RENDICONTI del SEMINARIO MATEMATICO della UNIVERSITÀ DI PADOVA

H. W. K. ANGAD-GAUR

The homological dimension of a torsion-free abelian group of finite rank as a module over its ring of endomorphisms

Rendiconti del Seminario Matematico della Università di Padova, tome 57 (1977), p. 299-309

http://www.numdam.org/item?id=RSMUP_1977_57_299_0

© Rendiconti del Seminario Matematico della Università di Padova, 1977, tous droits réservés.

L'accès aux archives de la revue « Rendiconti del Seminario Matematico della Università di Padova » (http://rendiconti.math.unipd.it/) implique l'accord avec les conditions générales d'utilisation (http://www.numdam.org/conditions). Toute utilisation commerciale ou impression systématique est constitutive d'une infraction pénale. Toute copie ou impression de ce fichier doit contenir la présente mention de copyright.

$\mathcal{N}_{\text{UMDAM}}$

Article numérisé dans le cadre du programme Numérisation de documents anciens mathématiques http://www.numdam.org/

The Homological Dimension of a Torsion-Free Abelian Group of Finite Rank as a Module Over Its Ring of Endomorphisms

by

H. W. K. ANGAD-GAUR *

1. Introduction.

Every abelian group can be considered as a module over its endomorphism ring and it is natural to inquire what its projective dimension is.

Douglas-Farahat [3] proved that the projective dimension is ≤ 1 if the group is torsion or divisible. They described classes of torsion-free groups of finite rank with projective dimension 0 or ∞ . Richman-Walker [7] found mixed groups of projective dimension 2.

The problem whether or not every positive integer can occur as a projective dimension of some group has been solved in the affirmative by Bobylev [1]. Using Corner's [2] construction he proved that for every positive integer or ∞ , there exists a reduced, torsion-free group of countable rank with the prescribed dimension.

The question if the same holds for torsion-free groups of finite rank remained open. Here we wish to settle this by proving a result analogous to Bobylev's. Our proof is simpler than Bobylev's.

^(*) Indirizzo dell'A.: Tulane University - Department of Mathematics - New Orleans Louisiana 70118.

2. – In this section we construct for every integer $n \ge 1$, a reduced torsion-free ring of finite rank with 1 whose global dimension is n. In doing so, we use an idea due to Jans ([5] p. 63, exercise 5).

Let A be a left Q_p -module with basis $e_1, \ldots, e_{n+1}, m_1, \ldots, m_n$ where Q_p denotes the localization of Z at p, *i.e.* the set of those rational numbers which, in their lowest form, have denominators relatively prime to a fixed prime p. Define the multiplication in A via

$$e_i \; e_j = \delta_{ij} \; e_i \; , \; e_i \; m_j = \delta_{ij} \; m_j \; , \; m_i \; e_j = \delta_{i,j-1} \; m_i \; , \; m_i \; m_j = 0$$

for $j=1,\ldots,n$; $i=1,\ldots,n+1$ where δ is the Kronecker delta. This is enough to extend the multiplication to all of A. Clearly, A becomes in this way a Q_p -algebra with identity $e_1+\ldots+e_{n+1}=1$. The additive group is reduced torsion-free of finite rank: it is the direct sum of 2n+1 copies of Q_p .

The projective dimension of a left R-module M will be denoted by $\dim_R M$. We shall need the following two well-known results.

LEMMA A. If

$$0 \rightarrow B \rightarrow D \rightarrow C \rightarrow 0$$

is an exact sequence of left R-modules, then

$$\dim_R D \leq \max (\dim_R B, \dim_R C).$$

Equality holds except possibly when $\dim_R C = \dim_R B + 1$.

Proof. See Kaplansky [6], p. 169.

LEMMA B. If M is a direct sum of modules B_i , then

$$\dim_R M = \sup \dim_R B_i.$$

Proof. See Kaplansky [6], p. 169, example 4.

We prove a few lemmas before we can find the left global dimension of A.

LEMMA 1. i)
$$\dim_A Ae_i = 0$$
 for all i ,

ii)
$$\dim_A Am_i = i - 1$$
 for all i.

Proof. i) follows from the fact that the e_i 's form a complete set of orthogonal idempotents and hence all Ae_i are projective A-modules.

ii) For i=1: $Ae_1\cong Am_1$, under an isomorphism which maps e_1 onto m_1 . Application of i) gives the desired result.

i > 1: Consider the following A-exact sequence

$$0 \to Am_{i-1} \xrightarrow{h} Ae_i \xrightarrow{g} Am_i \to 0 \tag{1}$$

where g is defined by $g(e_i) = e_i m_i = m_i$ and h is the inclusion map. For i = 2, we get $\dim_A Am_2 \leq 1$. If Am_2 was projective, then Am_2 would be isomorphic to a summand Af of A with f an idempotent. To prove that this is not possible, suppose the contrary. Then under an isomorphism, some rm_2 ($r \in Q_p$) is mapped onto f. We can write

$$f = \sum_{i=1}^{n+1} q_i e_i + \sum_{j=1}^{n} r_j m_j \quad \text{ with } \ q_i, r_j \in Q_p.$$

Since for the annihilators we have

$$Ann rm_0 = Ann m_0 = Ann f$$

and

$$Ann \ m_2 = Ae_1 \oplus Am_1 \oplus Ae_3 \oplus ... \oplus Ae_{n+1}.$$

we get by a simple calculation that f has the form $f = r_2 m_2$ ($r_2 \in Q_p$). But Am_2 contains no idempotents, so $f \in Am_2$ leads to a contradiction. Thus $dim_A Am_2 = 1$.

Continuing inductively for i=3,4,..., application of Lemma A to (1) gives $dim_A Am_i=i-1$.

LEMMA 2. Suppose k is a non-negative integer and $\mu \in Q_p$; then

i)
$$A p^k e_i \cong A e_i$$
,

ii)
$$A(p^k e_i + \mu m_i) \cong Ae_i$$
,

iii)
$$A p^k m_i \cong A m_i$$
.

Proof. i) and iii) are obvious since $e_i \mapsto p^k e_i$ and $m_i \mapsto p^k m_i$ induce isomorphisms. To prove ii), note that the map $f: Ae_i \to A$ $(p^k e_i + \mu m_i)$ defined by $f(e_i) = p^k e_i + \mu m_i$ is an isomorphism.

Let L denote an arbitrary left ideal of A. Then by passing to A/N where N is the ideal of A generated by the m_i 's, L becomes a direct sum: $(L+N)/N=\oplus Ap^{k_i}(e_i+N)$ for some i's. By taking coset representatives, $x_i=p^{k_i}e_i+\mu\,m_i\,\,(\mu\in Q_p)$ one can now prove:

$$L = B + C \tag{2}$$

where $B = \bigoplus A x_i$ and $C = \bigoplus A p^{l_i} m_i$ with l_i a non-negative integer for some i's. Let $D = B \cap C$ then $D \cong \bigoplus A m_i$ with some i's.

LEMMA 3. For every left ideal L of A, $dim_A L \leq n$.

Proof. If we decompose L as in (2) then we can consider the exact sequence

$$0 \to D \xrightarrow{h} B \oplus C \xrightarrow{g} L \to 0$$

where \oplus denotes the outer direct sum, g is the natural epimorphism and h(d)=(d,-d). By Lemmas 1 and B, $dim_A D \leq n-1$. By Lemmas 1, 2 and B, $dim_A (B \oplus C) \leq n-1$. Now by application of Lemma A to the exact sequence above we get $dim_A L \leq n$.

We now exhibit a left ideal of dimension n.

LEMMA 4. If $L_i = Ape_{i+1} + Am_i$ then $dim_A L_i = i$ (i = 0, ..., n). Proof. We prove this by induction on i. If i = 0, apply Lemma 2. If i = 1, we have the following exact sequence:

$$0 \to Ae_1 \xrightarrow{f} Ae_1 \oplus Ae_2 \xrightarrow{g} L_1 \to 0$$

where $f(e_1)=(pe_1\ ,-m_1e_2)$ and $g\ (ae_1\ ,be_2)=ae_1\ m_1+bpe_2\ (a\ ,b\in A).$ From Lemmas 1 and A we know that $dim_A\ L_1\leq 1.$ If the above sequence splits then there exists a homomorphism $h:Ae_1\oplus Ae_2 \to Ae_1$ such that $h\ddot{\circ}f=1$ on $Ae_1.$ Let $h(e_1\ ,0)=\lambda e_1\ (\lambda\in Q_p).$ We must have $h\ (0\ ,e_2)=0$ since $h\ (0\ ,e_2)=h\ (0\ ,e_2^2)=e_2\ h\ (0\ ,e_2)=0.$ Then $h\ (f(e_1))=\lambda pe_1=e_1$ and so $p\ divides\ 1$ in Q_p , a contradiction. Hence the sequence does not split and $dim_A\ L_1=1.$

For $i>1\,,$ the inductive step can be applied by observing that the sequence

$$0 \to L_{i-1} \xrightarrow{r} Ae_i \oplus Ae_{i+1} \xrightarrow{s} L_i \to 0$$

with $r(pe_i) = (pe_i, -m_i)$, $r(m_{i-1}) = (m_{i-1}, 0)$, $s(e_i, 0) = e_i m_i = m_i$ and $s(0, e_{i+1}) = pe_{i+1}$ is A-exact.

We can now prove:

THEOREM 1. The left global dimension of A is equal to n+1.

Proof. Because A is not semisimple, left global dimension of $A = \sup \{ dim_A L | L \text{ is a left ideal of } A \} + 1 \text{ (see [5], p. 56)}.$ The left ideal L_n has, by Lemma 4, projective dimension n. This together with Lemma 3 gives $\sup \{ dim_A L | L \text{ is a left ideal of } A \} = n$, and hence left global dimension of A is n + 1.

- 3. Equip A with the p-adic topology, i.e. A has a linear topology with a neighborhood system consisting of the subgroups p^kA $(k=1,\ldots)$. Since A is p-reduced and torsion-free, this topology is Hausdorff. Form its completion \hat{A} in the p-adic topology by considering Cauchy nets or inverse limits (see Fuchs [4]). \hat{A} is a Q_p^* -ring with basis $e_1,\ldots,e_{n+1},m_1,\ldots,m_n$ where Q_p^* denotes the ring of the p-adic integers. Since A is a free Q_p -module of finite rank, another way of obtaining \hat{A} is by tensoring A by Q_p^* , i. e. $\hat{A} = A \otimes_{Q_p} Q_p^*$. Since the topology on A is Hausdorff, A can be considered to be a pure subring of \hat{A} . \hat{A} becomes a left A-module, too.
- 4. In this section we combine Corner's construction (see Corner [2]) with Bobylev's idea (see Bobylev [1]) in order to find a torsion-free group of finite rank whose endomorphism ring is isomorphic to the ring A described in 2.

First we want to state a lemma which we shall need.

LEMMA C. If $\varrho_1 a_1 + \ldots + \varrho_n a_n = 0$ where $a_1, \ldots, a_n \in A$ and $\varrho_1, \ldots, \varrho_n$ are p-adic integers linearly independent over Q_p , then $a_1 = \ldots = a_n = 0$.

Proof. See Corner [2] Lemma 2.1.

Choose in A a Q_p -basis a_1,\ldots, a_{2n+1} such that $a_1=1$. Choose in Q_p^* algebraically independent elements $\varrho_1,\ldots, \varrho_{2n+1}, \beta$ over Q_p . Let

$$\varepsilon = \varrho_1 \, \alpha_1 + \ldots + \varrho_{2n+1} \, \alpha_{2n+1},$$

and define G to be the pure subgroup

$$G = \langle A, A\varepsilon, m_n \beta \rangle_*$$

in \hat{A} . It is clear that G is torsion-free of finite rank. If End G denotes the endomorphism ring of G, then we claim:

THEOREM 2. End $G \cong A$.

Proof. G is a left A-module. For if $g \in G$, then for some integer $q \neq 0$,

$$qg = a + b\varepsilon + c\beta m_n$$
 with a, b, c in A .

Therefore for any d in A,

$$d(qg) = q(dg) = da + db\varepsilon + dc\beta m_n \in G,$$

and hence by the purity of G, $dg \in G$.

Since $1 \in G$, we have that A is isomorphic to a subring of End G. It remains to prove that every endomorphism of G is multiplication by some element of A. Let $\eta \in \text{End } G$. Then it is known that η can be extended in a unique way to a Q_p^* -endomorphism $\hat{\eta}$ of \hat{A} . Consider

$$\eta(\varepsilon) = \hat{\eta}(\varepsilon) = \varrho_1 \eta(\alpha_1) + ... + \varrho_{2n+1} \eta(\alpha_{2n+1})$$

Since $\eta(\varepsilon)$, $\eta(a_i)$ are elements of G, for some integer $q \neq 0$ we have

$$q\eta(\varepsilon) = a + b\varepsilon + c\beta m_n$$
 with a, b, c in A

and $q\eta(a_i) = a_i + b_i \varepsilon + c_i \beta m_n$ with a_i , b_i , c_i in A.

Substitution gives

$$a + b \left(\sum_{i=1}^{2n+1} \varrho_i \ a_i \right) + c \beta m_n = \sum_{k=1}^{2n+1} \varrho_k \left(a_k + b_k \left(\sum_{j=1}^{2n+1} \varrho_j \ a_j \right) + c_k \beta m_n \right).$$

By our choice of the ϱ_i 's and β , all products of these elements are linearly independent over Q_p , from Lemma C we conclude

$$a = cm_n = c_k m_n = 0$$
, $ba_k = a_k$, $b_k a_j + b_j a_k = 0$ for all j , k .

If we let j=k=1 in the last equation then $b_1=0$. Letting j=1 in the last equation gives now $b_k=0$, for all k. Then $q\,\eta(a_i)=ba_i$. For i=1 this gives $q\,\eta(1)=b\in A$ and by purity of A, $\eta(1)\in A$.

Consequently, $q \eta(a_i) = q \eta(1) a_i$ and by torsion-freeness

$$\eta(a_i) = \eta(1) a_i \quad \text{for all } i.$$

But then $\hat{\eta}$ is multiplication by η (1) on \hat{A} and hence η is multiplication by η (1) \in A on G.

5. – In this section we will prove that for $n \ge 2$ the group G constructed in 4 has projective dimension n over its endomorphism ring A. Consider the following short exact sequence of left A-modules

$$0 \to G \xrightarrow{k} \hat{A} \xrightarrow{\pi} \hat{A}/G \to 0 \tag{3}$$

where π is the projection and k is the inclusion map. Let $\overline{\beta} = \pi$ (βe_{n+1}). Then $\overline{\beta} \neq 0$ in \widehat{A}/G , because if $\overline{\beta} = 0$ then $\beta e_{n+1} \in G$ and hence for some integer $q \neq 0$ we have $q(\beta e_{n+1}) = a_1 + a_2 \varepsilon + a_3 \beta m_n$ with a_1, a_2, a_3 in A. By Lemma C of 4, we get $qe_{n+1} = a_3m_n$. Hence q = 0 which is a contradiction.

Lemma 5. (i)
$$dim_A Ae_k \otimes_{Q_b} Q = 1$$
 for all k ,

(ii)
$$\dim_A Am_l \otimes_{Q_b} Q = l$$
 for all l .

Proof. Since $\dim_{Q_p} Q = 1$, we have an exact sequence of Q_p -modules

$$0 \to F_1 \xrightarrow{r} F_0 \xrightarrow{s} Q \to 0 \tag{4}$$

where $F_1 \subseteq F_0$ are free Q_p -modules and r is the inclusion map.

(i) Tensoring the above sequence from the left with the right flat Q_p -module Ae_k , we obtain the exact sequence of left A-modules

$$0 \mathop{\rightarrow} Ae_k \, \otimes_{Q_p} F_1 \mathop{\rightarrow} Ae_k \otimes_{Q_p} F_0 \mathop{\rightarrow} Ae_k \otimes_{Q_p} Q \mathop{\rightarrow} 0 \; .$$

Since F_0 , F_1 are free Q_p -modules, $dim_A A e_k \otimes_{Q_p} F_1 = dim_A A e_k \otimes_{Q_p} F_0 = 0$ and by Lemma A we obtain that $dim_A A e_k \otimes_{Q_p} Q \leq 1$. Since the additive group of $A e_k \otimes_{Q_p} Q$ is divisible, it cannot be a projective A-module. Hence $dim_A A e_k \otimes_{Q_p} Q = 1$.

(ii) We apply induction on l. If l=1, the result follows from the fact that $Am_1 \cong Ae_1$ and (i). For the case l=2 consider the exact sequences

$$0 \to M \xrightarrow{t} Ae_2 \otimes_{Q_c} F_0 \xrightarrow{g \otimes s} Am_2 \otimes_{Q_p} Q \to 0 \tag{5}$$

$$0 \to A m_1 \otimes_{Q_p} F_1 \xrightarrow{v} A e_2 \otimes_{Q_p} F_1 \oplus A m_1 \otimes_{Q_p} F_0 \xrightarrow{n} M \to 0$$
 (6)

where $M=Ae_2\otimes_{Q_p}F_1+Am_1\otimes_{Q_p}F_0\subseteq Ae_2\otimes_{Q_p}F_0$, $t(e_2\otimes s)=e_2\otimes r(s)$, $t(m_1\otimes \bar s)=m_1\otimes \bar s$, n denotes the natural epimorphism, $v(m_1\otimes s)=(m_1\otimes (-s)$, $m_1\otimes r(s))$ and g is the map in (1) $(s\in F_1 \text{ and } \bar s\in F_0)$. From (6) we obtain by the above and Lemma's B and A that $\dim_A M\leq 1$. Suppose by way of contradiction that $\dim_A M=0$. Then sequence (6) splits and hence there exists a surjection

$$h: Ae_2 \otimes_{\boldsymbol{Q_p}} F_1 \oplus Am_1 \otimes_{\boldsymbol{Q_p}} F_0 {\longrightarrow} Am_1 \otimes_{\boldsymbol{Q_p}} F_1$$

such that $h \circ v = 1$ on $Am_1 \bigotimes_{Q_p} F_1$. We must have $h(Ae_2 \bigotimes_{Q_p} F_1) = 0$, because $h(e_2 \bigotimes s) = h(e_2^2 \bigotimes s) = e_2 h(e_2 \bigotimes s) \in e_2(Am_1 \bigotimes_{Q_p} F_1) = 0$. Then there is a split exact sequence

$$0 \to A\,m_1 \otimes_{Q_{\mathcal{P}}} F_1 \to A\,m_1 \otimes_{Q_{\mathcal{P}}} F_0 \to A\,m_1 \otimes_{Q_{\mathcal{P}}} Q \to 0 \ .$$

This is not possible since $Am_1 \otimes_{Q_p} F_0$ is reduced and $Am_1 \otimes_{Q_p} Q$ is divisible. Hence $dim_A M = 1$. This together with Lemma A gives from (5) that $dim_A Am_2 \otimes_{Q_p} Q = 2$.

For the case l>2, tensoring (1) from the right by Q gives us the exact sequence

$$0 \to A \, m_{i-1} \, \otimes_{Q_b} Q \to A \, e_i \otimes_{Q_b} Q \to A \, m_i \otimes_{Q_b} Q \to 0 \; .$$

By using the case l=2, (i) and Lemma A we complete the proof of (ii) by applying induction to the above exact sequence on i.

Let L be the left A-submodule in \hat{A}/G generated by $\{\overline{\beta}\}$. Since \hat{A}/G is divisible, we can consider the divisible hull, N, of L. By torsion freeness of \hat{A}/G we obtain $N = L \bigotimes_{Q_p} Q$.

Note that

$$m_n \overline{\beta} = m_n \pi(\beta e_{n+1}) = \pi(\beta \cdot m_n) = 0$$
.

Hence we get the following short exact sequence of left A-modules

$$0 \longrightarrow Am_n \xrightarrow{f} Ae_{n+1} \xrightarrow{g} L \longrightarrow 0$$

where $g(e_{n+1}) = e_{n+1} \cdot \overline{\beta} = \overline{\beta}$ and f is the inclusion map. Tensoring this sequence from the right by Q gives us the exact sequence

$$0 \to A\, m_{\pmb n} \, \bigotimes_{Q_{\pmb p}} Q \to A\, e_{\pmb n+1} \, \bigotimes_{Q_{\pmb p}} Q \to N \to 0$$

From Lemma's 5 and A we obtain $\dim_A N = n + 1$ (n > 1).

Consider the following short exact sequence of left A-modules

$$0 \to N \xrightarrow{h} \hat{A}/G \xrightarrow{\pi} (\hat{A}/G)/N \to 0$$

where π is the projection map and h the inclusion map. If $\dim_A \hat{A}/G = m < n+1$ then by Lemma A, $\dim_A (\hat{A}/G)/N = n+2$ which is a contradiction to Theorem 1. If $\dim_A \hat{A}/G = m > n+1$, then we have a contradiction to Theorem 1.

Hence

$$\dim_A \hat{A}/G = n + 1. \tag{7}$$

Since $\dim_{Q_p} Q_p^* = 1$, we have a short exact sequence of Q_p -modules

$$0 \rightarrow R_1 \rightarrow R_0 \rightarrow Q_p^* \rightarrow 0$$

where R_0 and R_1 are free Q_p -modules. Tensoring from the left by the $A-Q_p$ -bimodule_A A_{Q_p} gives the following short exact sequence of A-modules:

$$0 \to A \otimes_{Q_b} R_1 \to A \otimes_{Q_b} R_0 \to A \otimes_{Q_b} Q_p^* \to 0.$$

The left exactness follows from the fact that A_{Q_p} is torsion-free and hence flat as a right Q_p -module. Since tensor product commutes with direct sums, the first two terms of the sequence are free A-modules. We know that $A \otimes_{Q_p} Q_p^* \cong \hat{A}$. From Lemma A we infer

$$\dim_A \hat{A} \leq 1. \tag{8}$$

From Lemma A, (7) and (8), the exact sequence (3) implies that

$$\dim_A G = n \qquad (n \ge 2). \tag{9}$$

We can now formulate our main result:

THEOREM 3. To every integer $m \ge 0$ there exists a torsion free abelian group of finite rank such that its projective dimension over its endomorphism ring is equal to m.

Proof. If m = 0, use G = Q. If m = 1, let G be any indecomposable group of rank > 1 such that End $G \cong Z$ (see [4]).

For $m \ge 2$, use the group G constructed in 4 with n = m. Then $n \ge 2$ and by Theorem 2 and (9) we get

$$\dim_{End} G G = m.$$

Acknowledgement.

The results in this paper are part of my dissertation which I am writing at Tulane University. I want to thank my advisors Prof. L. Fuchs and Prof. W. R. Nico for their generous help.

REFERENCES

- [1] I. V. Bobylev, Endoprojective dimension of modules, Sibirskii Matematicheskii Zhurnal 16 (1975) no. 4 663-682, 883.
- [2] A. L. S. CORNER, Every countable reduced torsion-free ring is an endomorphism ring, Proc. London Math. Soc. 13 (1963) 687-710.
- [3] A. J. Douglas and H. K. Farahat, The homological dimension of an abelian group as a module over its ring of endomorphisms, Monatsh. Math. 69 (1965), 294-305; Monatsh. Math. 76 (1972), 109-111; Monatsh. Math. 80 (1975), 37-44.
- [4] L. Fuchs, Infinite Abelian Groups I, II. Academic Press (1970).
- [5] J. P. Jans, Rings and Homology. Holt, Rinehert and Winston (1964).
- [6] I. KAPLANSKY, *Fields and Rings*, The University of Chicago Press (1972).
- [7] F. RICHMAN and E. A. WALKER, Homological dimension of abelian groups over their endomorphism rings, Proc. American Math. Soc. 54 (1976), 65-68.

Manoscritto pervenuto in redazione il 13 aprile 1977 e in forma revisionata il 30 gennaio 1978.