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A sequence of theories for arithmetic
whose union is complete

ALDO URSINI (*)

SOMMARIO - Si studia una successione di teorie formali del primo ordine,
secondo una proposta di R. Magari in [3] 8, Si tratta di una
successione numerabile crescente costruita a partire dall’aritmetica
di PEANO, ed aggiungendo al passo n+ 1-m0 come assiomi le pro-
posizioni che sono, in un certo senso, dimostrabilmente falsificabili,
se false, entro il passo precedente, e la cui falsity non 6 una tesi
nel passo precedente (cioe : che siano indecidibili nella n-ma teoria).
L’n-ma teoria Qn 6 un insieme di nella gerarchia aritmetica ;
in Qn sono numerate - nel senso di S. Feferman,[1],- tutte e sole
le relazioni di E,+, ; Qn 6 incompleta e la sua incompletezza 6 una
tesi di inoltre Qn+1 dimortra la formalizzazione « standard
della asserzione che Qll 6 consistente, la quale, invece, non 6 dimo-
strabile in Qn ; e u Qn 6 1’insieme delle proposizioni dell’aritmetica

nEw I

al 10 ordine vere nel modello standard.

SUMMARY - We study a sequence of formal theories of the first order,
following a proposal of R. Magari’s in [3], § 8, no 4. It is a de-

numarable encreasing sequence starting from PEANO arithmetic, and
taking as axioms at the stage the set of those sentences
whose negation is not provable in the n-th and such that, if false,
they are provably falsifiable by the n-th theory. The n-th theory
Qn is a set of in the arithmetical hyerarchy ; in Qn are
numerated in the sense of [1] - exactly the relations of 

~n is incomplete and consistent (if PEANO arithmetic is consistent)
and cannot prove the «standard )&#x3E; formalization of its own consi-

stency ; Qn+1 can prove the incompleteness and consistency of

Q, ; U Qn is the set of true sentences of first order arithmetic.
new

(*) Indirizzo dell’A. : Istituto Matematico - Università di Siena.
Lavoro svolto nell’ambito delle attività del Comitato Nazionale per

la Matematica del C.N.R.
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Introduction.

The aim of the present paper is to investigate a proposal of
Magari’s ([3], § 8, N. 4). The present author found that the fra-
mework proposed there should be somehow modified in order to

get the desired results (i. e. results generalizing those obtained in
[3] when passing from T to V 0)’ (cfr. also [7]).

I employ two sequences of theories : one « principal» 
and one « ancillary» Qn would correspond to the set Y~
proposed in [3], loc. cit. ; Tn is a recursive extension of Peano

Arithmetic, T. g and the r61e of Tn is pretty strong : it

has to prove a restricted form of the w-consitency of This

will be proved equivalent to :
i) Tn proves a restricted form of reflection principle for Q.

as well as to :

ii) T. proves that Qn has a truth definition for IIn-formulas.
Such a construction may be obtained in many trivial ways :

hence the interest of the one I give here, if any, lies in the way
the passage from Qn to Q.+, is accomplished.

The principal result is Th. 21 below, which immediatly gives,
the oompleteness of U Qn .

nEw

Open problems are :
- To compare this (highly non-constructive) completion with

those achieved by Transfinite Recursive Progressions (see [2] and

[6]); 1
- To prove (or disprove) the following :
«Each relation of is binumerable in Qn’ and

conversely)&#x3E;.

Apart from minor obvious changes in notation, I adopt the

terminology, symbolism and results of [1], [2] and occasionally
of [6]. V is the set of the sentences of Ko which are true in the
standard model. A theory (A, Ko) will be denoted simply by A ~
a formula 99 with Fv(q) = ~vo ,..., vn-lf is called a semirepresentative
(resp. a representative) in A ^tcfr. [3]) if it numerates, (resp. binu-
merates) in A the relation " defined by :

The following conventions will be used thorough.
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1) is the set of PR-formulas ; E.F is the set of the f or-

mulas which in prenex form have the matrix in PRF and a prefix
which is is defined similarly.

2) If I claim that the formulas of some class X belong to a

class Y and this has to hold independently of the number of free
variables of the formulas involved, I assert something like the

following:
« If q E X , Fv (p) ~x~ (or : = ~x, y 1) (ahronov), then cp E Y » ,

where « ahronov » is the famous russian word meaning : « a harmless

restriction on the number of free variables ».

3) .I’mxo , with x free ; for y E y c (z, y)
(ahronov), then (x, y)~ stands for : ~~g(y)~ , where g(y) =

(x, y). A similar convention for 3x .

4) Let a be a formula with one free variable ; let A c FmK 0
then A - (o - cona is the set of the generalizations of all formulas :

where 99 E=- A , I (ahronov).
5) If A z and 990 , ..., ggt E then

is an abbreviation of: «

and lastly, y for B z FmK, B is an abbreviation of : « for

each 99 E B » .

I want to define : a sequence of sets of sentences of go

and a sequence of formulae with only x free,

with certain properties to be promptly specified.
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I put: Qn = PrR. I and Moreover, let us define a

sequence auxiliary theories in go :

Each Pn is a recursive extention of P, admitting a natural binu-
meration 1(,n in R . Robinson Arithmetic Q , nun E P.R-F . Let us put :

Hence Tn numerates T~ in Q .

The properties .Rn and an must satisfy, are the following:

An) Each formula of is a semirepresentative in .Rn ;
Bn) For each 1p E F, with at most x free - (ahronov) - :

On) A relation .R E E.+, iff it is numerable in Rn.

Dn) Qn E En+l F, and Qn numerates Qn in 
°

For the step n = 0, we let :

.Ro = R.Robinson’s Arithmetic Q ;

Then it is well known that Ao , ..., Eo hold [1], [2]).
Suppose now that Bi a~ be given for i::; n, and that

hold for i  n . Then let us define :
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I will firstly give some properties of Rn+1. Let be the

smallest set Z z co such that:

PROPOSITION 1.

PROOF. i) By induction on h  n ; it is true for h = 0 ; hence it
is enough to show that assuming

nov). By abs~urd, let b E co such that :

then we would have :

which is absurd, because of

ii) Let a be a sentence of Tn ; then -, a is false and, by En ,.

because of and m a E Qn ; therefore a E Z, and also :
I

iii) Obviously, V is one of the Z satisfying (1) and (2).

iv) It si enough to show that :
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From ii) it follows that n 8tKo satisfies (1). Now let p

be a sentence such that -1 p 0 Qn and
Then two cases are possible :

to show that r E Two cases are possible :
001) r E Qn, and then r E 

002) r 0 Qn ; then observe Q., and moreover :

(that the last equivalence holds follows from :

which follows, in turn, from D. 7 B,.)
is an instance of a logical axiom, therefore

v) The only thing which requires a proof is the last equality.
Let a be a sentence, Sup-

pose that..., Qn (-. since Qn ~~ a) - Qn (on -, (a)) E 
one should conclude that

’Therefore , Qn (-, a) E consequently a E The reverse

inclusion is clear.

COROLLARY 2. If a is a sentence, a E Q. and

PROPOSITION 3. i) Qn binumerates Qn in Qn+l.
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PROOF. (i) That Q. numerates Q. in follows from D~ and
from Prop. 1 (iii). Q.; then 0. (d) 0 Q~; but

therefore, by Cor.

(ii) follows from (i).
(iii) Is immediate.

PROPOSITION 4. For each

Proof. Observe that :

And consequently ITh Ogn, .
PROPOSITION 5. (i) Each ’ is a representative

is a semirepresentative in then

is a semirepresentative in 

is a semirepresentative
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PROPOSITION 6. For i  n + 1 ~ Q$ E .Ei+1 . I

PROOF. By induction on i : obviously Qo E.EJ. Let us suppose
that Q1 E E1+1. Since R1+1 is Turing reducible to (T~. X Q1;
then RI+1 is in L11+2: therefore

PROPOSITION 7. A relation R is in numerable

in 

PROOF. If 1~ e ~~,+2 , y by Kleene’s Enumeration and Normal

Form Theorem, and by Prop. 5 (iii), .R is numerable in 9~+i’ If

.1~ is numerable in it is 1 -1 reducible to Qn+l: by Prop. 6
R is in In+2.

Now let be a p.r. extention of P, which has any term repre-
senting p.r. functions necessary for arithmetization (say: M. con-
tains the set 3rt of § 4 of [1], and moreover Mn has two unary
terms (n) , y representing respectively the primitive recursive

functions mapping k E co into k - g (k) , and into : Q (k), respe-

ctively, and such that:

and

for each formula 99 with x free (ahronov), where

Then, to be pedantically precise, I put

PROPOSITION 8. a,+l binumerates

PROOF. Firstly observe that I
is a semirepresentative in and obviously it numerates

Moreover, if

and true sentence : hence it belongs to Qn+1, and therefore
,-,



83

Let a be a formula of y Fv(a) = then for each c

with - ~x , y~ I (ahronov) ;

PROOF. This is routine of arithmetization. For (i), remember
that :

and that:

and hence:

By induction one shows that

But: o o and (i) f olloWS ; (ii) is proved quite

similarly, and (iii), (iv) follow immediatly.

LEMMA 11. For any formula 99, with x free (ahronov), one has :

(where cpn is as above).

PROOF. This follows from [1], Th. 4.6(iii), and from the fact

that 
,
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LEMMA 12. 

PROPOSITION 13. For h  n ~

REMARK. Here, and in similar cases, one should add to the

premiss : « or something like that. This may easily supplied

by the reader in each case.

PROOF. By induction on h. Let h = 0 ; then remember that:

and that

therefore, by lemma 12,

Let us suppose that the theorem holds for h  n . We have :

and hence :

but one has :



85

Therefore :

theref ore :

By Prop. 4. , y one concludes :

which is something more then required to show the theorem.

COROLLARY 14. 

PROOF. We have :

and from there on, the proof is quite similar to that of Prop. 4.

PROPOSITION 15. For each with x free

(ahronov), one has : 
^

PROOF. (i) follows from Cor. 14.

whence:
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But, by prop. 13 , y

therefore (ii) holds.

PROPOSITION 16. The following are equivalent (with ahronov of
formulas involved, when suitable):

PROOF.

(a) =&#x3E; (b) : this is obvious.

(b) + (c) . To prove this, one employs an analogue of Lemma 2,18
of [2 ] ; namely :

LEMMA. Let 99 G I with x free (ahronov) ; put

then one has :

The proof of the lemma is quite analogous to Feferman’s : only
observe that Prf is in F ·

Having this lemma, one concludes just as in the proof of
Th. 2.19 of [2].

(c) =&#x3E; (a) : This is obvious.

(c) =&#x3E; (d) . By hypothesis , y
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moreover:

whence

Therefore (by Lemma (1 ) :

(d) ~ (e) ; this is immediate, after lemma 10 (iii).

(e) =&#x3E; (0) is obvious, by Bn (ii) .

(ahronov) ; one has :

where the last implication follows from Lemma 10(iv).

(this implication follows from Bn(i) and from Prop. 4)
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(The last implication, by B,,(i)) -

REMARKS 1. In the preceding proof, any implication having (c)
or ( f ) as a consequent, would be obvious from the induction hypo-
thesis ; I have tried to use the latter the less possible ; many of
the implications follow simply from: particular, 
was only used in the proof of : (e) =&#x3E; (c).

2. This kind of analysis leads to the following:

COROLLARY 17. Let (as’ ) , ... , (g’ ) be obtained from (a) , ... , (g)
of Prop. 16, by substituting T,+l to T~ ; let (h) be the following:

Then, under the only hypothesis that: IT" for h  n +1
(i.e. without using that ZF - co - con.,.+, is provable in 

one has : ~+1

are pairwise equivalent.

PROOF. For the most part, the proof of Prop. 16 works here also.
The only implication that deserves attention is : (c’) + (h).

One has :

Therefore :
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From proposition 16 there follows immediatly :

COROLLARY 18. Bn+l (i) holds.

PROPOSITION 19. The following are equivalent:

PROOF. (000) ~ (00) is immediate, and (00) ~ (000) is proved
quite similarly to the proof of ( f ) ~ (g) in Prop. 16 ; (0) ~ (000}~
follows from Cor. 18 and 14 ; (00) =&#x3E; (0) follows Cor. 18.

COROLLARY 20. holds.

THEOREM 21. There exist two sequences and (a)«Ew-

Among the properties of these sequences, y I list the following.
Firstly, y one cam mimeck the trick of L6b’s in [4], to prove:

THEOREM 22. (i) Let g(x) be any formula such that, if a E 

PROOF. By diagonalization, let b E be such that :

Then:

But:

(This is true by Th. 5.4. of [1] f or n = 0, and follows from Bn(i)
for n &#x3E; 0).
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Then we get :

whence :

and finally : p E Qn . ii) is proved in the same way.

THEOREM 23. Q.+, does not belong to En+1 .

PROOF. By the proof of Prop. 7, if a set S is numerable in Q, ,
it is numerable in Qn by a formula of E.+1F. Now let us suppose,
by absurd, that some formula g.. E numerates in Q,.
Let p be any sentence ; by considering the sentence b which is equi-
walent (in To) to: Qn(b) -+ g,(p) , one would get, as before,

but, by B, (ii) :

whence one could get :

whence:

and hence :

and finally :

Therefore each sentence would be in Q.+, , which is absurd.
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THEOREM 24. (i) Qn is not complete, for any n ; y in particular
is undecidable in Q~ ; 9

and also

(iv) (Hilbert-Bernays ; Kucnecov ; Trahtenbrot-
see [5], Ch. XII). {V} E H20.

PROOF. (i) and (ii) are immediate.

(otherwise it would E 

(iv) follows from (ii).

Finally, it would be easy to prove (cfr. e.g. [7]) that the set Vo
of [3] is exactly Ql n 
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