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The Homological Dimension of a Torsion-Free
Abelian Group of Finite Rank as a Module Over

Its Ring of Endomorphisms

by

H. W. K. ANGAD-GAUR *

1. Intro duction.

Every abelian group can be considered as a module over its endo-

morphism ring and it is natural to inquire what its projective dimen-
sion is.

Douglas-Farahat [3] proved that the projective dimension is  1
if the group is torsion or divisible. They described classes of torsion-
free groups of finite rank with projective dimension 0 or oo. Richman-
Walker [7] found mixed groups of projective dimension 2.

The problem whether or not every positive integer can occur as
a projective dimension of some group has been solved in the affir-
mative by Bobylev [1]. Using Corner’s [2] construction he proved
that for every positive integer or oo, there exists a reduced, torsion-
free group of countable rank with the prescribed dimension.

The question if the same holds for torsion-free groups of finite
rank remained open. Here we wish to settle this by proving a result
analogous to Bobylev’s. Our proof is simpler than Bobylev’s.

(*) Indirizzo dell’A.: Tulane University - Department of Mathe-
matics - New Orleans Louisiana 70118.
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2. - In this section we construct for every integer n &#x3E;_ 1, a redu-
ced torsion-free ring of finite rank with 1 whose global dimension
is n. In doing so, we use an idea due to Jans ([5] p. 63, exercise 5).

Let A be a left Qp-module with basis el, ... , ml , ... , m.
where Qp denotes the localization of Z at p, i.e. the set of those ratio-
nal numbers which, in their lowest form, have denominators rela-

tively prime to a fixed prime p. Define the multiplication in A via

f or j - 1, ... , n ; i = 1 , ... , n + 1 where 6 is the Kronecker delta.
This is enough to extend the multiplication to all of A. Clearly, y A
becomes in this way a Qp-algebra with identity e1 + ... + 1.
The additive group is reduced torsion-free of finite rank : it is the
direct sum of 2n + 1 copies of Qp.

The projective dimension of a left R-module .l~ will be denoted

by dimRM. We shall need the following two well-known results.

LEMMA A. If

is an exact sequence of left R-module8, then

Equality holds except possibly when dim,C = dimRB + 1.

Proof. See Kaplansky [6], p. 169.

LEMMA B. I f M is a direct sum of modules Bi , then

Proof. See Kaplansky [6], p. 169, example 4.

We prove a few lemmas before we can find the left global dimen-
sion of A.
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LEMMA 1.

Proof. i) follows from the fact that the c/ s form a complete set
of orthogonal idempotents and hence all Aei are projective A-mo-
dules.

ii) For i = 1 : .Am1, y under an isomorphism which maps el
onto ml. Application of i) gives the desired result.

i &#x3E; 1 : Consider the following A-exact sequence

where g is defined by = and h is the inclusion map.
For i = 2 , we get dimA Am2 :::; 1. If Am2 was projective, then
would be isomorphic to a summand Af of A with f an idempotent.

To prove that this is not possible, suppose the contrary. Then under
an isomorphism, some rm2 (r E is mapped onto f . We can write

Since for the annihilators we have

and

we get by a simple calculation that f has the form f = r2m2 (r2 E Qp).
But Am2 contains no idempotents, so f E Am2 leads to a contra-
diction. Thus dimA Am2 = 1.

Continuing inductively for i = 3,4, ... , application of Lemma A
to (1) gives dimA 

LEMMA 2. Suppo8e k is a non-negative integer and p E Q
then



302

Proof. i) and iii) are obvious since ei H p7-ej and mi H pkm!
induce isomorphisms. To prove ii), note that the map f : Ae;-
A + p mi) defined by f (ei) = is an isomorphism.

Let L denote an arbitrary left ideal of A. Then by passing to
AfN where N is the ideal of A generated by the .L becomes a
direct sum : (L + = Q Apki (e, + N) for some i’s. By taking
coset representatives, Xt = pki et + p mi (/z E Q p) one can now

prove :

where B = 3 A xf and C = E9 A pls m~ with lf a non-negative integer
for some i’s. Let D = C then E9 A m~ with some i’s.

LEMMA 3. For every left ideal Z of A , dimA L ::; n.
Proof. If we decompose .L as in (2) then we can consider the exact

sequence

where Q+ denotes the outer direct sum, g is the natural epimorphism
and h (d) = (d, - d). By Lemmas 1 and B, dimA D _ n - 1. By
Lemmas 1 , 1 2 and B, dimA (B 3 C)  n - 1. Now by application of
Lemma A to the exact sequence above we get dimA Z  n.

We now exhibit a left ideal of dimension n.

LEMMA 4. If Li = Apei+l + then dimA Li = i (i = 0, ... , n).
Proof. We prove this by induction on i. If i = 0, apply Lemma 2.

If i = 1 , we have the following exact sequence:

where = and g be2) = ael m1 + bpe2 (a , b e .d).
From Lemmas 1 and A we know that dimA 1. If the above

sequence splits then there exists a homomorphism h : Aei 0153 .A.e2-+Ae)
such that /K)/ = 1 on Ael. Let h(e~ , 0) = Àei (Àe We must
have 11, (0 , e2) =0 since h (0 , e2) = 11, (0 , y e2) - e2 h (0 , e2) = 0.

= = el and so p divides 1 in Q~, a contradiction.
Hence the sequence does not split and dimA Li = 1.
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For i &#x3E; 1, the inductive step can be applied by observing that
the sequence

We can now prove :

THEOREM 1. The left global dimension of A is equal to n + 1.

Proof. Because A is not semisimple, left global dimension of
A = sup is a left ideal of A~ +1 (see [5], p. 56). The left
ideal Ln, has, by Lemma 4, projective dimension n. This together
with Lemma 3 gives sup is a left ideal of A~ = n , and
hence left global dimension of A is n --E- 1.

3. - Equip A with the p-adic topology, i.e. A has a linear topo-
logy with a neighborhood system consisting of the subgroups pkA
(k = 1 , ... ). Since A is p-reduced and torsion-free, this topology is.

Hausdorff. Form its completion 1 in the p-adic topology by consi-
dering Cauchy nets or inverse limits (see Fuchs [4]), I is a Q p-
ring with basis ... , y mx , ... , y mn where QQ denotes the ring of
the p-adic integers. Since A is a free Qp-module of finite rank, ano-
ther way of obtaining A is by tensoring A i. e. A = A. Q$.
Since the topology on A is Hausdorff, A can be considered to be a.
pure subring of Â. Â becomes a left A-module, too.

4. - In this section we combine Corner’s construction (see Cor-
ner [2]) with Bobylev’s idea (see Bobylev [1]) in order to find a

torsion-free group of finite rank whose endomorphism ring is iso-

morphic to the ring A described in 2.

First we want to state a lemma which we shall need.

LEMMA C. I f elal + ... + = 0 y an E A acnd’

... , y e’n are p-adic integers linearly independent over Q p, =



304

Proof. See Corner [2] Lemma 2.1.

Choose in .A a Qp-basis ... , a2,+, such that al = 1. Choose
in algebraically independent elements ~Ol , ... , !!2n+l, P over

,Q2,. Let

:and define G to be the pure subgroup

in A. It is clear that G is torsion-free of finite rank. If End G denotes
the endomorphism ring of G, then we claim:

THEOREM 2. End G ~ A.

Proof. G is a left A-module. For if g E G, then for some integer
q # 0,

Therefore for any d in A,

.and hence by the purity of (~, dg E G.

Since 1 E (~, we have that A is isomorphic to a subring of End G.
It remains to prove that every endomorphism is multipli-

cation by some element of A. Let 71 E End Q~. Then it is known that
q can be extended in a unique way to a Q*p-endomorphism n of .A.
Consider

Since are elements of G, for some integer q ~ 0 we have

~nd
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Substitution gives

By our choice of the eils and fl, all products of these elements are
linearly independent over from Lemma C we conclude

If we = 1 in the last equation then b, = 0. Letting
j - 1 in the last equation gives now bk = 0 , for all k. =

= For i = 1 this = b E A and by purity of A,
E A.

Consequently, and by torsion-freeness

But then n is multiplication by q (1 ) on .A and hence q is multi-
plication by 21 (1) E A. on G.

5. - In this section we will prove that for n &#x3E;_ 2 the group G cons-
tructed in 4 has projective dimension n over its endomorphism ring A.

Consider the following short exact sequence of left A-modules

where is the projection and k is the inclusion map. Let P =a 
- -

Then 13 =I=- 0 in Â/G, because if 13 = 0 then f3en,+l E G and hence for
some integer q # 0 we have q = al + a2 8 with aI’ a2, as
in A . By Lemma C of 4, we get aamn. Hence q = 0 which
is a contradiction.

LEMMA 5.

Proof. Since dimQp Q - 1, we have an exact sequence of Q p-
modules

where are free Qp-m.odules and r is the inclusion map.
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(i) Tensoring the above sequence from the left with the right
flat Q,-module we obtain the exact sequence of left A-modules

Since F 0 Fi are free Qp-modules, dimA .Aek @ , F =dim,, 
= 0 and by Lemma A we obtain that dimA Aek (E)Qp Q:5 1. Since
the additive group of Aek is divisible, it cannot be a

projective Hence dirtA Aek 

(ii) We apply induction on 1. If I = 1, the result follows from
the fact that Ael and (i). For the case 1 = 2 consider the
exact sequences

where .DT + Fo , I t ( e2 =

- e2 @ r(s) , Ox s ) = m1 Ox s , n denotes the natural epimor-
phism, ~x 8) = (ml @ (-s) , y ml @ and g is the map in (1)
(s E .F1 and s E From (6) we obtain by the above and Lemma’s
B and A that dim AM:::; 1. Suppose by way of contradiction that
dimA M = 0. Then sequence (6) splits and hence there exists a

surjection

such that h o v = 1 on Amx We must have h(.A.e2 = 0,
because h(e2 @ 8) split = h(ez @ s) = e2h(e2 @ e2(.Amx = 0 .

Then there is a split exact sequence

This is not possible since Am, (2)Q,, Fo is reduced and Aml 
is divisible. Hence dimAM = 1. This together with Lemma A

gives from (5) that dimA Am2 2.

For the case 1&#x3E; 2, tensoring (1) from the right by Q gives us
the exact sequence
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By using the case I = 2 , (i) and Lemma A we complete the

proof of (ii) by applying induction to the above exact sequence
on i.

A 
Let .L be the left A-submodule in generated by Since

A/G is divisible, we can consider the divisible hull, N, of L. By
torsion freeness of A/G we obtain N = L Q .

Note that

Hence we get the following short exact sequence of left A-
modules

where g(e,+l) and f is the inclusion map. Tensoring
this sequence from the right by Q gives us the exact sequence

From Lemma’s 5 and A we obtain dimAN = n + 1 (n &#x3E; 1) .

Consider the following short exact sequence of left A-modules

where R is the projection map and h the inclusion map. If dimAl/G =
- m  n + 1 then by Lemma A, dimA (A/G)fN = n + 2 which
is a contradiction to Theorem 1. If dimA Â/G = m &#x3E; n + 1, then
we have a contradiction to Theorem 1.

Hence

Since dimQp Q*p = 1, we have a short exact sequence of Q p-
modules
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where Ro and 1~1 are free Qp -modules. Tensoring from the left

by the A - Qp -bimodulea AQP gives the following short exact
sequence of A-modules :

The left exactness follows from the fact that AQP is torsion-

free and hence flat as a right Qp-module. Since tensor product
commutes with direct sums, the first two terms of the sequence are
free A-modules. We know that A P = A. From Lemma A
we infer

From Lemma A, (7) and (8), the exact sequence (3) implies that

We can now f ormulate our main result :

THEOREM 3. To every integer m &#x3E; 0 there exists a torsion free
.abelian group of finite rank such that its projective dimension over

its endomorphism ring is equal to m.

Proof. If m = 0, use G = Q. If m = 1, let G be any indecom-

posable group of rank &#x3E; 1 such that End Z (see [4]).
For m &#x3E; 2, use the group G constructed in 4 with n = m. Then

n &#x3E; 2 and by Theorem 2 and (9) we get
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