>(g) . Let v (x,y) € II,,, F (ahronov) ; one has:
I?,, Qn("vw'/’(‘”’y))'_*(én("vazw(wa?}-’z»
(where y = Vzy (v,y,2), and ¢ €, F)
> aVaeVag,(p@,y,2)
g awﬁVzQ'”(&(:;u,?}',é))
g aw—lQ.n(—lew(i,:;;,z)),
where the last implication follows from Lemma 10(iv).
(9) = (f) : this follows from: X, Fcm, F.
(e) = (9) . Let 1/)eIIn+1If’(tp=Vy<p(w,y,z),<peZ',,F);then:

7, 6,(FVavye@,y,2)—
—>=VaVyp(x,y,?)
—~304 ¢,(Voop@,9,2)

(this implication follows from B,(i) and from Prop. 4)

| VwQ.”(;[—J(E,E))
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(9) = (¢). Let 9 = - Vay@,y), with y € 2, F: then

|7, Qu(m V@9 @,9) > = V 2@,(v @, )
—>=aVazyx,y) 0;

(The last implication, by B,(i)).

REMARKS 1. In the preceding proof, any implication having (¢)
or (f) as a consequent, would be obvious from the induction hypo-
thesis ; I have tried to use the latter the less possible ; many of
the implications follow simply from : I;v” Con, ; in particular, B,(ii)
was only used in the proof of : (¢) = (¢).

2. This kind of analysis leads to the following :

COROLLARY 17. Let (a’), ..., (9') be obtained from (a),.., (9)
of Prop. 16, by substituting T, ., to T, ; let (k) be the following :

® 7,,, Gur @ @) —> S@), for de Z,,,F.

Then, under the only hypothesis that: [z, Con, , for h<n 41
(i.e. without using that 2'F — w — con,, 1 is provable in T,,,),
one has: B+l

(@), @), (¢), @), (), (f), (), (B)
are pairwise equivalent.

ProoF. For the most part, the proof of Prop. 16 works here also.
The only implication that deserves attention is: (¢') = (h).
One has :

17,11 Gna(8@) = = Gy (F5(@)
> =10, (—l—ﬁ(:fc))
— (T4(8(@) = §o(3(@))) — Go(3(@))) -

Therefore :

[T Qn+1(5(’;)) <~ Q'"(E(;é)) .
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From proposition 16 there follows immediatly :
CoroLLARY 18. B, ., (i) holds.

ProrosiTioN 19. The following are equivalent :

©) Iz, Q,,H(é(m:)) — ¥&), for & € X, ,F (ahronov);
(00) |7,,,ZpiF — @ —con,,  ;

(000) |7, ,, 1, ,F — » —con,, .

ProoF. (000) = (00) is immediate, and (00) = (000) is proved
quite similarly to the proof of (f) = (g) in Prep. 16 ; (0) = (000)
follows from Cor. 18 and 14; (00) = (0) follows Cor. 18.

CorOLLARY 20. B, ,(ii) holds.

THEOREM 21. There exist two sequences (E,),c, and (a).,
which satisfy 4,, B,, C,, D, and E,.
Among the properties of these sequences, I list the following.
Firstly, one cam mimeck the trick of Lob’s in [4], to prove:

THEOREM 22. (i) Let g(x) be any formula such that, if a € Stg
and |g, g(d), then a€ @, ; then for any p € Sty ,

it I3, Qn@@)ﬁg(ﬁ?, then pe @, .
(ii) For p € St , if |3n @n(p) —>p, then peq,.

Proor. By diagonalization, let b € Stx be such that:

7, (§,(6) = g(p)) <—>b.
Then :
17, Ga®) = (94(Ga(8) > Gal9()) -
But :

7, _, Gn(6) = Gu(G(0)) -

(This is true by Th. 5.4. of [1] for n = 0, and follows from B,(i)
for n > 0).
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Then we get :

FPRE
whenece :

fs, 9(»)

and finally: p € @,,. ii) is proved in the same way.

THEOREM 23. Q,., does not belong to 2, , .

Proor. By the proof of Prop. 7, if a set 8 is numerable in @, ,
it is numerable in @, by a formula of 2, F. Now let us suppose,
by absurd, that some formula g, € X, ,F numerates Q,,, in@, .

Let p be any sentence ; by considering the sentence b which is equi-
valent (in T,) to: ¢,(b) = g,(p), one would get, as before,

5, €,)—@,(9.())
but, by B, (ii):

[Bn s @04 (2)) = 90(D)

whence one could get :

'??n+1 b
‘whence :

{6, 1 9n(P)
and hence :

|-Q-,, 9a(P)
and finally :

PE Quyy

Therefore each sentence would be in @,,, , which is absurd.
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THEOREM 24. (i) @, is not complete, for any = ; in particular
Con, is undecidable in @,; Con, € @,,,,
and also

Not-Comp, — Az(= @) A = Gu(=i ) A Sty (@)
is in Q,,,; and lastly : g, , = @u(Con,).
(ii) LEJQ(Qn“ Stg) = V.

(iii) Ty Q< 5 Tpp1 ET,.

(iv) (Hilbert-Bernays ; Kucnecov ; Trahtenbrot-
see [5], Ch. XII). {V} e II?.

PRrOOF. (i) and (ii) are immediate.

(iii) Con, € T, but ¢ @, ; Con

niy € T,.,, but ¢ T,,

(otherwise it would € @,,,) .

(iv) follows from (ii).

Finally, it would be easy to prove (cfr. e.g. [7]) that the set V,
of [3] is exactly @, n Sig, .
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