RENDICONTI del SEMINARIO MATEMATICO della UNIVERSITÀ DI PADOVA

ALDO URSINI

A sequence of theories for arithmetic whose union is complete

Rendiconti del Seminario Matematico della Università di Padova, tome 57 (1977), p. 75-92

http://www.numdam.org/item?id=RSMUP_1977__57__75_0

© Rendiconti del Seminario Matematico della Università di Padova, 1977, tous droits réservés.

L'accès aux archives de la revue « Rendiconti del Seminario Matematico della Università di Padova » (http://rendiconti.math.unipd.it/) implique l'accord avec les conditions générales d'utilisation (http://www.numdam.org/conditions). Toute utilisation commerciale ou impression systématique est constitutive d'une infraction pénale. Toute copie ou impression de ce fichier doit contenir la présente mention de copyright.

Numdam

Article numérisé dans le cadre du programme Numérisation de documents anciens mathématiques http://www.numdam.org/

A sequence of theories for arithmetic whose union is complete

ALDO URSINI (*)

Sommario - Si studia una successione di teorie formali del primo ordine, secondo una proposta di R. Magari in [3] 8, nº 4. Si tratta di una successione numerabile crescente costruita a partire dall'aritmetica di Peano, ed aggiungendo al passo n+1—mo come assiomi le proposizioni che sono, in un certo senso, dimostrabilmente falsificabili, se false, entro il passo precedente, e la cui falsità non è una tesi nel passo precedente (cioè: che siano indecidibili nella n-ma teoria). L'n-ma teoria Q_n è un insieme di Σ_{n+1} nella gerarchia aritmetica; in Q_n sono numerate — nel senso di S. Feferman,[1],— tutte e sole le relazioni di Σ_{n+1} ; Q_n è incompleta e la sua incompletezza è una tesi di Q_{n+1} : inoltre Q_{n+1} dimostra la formalizzazione «standard» della asserzione che Q_n è consistente, la quale, invece, non è dimostrabile in Q_n ; e \cup Q_n è l'insieme delle proposizioni dell'aritmetica al Iº ordine vere nel modello standard.

Summary - We study a sequence of formal theories of the first order, following a proposal of R. Magari's in [3], § 8, no 4. It is a denumarable encreasing sequence starting from Peano arithmetic, and taking as axioms at the n+1—st stage the set of those sentences whose negation is not provable in the n—th and such that, if false, they are provably falsifiable by the n—th theory. The n—th theory Q_n is a set of Σ_{n+1} in the arithmetical hyerarchy; in Q_n are numerated — in the sense of [1] — exactly the relations of Σ_{n+1} ; Q_n is incomplete and consistent (if Peano arithmetic is consistent) and cannot prove the «standard» formalization of its own consistency; Q_{n+1} can prove the incompleteness and consistency of Q_n ; \cup Q_n is the set of true sentences of first order arithmetic.

^(*) Indirizzo dell'A.: Istituto Matematico - Università di Siena. Lavoro svolto nell'ambito delle attività del Comitato Nazionale per la Matematica del C.N.R.

Introduction.

The aim of the present paper is to investigate a proposal of Magari's ([3], § 8, N. 4). The present author found that the framework proposed there should be somehow modified in order to get the desired results (i. e. results generalizing those obtained in [3] when passing from T to V_0 , (cfr. also [7]).

I employ two sequences of theories: one «principal» $(Q_n)_{n\in\omega}$ and one «ancillary» $(T_n)_{n\in\omega}$; Q_n would correspond to the set V_n proposed in [3], loc. cit.; T_n is a recursive extension of Peano Arithmetic, $T_n\subseteq Q_{n+1}$; and the rôle of T_n is pretty strong: it has to prove a restricted form of the ω -consitency of Q_n . This will be proved equivalent to:

- i) ${\it Tn}$ proves a restricted form of reflection principle for ${\it Q}_n$; as well as to:
- ii) T_n proves that Q_n has a truth definition for Π_n -formulas. Such a construction may be obtained in many trivial ways: hence the interest of the one I give here, if any, lies in the way the passage from Q_n to Q_{n+1} is accomplished.

The principal result is Th. 21 below, which immediatly gives, the completeness of $\bigcup_{n\in\omega}Q_n$.

Open problems are:

- To compare this (highly non-constructive) completion with those achieved by Transfinite Recursive Progressions (see [2] and [6]);
 - To prove (or disprove) the following:
- « Each relation of $\sum_{n+1} \cap \Pi_{n+1}$ is binumerable in Q_n , and conversely ».

Apart from minor obvious changes in notation, I adopt the terminology, symbolism and results of [1], [2] and occasionally of [6]. V is the set of the sentences of K_0 which are true in the standard model. A theory $\langle A, K_0 \rangle$ will be denoted simply by A; a formula φ with $Fv(\varphi) = \{v_0, ..., v_{n-1}\}$ is called a semirepresentative (resp. a representative) in A (cfr. [3]) if it numerates, (resp. binumerates) in A the relation $\hat{\varphi}$ defined by:

$$\langle a_0, ..., a_{n-1} \rangle \in \hat{\varphi} \text{ iff } \varphi(\bar{a}_0, ..., \bar{a}_{n-1}) \in V.$$

The following conventions will be used thorough.

- 1) PRF is the set of PR-formulas; $\Sigma_n F$ is the set of the formulas which in prenex form have the matrix in PRF and a prefix which is Σ_n ; $\Pi_n F$ is defined similarly.
- 2) If I claim that the formulas of some class X belong to a class Y and this has to hold independently of the number of free variables of the formulas involved, I assert something like the following:
- « If $\varphi \in X$, $Fv(\varphi) = \{x\}$ (or : = $\{x, y\}$) (ahronov), then $\varphi \in Y$ », where «ahronov» is the famous russian word meaning : «a harmless restriction on the number of free variables».
- 3) Let $\varphi \in Fm_{K_o}$, with x free; for $\psi \in Fm_{K_o}$, $Fv(\psi) \subseteq \{x, y\}$ (ahronov), then $\varphi(\overline{\forall x\psi}(x, \dot{\bar{y}}))$ stands for: $\varphi(\bar{g}(\dot{\bar{y}}))$, where $g(y) = \forall x\psi(x, y)$. A similar convention for $\exists x$.
- 4) Let α be a formula with one free variable; let $A \subseteq Fm_{K_0}$; then $A \omega \cos_{\alpha}$ is the set of the generalizations of all formulas:

$$Pr_{\alpha}(\overline{\neg \forall x \varphi}(x, \dot{\bar{y}})) \rightarrow \neg \forall x Pr_{\alpha}(\bar{\varphi}(\dot{\bar{x}}, \dot{\bar{y}}))$$

where $\varphi \in A$, $Fv(\varphi) \subseteq \{x, y\}$ (ahronov).

5) If $A \subseteq Fm_{K_0}$, and φ_0 , ..., $\varphi_k \in Fm_{K_0}$, then

$$\begin{array}{c}
|\overline{A} \ \varphi_0 \to \varphi_1 \\
\to \varphi_2 \\
\vdots \\
\to \varphi_k
\end{array}$$

is an abbreviation of: $\langle A \varphi_0 \to \varphi_1, A \varphi_1 \to \varphi_2, ..., A \varphi_{k-1} \to \varphi_k \rangle$; and lastly, for $B \subseteq Fm_{K_o}$, A B is an abbreviation of: $A \varphi$ for each $\varphi \in B \rangle$.

I want to define: a sequence of sets of sentences of K_0

$$(R_n)_{n\in\omega}$$

and a sequence of formulae with only x free,

$$(a_n)_{n\in\omega}$$

with certain properties to be promptly specified.

I put: $Q_n = Pr_{R_n}$, and $\dot{Q}_n = Pr_{\alpha_n}$. Moreover, let us define a sequence $(P_n)_{n \in \omega}$ of auxiliary theories in K_0 :

$$P_0 = \text{Peano's Arithmetic } P \, ;$$

$$P_{n+1} = P_n \cup \Sigma_{n+1} \, F \, - \, \omega \, - \, \text{con}_{\alpha_{n+1}} \, .$$

Each P_n is a recursive extention of P, admitting a natural binumeration π_n in R. Robinson Arithmetic Q, $\pi_n \in PR$ -F. Let us put:

$$egin{aligned} T_n &= Pr_{P_n}, \, (ext{and} \ T_{-1} &= T_0) \, ; \ \dot{T}_n &= \dot{P}_{r_{\pi_n}} \end{aligned}$$

Hence \dot{T}_n numerates T_n in Q.

The properties R_n and a_n must satisfy, are the following:

 A_n) Each formula of $\Sigma_{n+1} F$ is a semirepresentative in R_n ; B_n) For each $\psi \in \Sigma_{n+1} F$, with at most x free -(ahronov)-:

i)
$$\mid_{\overline{T}_{n-1}} \psi(\dot{x}) \rightarrow \dot{Q}_n(\bar{\psi}(\dot{\bar{x}}))$$
,

ii)
$$|_{\overline{T}_n} \dot{Q}_n(\bar{\psi}(\bar{x})) \rightarrow \psi(x)$$
.

 C_n) A relation $R \in \Sigma_{n+1}$ iff it is numerable in R_n .

$$D_n) \ \dot{Q}_n \in \Sigma_{n+1} F$$
, and \dot{Q}_n numerates Q_n in R_n . $E_n) R_n \subseteq V$.

For the step n = 0, we let:

$$R_0 = ext{R.Robinson's Arithmetic } Q \; ;$$
 $a_0 = [Q] \; .$

Then it is well known that $A_0, ..., E_0$ hold (cfr. [1], [2]).

Suppose now that R_i , a_i be given for $i \leq n$, and that $A_i \div E_i$ hold for $i \leq n$. Then let us define:

$$R_{n+1} = \{a \in St_{K_0} \mid (a \in Q_n) \text{ or } (\neg a \notin Q_n \text{ and } \neg a \Rightarrow \dot{Q}_n(\overline{\neg a}) \in T_n\} \text{ .}$$

I will firstly give some properties of R_{n+1} . Let U_{n+1} be the smallest set $Z\subseteq \omega$ such that:

- (1) $(Q_n \cup T_n) \cap St_{K_0} \subseteq Z$;
- (2) if $a \in St_{K_0}$, $\neg a \notin Q_n$ and $\neg a \rightarrow \dot{Q}_n(\overline{\neg a}) \in Z$, then $a \in Z$.

Proposition 1. i) $T_n \cap St_{K_0} \subseteq V$.

ii)
$$T_n \cap St_{K_0} \subseteq R_{n+1} \subseteq U_{n+1}$$
;

- iii) $R_{n+1} \subseteq V$;
- iv) $Pr_{U_{n+1}} = Q_{n+1};$
- $\begin{array}{l} \mathrm{v)} \ \ R_{n+1} \subseteq \{a \, | \, a \in St_{K_o}, \, \neg \, a \notin Q_n \text{ and } \neg \, a \rightarrow \\ \rightarrow \dot{Q_n} \, (\overline{\neg \, a}) \in R_{n+1} \} \subseteq \{a \, | \, a \in St_{K_o}, \, \neg \, a \notin \\ \notin Q_n \text{ and } \neg \, a \rightarrow \dot{Q_n} (\overline{\neg \, a}) \in Q_{n+1} \} = \\ = Q_{n+1} \cap St_{K_o} \, . \end{array}$

PROOF. i) By induction on $h \leq n$; it is true for h = 0; hence it is enough to show that $\Sigma_{h+1} F - \omega - \operatorname{con}_{\dot{Q}_{n+1}} \subseteq V$, assuming that $T_h \cap \operatorname{St}_{K_0} \subseteq V$ (h < n). Let $\varphi \in \Sigma_{h+1} F$, $\operatorname{Fv}(\varphi) = \{x,y\}$ (ahronov). By absurd, let $b \in \omega$ such that:

$$\vec{Q}_{h+1}\left(\overline{\neg \ \forall \ x \ \varphi} \ (x, \dot{\bar{b}})\right) \land \ \forall \ x \vec{Q}_{h+1} \ \left(\overline{\varphi} \ (\dot{\bar{x}}, \dot{\bar{b}})\right) \in \ V \ ;$$

then we would have:

$$\neg \forall x \varphi(x, \bar{b}) \in Q_{h+1} \text{ and for all } a \in \omega, \varphi(\bar{a}, \bar{b}) \in Q_{h+1},$$

which is absurd, because of E_{h+1} .

- ii) Let a be a sentence of T_n ; then \neg a is false and, by E_n , \neg $a \notin Q_n$; obviously, \neg $a \to \dot{Q}_n(\overline{\neg a}) \in T_n$; therefore : $a \in R_{n+1}$. Let $a \in R_{n+1}$, and let Z satisfy (1) and (2); then \neg $a \to \dot{Q}_n(\overline{\neg a}) \in Z$ because of (1), and \neg $a \in Q_n$; therefore $a \in Z$, and also: $a \in U_{n+1}$.
 - iii) Obviously, V is one of the Z satisfying (1) and (2).
 - iv) It si enough to show that:
 - (3) $Q_{n+1} \cap St_{k_0}$ satisfies (1) and (2).

From ii) it follows that $Q_{n+1} \cap St_{K_o}$ satisfies (1). Now let p be a sentence such that $\neg p \notin Q_n$ and $\neg p \to \dot{Q}_n(\overline{\neg p}) \in Q_{n+1} \cap St_{K_o}$. Then two cases are possible:

- 0) $p \in Q_n$; then $p \in Q_{n+1}$.
- 00) $p \notin Q_n$; then let $r = \neg p \to \neg \dot{Q}_n (\overline{\neg p})$: it is enough to show that $r \in Q_{n+1}$. Two cases are possible:
 - 00_1) $r \in Q_n$, and then $r \in Q_{n+1}$;

00₂) $r \notin Q_n$; then observe that $\neg r \notin Q_n$, and moreover:

$$\left| \overline{T}_{n} \left(\neg r \rightarrow \dot{Q}_{n}(\overline{\neg r}) \right) \longleftrightarrow \left(\neg r \rightarrow \dot{Q}_{n} \left(\overline{\neg p} \wedge \overline{\dot{Q}_{n}(\overline{\neg p})} \right) \right) \\ \longleftrightarrow \left(\neg r \rightarrow \dot{Q}_{n} \left(\overline{\neg p} \right) \right)$$

(that the last equivalence holds follows from:

$$|_{T_n} \dot{Q}_n(x) \rightarrow \dot{Q}_n(\bar{\dot{Q}}_n(\bar{\dot{x}}))$$

which follows, in turn, from D_n , B_n .)

But $\neg r \to \dot{Q}_n (\overline{\neg p})$ is an instance of a logical axiom, therefore $\neg r \to \dot{Q}_n (\overline{\neg r}) \in T_n$; hence $r \in Q_{n+1}$.

v) The only thing which requires a proof is the last equality. Let a be a sentence, $\neg a \notin Q_n$ and $\neg a \rightarrow \dot{Q_n}(\overline{\neg a}) \in Q_{n+1}$. Suppose that $\neg \dot{Q_n}(\overline{\neg a}) \notin R_{n+1}$; since $\dot{Q_n}(\overline{\neg a}) \rightarrow \dot{Q_n}(\overline{\dot{Q_n}} \neg (a)) \in T_n$, one should conclude that $\dot{Q_n}(\overline{\neg a}) \in Q_n$, and, by D_n , $\neg a \in Q_n$. Therefore $\neg \dot{Q_n}(\overline{\neg a}) \in R_{n+1}$; consequently $a \in Q_{n+1}$. The reverse inclusion is clear.

Corollary 2. If a is a sentence, $a \notin Q_n$ and $a \to \dot{Q}_n$ $(\bar{a}) \in T_n$

(or:
$$a \rightarrow \dot{Q}_n(\bar{a}) \in Q_{n+1}$$
), then $\neg a \in Q_{n+1}$.

Proposition 3. i) \dot{Q}_n binumerates Q_n in Q_{n+1} .

- ii) If a, b are sentences, and $b \notin Q_n$ and $\neg a \rightarrow Q_n(\bar{b}) \in Q_{n+1}$, then $a \in Q_{n+1}$.
- iii) If $\varphi \in R_{n+1}$ (or: $\varphi \in Q_{n+1}$) then $\neg \varphi \notin T_n$; hence is $\varphi \in T_n$, then $\neg \varphi \notin Q_n$.

PROOF. (i) That \dot{Q}_n numerates Q_n in Q_{n+1} follows from D_n and from Prop. 1 (iii). Let $a \notin Q_n$; then \dot{Q}_n (\bar{a}) $\notin Q_n$; but

$$\dot{Q}_n(\bar{a}) \rightarrow \dot{Q}_n(\overline{\dot{Q}_n(\bar{a})}) \in T_n$$

therefore, by Cor. 2, $\neg \dot{Q}_n(\bar{a}) \in Q_{n+1}$.

- (ii) follows from (i).
- (iii) Is immediate.

Proposition 4. For each $h \leq n$, $|_{\overline{T}_h} \operatorname{Con}_{\alpha_h}$.

Proof. Observe that:

$$|_{\overline{T}_0} \operatorname{Con}_{\alpha_h} \longleftrightarrow \neg \dot{Q}_h(\overline{\exists x \ (x \approx x)}).$$

But:
$$|_{\overline{T}_h} (x \approx x) \rightarrow \dot{Q}_h (\dot{x} \approx \dot{x}), \text{ therefore}$$
 $|_{\overline{T}_h} \forall x (x \approx x) \rightarrow \forall x \ \dot{Q}_h (\dot{\bar{x}} \approx \dot{\bar{x}})$
 $\rightarrow \neg \ \dot{Q}_h (\neg \ \forall x \ (x \approx x))$
 $\rightarrow \neg \ \dot{Q}_h (\exists x (x \approx x)).$

And consequently $|_{\overline{T}_h} \operatorname{Con}_{\alpha_h}$.

- Proposition 5. (i) Each $\psi \in \Sigma_{n+1} F \cup \Pi_{n+1} F$ is a representative in Q_{n+1} .
 - (ii) If ϑ is a semirepresentative in Q_{n+1} , then also $\exists x \vartheta$ is a semirepresentative in Q_{n+1} .
 - (iii) Each $\psi \in \Sigma_{n+2} F$ is a semirepresentative in Q_{n+1} .

PROOF. Let $\psi \in \Sigma_{n+1} F$, $Fv(\psi) = \{x\}$ (ahronov); let $a \in \omega$; if $\psi(\bar{a}) \in V$, then $\psi(\bar{a}) \in Q_n$, therefore $\psi(\bar{a}) \in Q_{n+1}$. If $\neg \psi(\bar{a}) \in V$, then $\psi(\bar{a}) \notin Q_n$, and $\psi(\bar{a}) \rightarrow \dot{Q}_n(\overline{\psi(\bar{a})}) \in T_n$: therefore $\neg \psi(\bar{a}) \in Q_{n+1}$. For $\psi \in \Pi_{n+1}$, apply the preceding result to $\neg \psi$; Therefore (i) holds.

- (ii) Let $Fv(\vartheta)=\{x\,,\,y\}$ (ahronov); let $\zeta=\exists y\vartheta(x\,,\,y).$ If $\zeta(\bar{a})\in V$, then for some $b\in\omega,\ \vartheta\ (\bar{a}\,,\bar{b})\in V$; hence $\vartheta(\bar{a}\,,\bar{b})\in Q_{n+1}$; by logic, one gets $\exists\ y\ \vartheta(\bar{a}\,,\,y)\in Q_{n+1}$.
 - (iii) is immediate from (i) and (ii).

Proposition 6. For $i \leq n+1$, $Q_i \in \Sigma_{i+1}$.

PROOF. By induction on i: obviously $Q_0 \in \Sigma_j$. Let us suppose that $Q_j \in \Sigma_{j+1}$. Since R_{j+1} is Turing reducible to $(T_j \times \overline{Q}_j) \cup Q_j$; then R_{j+1} is in Δ_{j+2} : therefore $Q_{j+1} \in \Sigma_{j+2}$.

PROPOSITION 7. A relation R is in Σ_{n+2} iff R is numerable in Q_{n+1} .

PROOF. If $R\in\mathcal{Z}_{n+2}$, by Kleene's Enumeration and Normal Form Theorem, and by Prop. 5 (iii), R is numerable in Q_{n+1} . If R is numerable in Q_{n+1} , it is 1-1 reducible to Q_{n+1} : by Prop. 6 R is in \mathcal{Z}_{n+2} .

Now let M_n be a p.r. extention of P, which has any term representing p.r. functions necessary for arithmetization (say: M_n contains the set \mathcal{M} of § 4 of [1], and moreover M_n has two unary terms (\dot{n}) , \ddot{Q}_n , representing respectively the primitive recursive functions mapping $k \in \omega$ into $k \to \dot{Q}(\bar{k})$, and into: $\dot{Q}(\bar{k})$, respectively, and such that:

$$|_{\overline{M}_n}(\dot{n})(x) \approx x \longrightarrow \ddot{Q}_n(x)$$

and

$$\left|_{\overline{M}_{n}}\left(\dot{n}\right) \stackrel{.}{\longleftarrow} \bar{\varphi}\left(\dot{\overline{x}}\right) \approx \overline{\varphi}_{n}\left(\dot{\overline{x}}\right)$$

for each formula φ with x free (ahronov), where

$$\varphi_n = \neg \varphi(x) \rightarrow \dot{Q}_n(\overline{\neg \varphi}(\dot{x})).$$

Then, to be pedantically precise, I put

$$egin{aligned} a_{n+1} &= St_{K_0}\left(x
ight) \wedge \left(\dot{Q}_n\left(x
ight) ee \left(\dot{T}_n\left(\left(\dot{n}
ight)
ightarrow \left(x
ight)
ight) \wedge
ightarrow \dot{Q}_n\left(
ightarrow \left(x
ight)
ight)
ight); \ a_{n+1} &= (a_{n+1})^{M_n}. \end{aligned}$$

Proposition 8. a_{n+1} binumerates R_{n+1} in Q_{n+1} .

PROOF. Firstly observe that $a_{n+1} \in \Sigma_{n+2}$ $F \cap \Pi_{n+2}$ F; hence it is a semirepresentative in Q_{n+1} , and obviously it numerates R_{n+1} in Q_{n+1} . Moreover, if $a \notin R_{n+1}$, then $a_{n+1}(\bar{a}) \to \dot{Q}_n\left(\overline{a_{n+1}(\bar{a})}\right)$ is a Σ_{n+2} and true sentence: hence it belongs to Q_{n+1} , and therefore $\neg a_{n+1}(\bar{a}) \in Q_{n+1}$.

Corollary 9. \dot{Q}_{n+1} is a $\Sigma_{n+2} F$, and it numerates Q_{n+1} in Q_{n+1} .

LEMMA 10. Let $\vartheta \in Fm_{K_0}$, then:

(i)
$$|_{\overline{T}_0} A_{X_{K_0}} (\overline{\forall v_0 \vartheta} \longrightarrow \vartheta (\dot{v}_0));$$

(ii)
$$\mid_{\overline{T}_0} A x_{K_0} \left(\overline{\vartheta} \stackrel{\cdot}{(v_0)} \longrightarrow \overline{\exists v_0 \vartheta} \right)$$
.

Let a be a formula of K_0 , $Fv(a) = \{x\}$; then for each $\varphi \in Fm_{K_0}$, with $Fv(\varphi) = \{x, y\}$ (ahronov);

(iii)
$$|_{\overline{T}_{\alpha}} \exists x \ Pr_{\alpha} \left(\overline{\varphi} \left(\dot{x} , \dot{\overline{y}} \right) \right) \rightarrow Pr_{\alpha} \left(\overline{\exists x \ \varphi} \left(x, \dot{\overline{y}} \right) \right);$$

$$\text{(iv) } \mid_{\overline{T}_o} Pr_\alpha \left(\overrightarrow{\nabla} \ \overrightarrow{x} \ \varphi \ (x, \dot{\overline{y}}) \right) \longrightarrow \nabla x \ Pr_\alpha \left(\overline{\varphi} \ (\dot{\overline{x}} \ , \dot{\overline{y}}) \right).$$

PROOF. This is routine of arithmetization. For (i), remember that:

$$\big|_{\overline{T}_{o}} \big(\overline{V}_{r}(x) \, \wedge \, Fm_{K_{o}}(y) \, \wedge \, Tm_{K_{o}}(z) \big) \, \longrightarrow \, Ax_{K_{o}}(\, \underset{x}{\wedge} \, y \, \Longrightarrow \, Sb \stackrel{x}{z} \, y)$$

and that: $|_{\overline{T}_o} vr_{\bar{o}} \approx \bar{v}_o;$

and hence: $|_{\overline{T}_{0}} Vr(vr_{\overline{0}})$.

By induction one shows that $|_{\overline{T}_o} \forall x \ T_{\cdot} m_{K_o} \ (n_{\cdot} m_x)$.

Therefore $|_{\overline{T}_o} A_{\cdot} x_{K_o} (\underset{\overline{v_o}}{\wedge} \vartheta \rightarrow Sb \underset{nm_{v_o}}{\overset{vr_{\bar{o}}}{\bar{o}}} \bar{\theta})^{-}$.

But: $|_{\overline{T}_o} \stackrel{\wedge}{\underbrace{vr_{\bar{o}}}} \overline{\vartheta} \approx \overline{\nabla v_0} \overline{\vartheta}$; and (i) follows; (ii) is proved quite similarly, and (iii), (iv) follow immediatly.

LEMMA 11. For any formula φ , with x free (ahronov), one has:

$$\big|_{\overline{T}_o} \neg \dot{Q}_n \left(\overline{\neg \varphi} \dot{(x)} \right) \wedge \dot{T}_n \! \left(\overline{\varphi}_n \dot{(x)} \right) \rightarrow \dot{Q}_{n+1} \left(\overline{\varphi} \dot{(x)} \right)$$

(where φ_n is as above).

PROOF. This follows from [1], Th. 4.6(iii), and from the fact that

$$|_{\overline{T}_o} \otimes t_{K_o} (\overline{\neg \varphi} (\overline{x})).$$

LEMMA 12. For $h \leq n$,

$$\big|_{\overline{T}_{a}} \dot{Q}_{h}(x) \wedge \dot{T}_{h}(\overline{\ \cdot \ } | x \rightarrow \ddot{Q}_{h}(\overline{\ \cdot \ } | x)) \rightarrow \dot{Q}_{h+1}(x)$$

PROPOSITION 13. For $h \leq n$,

$$|_{\overline{T}_h} \dot{Q}_h(x) \longrightarrow \dot{Q}_{n+1}(x)$$

REMARK. Here, and in similar cases, one should add to the premiss: $(Fm_{K_0}(x))$ or something like that. This may easily supplied by the reader in each case.

PROOF. By induction on h. Let h = 0; then remember that:

$$|_{\overline{T}_0} \dot{Q}_0(x) \rightarrow \neg \dot{Q}_0(\overline{\cdot \cdot} | x)$$

and that

$$\big|_{\overline{T}_0} \ \dot{Q}_0(x) \to \dot{T}_0(x) \ ; \quad \big|_{\overline{T}_0} \ \dot{Q}_0(x) \to \dot{T}_0\big(\overline{\ \cdot \ \cdot \ } \ x \to \ddot{Q}_0(\overline{\ \cdot \ \cdot \ } \ x) \big) \ ;$$

therefore, by lemma 12,

$$|_{\overline{T}_0} \dot{Q}_0(x) \rightarrow \dot{Q}_1(x)$$
.

Let us suppose that the theorem holds for h < n. We have:

$$|_{\overline{T}_{h+1}} \ \dot{Q}_h(\overline{\ \ } \ x) \rightarrow \dot{Q}_{h+1}(\overline{\ \ } \ x);$$

and hence:

$$\begin{split} & \big|_{\overline{T}_o} \, \dot{T}_{h+1} \, \big(\ddot{Q}_h \, (\, \overline{\,\,\,\,\,} \, x) \to \ddot{Q}_{h+1} \, (\, \overline{\,\,\,\,\,} \, x) \big) \, . \\ \\ & \big|_{\overline{T}_o} \, \alpha_{h+1} (x) \to \big(\neg \, \dot{Q}_h (x) \to \dot{T}_h \, (\, \overline{\,\,\,\,\,\,} \, x \to \ddot{Q}_h (\, \overline{\,\,\,\,\,\,\,\,} \, x)) \big) \\ & \to \big(\neg \, \dot{Q}_h (x) \to \dot{T}_{h+1} (\, \overline{\,\,\,\,\,\,\,\,\,} \, x \to \ddot{Q}_{h+1} (\, \overline{\,\,\,\,\,\,\,\,\,} \, x)) \big) \, ; \end{split}$$

but one has:

$$|_{\overline{T}_{\bullet}} - \alpha_{h+2}(x) \rightarrow \left(\dot{T}_{h+1} \left(\overline{\cdot \cdot} \mid x \rightarrow \dot{Q}_{h+1} \left(\overline{\cdot \cdot} \mid x \right) \right) \rightarrow \dot{Q}_{h+1} \left(\overline{\cdot \cdot} \mid x \right) \right)$$

Therefore:

$$\left| \overleftarrow{T}_o \left(a_{h+1} \, \wedge \, \neg \, \dot{Q}_h(x) \, \wedge \, \neg \, a_{h+2}(x) \right) \right. \to \neg \, \operatorname{Con}_{\alpha_{h+1}};$$

therefore:

$$|_{\overline{T}_{h+1}} a_{h+1}(x) \to (\dot{Q}_h(x) \dot{\vee} a_{h+2}(x))$$
$$\to a_{h+2}(x).$$

By Prop. 4., one concludes:

$$|_{\overline{T}_{h+1}} a_{h+1}(x) \longrightarrow a_{h+2}(x)$$

which is something more then required to show the theorem.

COROLLARY 14. T_{n+1} Con_{α_{n+1}}.

PROOF. We have:

$$ig|_{\overline{T}_{n+1}} x pprox x
ightarrow \dot{Q}_n(\dot{x} \stackrel{.}{pprox} \dot{x})$$
 $ightarrow \dot{Q}_{n+1}(\dot{x} \stackrel{.}{pprox} \dot{x})$

and from there on, the proof is quite similar to that of Prop. 4.

Proposition 15. For each $\psi \in \Sigma_{n+1}F \cup \Pi_{n+1}F$, with x free (ahronov), one has:

$$\text{(i)} \ \big|_{\overline{T}_{n+1}} \ \dot{Q}_{n+1} \big(\overline{\neg \ \psi} \ (\dot{\overline{x}}) \big) \longrightarrow \neg \ \dot{Q}_{n+1} \left(\psi \ (\dot{\overline{x}}) \right);$$

(ii)
$$\vdash_{\overline{T}_n} \neg \dot{Q}_{n+1}(\overline{\psi}(\dot{\overline{x}})) \rightarrow \dot{Q}_{n+1}(\overline{\neg \psi}(\dot{\overline{x}}))$$
.

PROOF. (i) follows from Cor. 14.

(ii) Let $\psi \in \Sigma_{n+1}F$; then

$$|_{\overline{T}_n} \psi(x) \rightarrow \dot{Q}_n(\overline{\psi}(\dot{x}))$$

whence:

$$|_{\overline{T}_{o}}\dot{T}_{n}\left((\dot{n})\left(\bar{\psi}(\dot{\bar{x}})\right)\right)$$

But, by prop. 13,

$$|_{\overline{T}_n} \neg \dot{Q}_{n+1}(\bar{\psi}(\dot{x})) \rightarrow \neg \dot{Q}_n(\bar{\psi}(\dot{\bar{x}}))$$
.

therefore (ii) holds. To get (ii) for $\psi \in \pi_{n+1}F$, apply it to $\neg \psi$.

PROPOSITION 16. The following are equivalent (with ahronov of formulas involved, when suitable):

a)
$$\mid_{\overline{T}_n} \forall x (\dot{Q}_n(\bar{\vartheta}(\dot{x}))) \rightarrow \forall x \vartheta(x)$$
, for $\vartheta \in \Sigma_{n+1} F$;

b)
$$|_{\overline{T}_n} \forall x \vartheta(x)$$
, for $\vartheta \in \Sigma_{n+1} F$ and such that $|_{\overline{T}_{n-1}} \forall x \dot{Q}_n(\overline{\vartheta}(\dot{\bar{x}}))$;

c)
$$|_{T_n} \dot{Q}_n(\bar{\vartheta}(\bar{x})) \to \vartheta(x)$$
, for $\vartheta \in \Sigma_{n+1} F$;

d)
$$|_{\overline{T}_n} \xi(x) \rightarrow \dot{Q}_{n+1}(\bar{\xi}(\dot{\bar{x}}))$$
, for $\xi \in \Pi_{n+1}F$;

e)
$$|_{\overline{T}_n} \zeta(x) \to \dot{Q}_{n+1} \left(\overline{\zeta}(\dot{\bar{x}}) \right)$$
, for $\zeta \in \Sigma_{n+2} F$;

$$f) \mid_{\overline{T}_n} \Sigma_{n+1} F - \omega \operatorname{con}_{\alpha_n};$$

$$g$$
) $|_{\overline{T}_n} \Pi_{n+1} F - \omega \cdot \operatorname{con}_{\alpha_n}$.

PROOF.

- $(a) \Rightarrow (b)$: this is obvious.
- $(b) \Rightarrow (c)$. To prove this, one employs an analogue of Lemma 2,18 of [2]; namely:

LEMMA. Let $\varphi \in Fm_{K_0}$, with x free (ahronov); put

$$\psi(x,y) = \operatorname{Prf}_{\alpha_n}(\bar{\varphi}(\dot{x}),y) \to \varphi(x)$$

then one has:

$$\mid_{\overline{T}_{n-1}} \forall x \ \forall y \ \dot{Q}_n \left(\overline{\psi} \ (\overline{x} \ , \ \overline{\dot{y}}) \right)$$

The proof of the lemma is quite analogous to Feferman's: only observe that \Pr_{α_n} is in Π_{n+1} F.

Having this lemma, one concludes just as in the proof of

Having this lemma, one concludes just as in the proof of Th. 2.19 of [2].

- $(c) \Rightarrow (a) :$ This is obvious.
- $(c) \Rightarrow (d)$. By hypothesis,

$$\mid_{T_n} \xi(x) \rightarrow \neg \dot{Q}_n(\overline{\neg \xi}(\dot{x}));$$

moreover:

$$|_{\overline{T}_n} \rightarrow \xi(x) \rightarrow \dot{Q}_n(\overline{\gamma} \xi(\dot{x}));$$

whence

$$|_{\overline{T}_0} \dot{T}_n \left(\overline{\neg \xi} \left(\dot{\overline{x}} \right) \rightarrow \dot{Q}_n \left(\overline{\neg \xi} \left(\dot{\overline{x}} \right) \right) \right).$$

Therefore (by Lemma (1):

$$|_{\overline{T}_n} \xi(x) \rightarrow \dot{Q}_{n+1} (\bar{\xi}(\dot{x})).$$

- $(d) \Rightarrow (e)$; this is immediate, after lemma 10 (iii).
- (e) \Rightarrow (c) is obvious, by B_n (ii).
- $(f)\Rightarrow (g)$. Let $\psi \left(x\:,\:y\right) \in\: \varPi _{n+1}\,F$ (ahronov); one has:

$$\left|_{\overline{T}_{n}} \dot{Q}_{n}\left(\overline{\neg \ \forall \ x \ \psi} \ (x \ , \ y)\right) \rightarrow \dot{Q}_{n}\left(\overline{\neg \ \forall \ x \ \forall \ z \ \varphi} \ (x \ , \ \dot{\bar{y}}, \ z)\right)$$

(where $\psi = \forall z \ \psi \ (x \ , y \ , z)$, and $\varphi \in \Sigma_n F$)

$$\rightarrow \neg \ \forall \ x \ \forall \ z \ \dot{Q}_n \ (\bar{\varphi} \ (\dot{\bar{x}} \ , \dot{\bar{y}} \ , \dot{\bar{z}}))$$

$$\rightarrow \exists \ x \ \neg \ \forall \ z \ \dot{Q}_n \ (\bar{\varphi} \ (\dot{\bar{x}} \ , \dot{\bar{y}} \ , \dot{\bar{z}}))$$

$$\rightarrow \exists \ x \ \neg \ \dot{Q}_n \ (\bar{\varphi} \ (\bar{x} \ , \dot{\bar{y}} \ , \dot{\bar{z}}))$$

where the last implication follows from Lemma 10(iv).

$$(g) \Rightarrow (f)$$
: this follows from: $\Sigma_n F \subseteq \pi_{n+4} F$.

(c)
$$\Rightarrow$$
 (g) . Let $\psi \in \Pi_{n+1}F$ ($\psi = \forall y \varphi(x, y, z), \varphi \in \Sigma_n F$); then:

$$\begin{split} |_{\overline{x}_n} \ \dot{Q}_n \left(\overline{\neg \ \forall \ x \ \forall \ y \ \varphi} \ (x \ , \ y \ , \dot{z}) \right) &\rightarrow \\ &\rightarrow \neg \ \forall \ x \ \forall \ y \ \varphi \ (x \ , \ y \ , z) \\ &\rightarrow \exists \ x \ \neg \ \dot{Q}_n \left(\overline{\forall \ x \ \varphi} \ (\dot{\bar{x}}, \ y \ , \dot{\bar{z}}) \right) \end{split}$$

(this implication follows from $B_n(i)$ and from Prop. 4)

$$\rightarrow \neg \forall x \dot{Q}_n (\bar{\psi} (\dot{\bar{x}}, \dot{\bar{z}}))$$

$$\begin{array}{c} (g) \, \Rightarrow \, (c) \, . \ \, \text{Let} \, \, \vartheta \, = \, \neg \, \, \forall \, x \, \psi(x \, , \, y) \, \, , \, \, \text{with} \, \, \psi \in \varSigma_n F \, : \, \, \text{then} \\ \\ \left|_{\,\overline{T}_n} \, \, Q_n\!\!\left(\overline{\neg} \, \, \forall \, x \, \overline{\psi} \, \left(x \, , \, \dot{\overline{y}} \right) \right) \to \, \neg \, \, \, \forall \, \, x \, \dot{Q}_n\!\!\left(\overline{\psi} \, \left(\dot{\overline{x}} \, , \, \dot{\overline{y}} \right) \right) \right. \\ \\ \left. \to \, \neg \, \, \, \forall \, x \, \psi(x \, , \, y) \, \, 0 \, \, ; \end{array} \right.$$

(The last implication, by $B_n(i)$).

REMARKS 1. In the preceding proof, any implication having (c) or (f) as a consequent, would be obvious from the induction hypothesis; I have tried to use the latter the less possible; many of the implications follow simply from: $|_{\overline{T}_n} \operatorname{Con}_{\alpha_n}$; in particular, $B_n(ii)$ was only used in the proof of: $(e) \Rightarrow (c)$.

2. This kind of analysis leads to the following:

COROLLARY 17. Let (a'), ..., (g') be obtained from (a), ..., (g) of Prop. 16, by substituting T_{n+1} to T_n ; let (h) be the following:

$$(h) \quad |_{\overline{T}_{n+1}} \, \dot{Q}_{n+1} \, \left(\overline{\vartheta} \, (\dot{\overline{x}}) \right) \to \vartheta(x) \, , \text{ for } \vartheta \in \, \Sigma_{n+1} F \, .$$

Then, under the only hypothesis that: $|_{\overline{T}_h} \operatorname{Con}_{\alpha_h}$, for $h \leq n+1$ (i.e. without using that $\sum F - \omega - \operatorname{con}_{\alpha_{n+1}}$ is provable in T_{n+1}), one has:

$$(a')$$
 , (b') , (c') , (d') , (e') , (f') , (g') , (h)

are pairwise equivalent.

PROOF. For the most part, the proof of Prop. 16 works here also. The only implication that deserves attention is: $(c') \Rightarrow (h)$.

One has:

$$\begin{split} |_{\overline{I}_{n+1}} & \dot{Q}_{n+1}\big(\overline{\vartheta}(\dot{\bar{x}})\big) \to \neg \ \dot{Q}_{n+1}\left(\overline{\neg \ \vartheta}(\dot{\bar{x}})\right) \\ & \to \neg \ a_{n+1}\left(\overline{\neg \ \vartheta}(\dot{\bar{x}})\right) \\ & \to (\dot{T}_{n}(\overline{\vartheta}(\dot{x}) \to \dot{Q}_{n}(\overline{\vartheta}(\dot{\bar{x}}))) \to \dot{Q}_{n}(\overline{\vartheta}(\dot{\bar{x}}))) \ . \end{split}$$

Therefore:

$$|_{\overline{T}_{n+1}} \dot{Q}_{n+1}(\bar{\partial}(\dot{x})) \longleftrightarrow \dot{Q}_n(\bar{\partial}(\dot{x})).$$

From proposition 16 there follows immediatly:

Corollary 18. B_{n+1} (i) holds.

Proposition 19. The following are equivalent:

(0)
$$|_{\overline{T}_{n+1}} \dot{Q}_{n+1}(\tilde{\vartheta}(\dot{\tilde{x}})) \rightarrow \vartheta(x)$$
, for $\vartheta \in \Sigma_{n+2} F$ (ahronov);

$$(00) \quad |_{\overline{T}_{n+1}} \Sigma_{n+1} F - \omega - \operatorname{con}_{\alpha_{n+1}};$$

$$(000) \mid_{T_{n+1}}^{n+1} \Pi_{n+2} F - \omega - \operatorname{con}_{\alpha_{n+1}}^{n+1}.$$

PROOF. $(000) \Rightarrow (00)$ is immediate, and $(00) \Rightarrow (000)$ is proved quite similarly to the proof of $(f) \Rightarrow (g)$ in Prop. 16; $(0) \Rightarrow (000)$ follows from Cor. 18 and 14; $(00) \Rightarrow (0)$ follows Cor. 18.

COROLLARY 20. $B_{n+1}(ii)$ holds.

THEOREM 21. There exist two sequences $(R_n)_{n\in\omega}$ and $(\alpha)_{\alpha\in\omega}$ which satisfy A_n , B_n , C_n , D_n and E_n .

Among the properties of these sequences, I list the following. Firstly, one cam mimeck the trick of Löb's in [4], to prove:

THEOREM 22. (i) Let g(x) be any formula such that, if $a \in St_{K_o}$ and $|\overline{Q}_n g(\overline{a})$, then $a \in Q_n$; then for any $p \in St_{K_o}$, if $|\overline{Q}_n Q_n(\overline{g(\overline{p})}) \to g(\overline{p})$, then $p \in Q_n$.

(ii) For
$$p \in St_{K_o}$$
, if $|\overline{Q}_n(\overline{p}) \to p$, then $p \in Q_n$.

Proof. By diagonalization, let $b \in St_{K_o}$ be such that:

$$|_{\overline{T}_n} (Q_n(\overline{b}) \to g(\overline{p})) \longleftrightarrow b$$
.

Then:

$$\big|_{\overline{T}_0} \, \vec{Q}_n(\bar{b}) \to \left(\vec{Q}_n(\overline{\vec{Q}_n(\bar{b}})) \to \vec{Q}_n(\overline{g(\bar{p})}) \right) \, .$$

But:

$$\big|_{\overline{T}_{n-1}} \, \dot{Q}_n(\bar{b}) \to \dot{Q}_n\!\!\left(\overline{\dot{Q}_n(\bar{b})}\right) \, .$$

(This is true by Th. 5.4. of [1] for n = 0, and follows from $B_n(i)$ for n > 0).

Then we get:

 $|\overline{o}_{n}|b$;

whence:

$$|_{\overline{Q}_{n}} g(\overline{p})$$

and finally: $p \in Q_n$. ii) is proved in the same way.

Theorem 23. Q_{n+1} does not belong to Σ_{n+1} .

PROOF. By the proof of Prop. 7, if a set S is numerable in Q_n , it is numerable in Q_n by a formula of $\Sigma_{n+1}F$. Now let us suppose, by absurd, that some formula $g_n \in \Sigma_{n+1}F$ numerates Q_{n+1} in Q_n . Let p be any sentence; by considering the sentence b which is equivalent (in T_0) to: $\dot{Q}_n(\bar{b}) \to g_n(\bar{p})$, one would get, as before,

$$\big|_{\overline{Q}_n} \ \dot{Q}_n(\bar{b}) \to \dot{Q}_n\big(\overline{g_n(\bar{p})}\big)$$

but, by B_n (ii):

$$|_{\overline{Q}_{n+1}} \dot{Q}_n(\overline{g_n(\overline{p})}) \rightarrow g_n(\overline{p})$$

whence one could get:

$$|_{Q_{n+1}} b$$

whence:

$$|\overline{Q}_{n\perp}, g_{n}(\overline{p})|$$

and hence:

$$|\bar{q}_n g_n(\bar{p})|$$

and finally:

$$p \in Q_{n+1}$$

Therefore each sentence would be in Q_{n+1} , which is absurd.

THEOREM 24. (i) Q_n is not complete, for any n; in particular $\operatorname{Con}_{\alpha_n}$ is undecidable in Q_n ; $\operatorname{Con}_{\alpha_n} \in Q_{n+1}$, and also

Not-Comp_{$$\alpha_n$$} = $\exists x (\neg \dot{Q}_n(x) \land \neg \dot{Q}_n(\neg x) \land \dot{S}t_{K_o}(x))$ is in \dot{Q}_{n+1} ; and lastly: $|\overline{Q}_{n+1} \neg \dot{Q}_n(\overline{\text{Con}}_{\alpha_n})$.

- (ii) $\bigcup_{n\in\omega} (Q_n \cap St_{K_0}) = V$.
- (iii) $T_n Q_n \subseteq : T_{n+1} \not \equiv T_n$.
- (iv) (Hilbert-Bernays; Kucnecov; Trahtenbrotsee [5], Ch. XII). $\{V\} \in \Pi_2^0$.

PROOF. (i) and (ii) are immediate.

- $(iii) \ \mathrm{Con}_{\alpha_n} \ \in \ T_n \ \mathrm{but} \ \notin \ Q_n \ ; \ \mathrm{Con}_{\alpha_{n+1}} \ \in \ T_{n+1} \ , \ \ \mathrm{but} \ \notin \ T_n \ ,$ (otherwise it would $\in \ Q_{n+1}$) .
 - (iv) follows from (ii).

Finally, it would be easy to prove (cfr. e.g. [7]) that the set V_0 of [3] is exactly $Q_1 \cap St_{K_0}$.

- ACKNOWLEDGEMENT. I am very grateful to Prof. Robert A.

 Di Paola, who found an error of paramount importance in a precedent version of the present paper. I am indebted to him also for many useful conversations we had on this subject; I feel compelled to express my gratitude with the following epigraph:
 - —Oh me dolente! Come mi riscossi quando mi prese dicendomi: 'Forse tu non pensavi ch'io loico fossi'!—

Dante, Inf. XXVII, 120-123.

REFERENCES

- [1] S. FEFERMAN, Arithmetization of Metamathematics in a general setting, Fund. Mat. 49 (1960) pp. 35-92.
- [2] S. Feferman, Transfinite recursive pregressions of axiomatic theories, Joun., of Symb. Logic, 27 (1962) pp. 259-316.
- [3] R. MAGARI, Significato e verità nell'aritmetica peaniana, Ann. di Mat. Pura e Appl., 4 (103) 1975, pp. 343-368.
- [4] M. H. Löb, Solution of a problem of Leon Henkin, Journ. of Symb. Logic, 20 (1955) pp. 115-118.
- [5] H. ROGERS, Jr. Theory of recursive functions and effective computability, Mc Graw Hill; New York, 1967.
- [6] C. SMORYNSKI, Consistency and related metamathematical properties, Amsterdam Mathematisch Instituut, Rp. 75-02.
- [7] A. Ursini, On the set of «meaningful» sentences of arithmetic, to appear in Studia Logica.

Manoscritto pervenuto in redazione il 20 febbraio 1975 e in forma revisionata il 7 dicembre 1976.