RENDICONTI del SEMINARIO MATEMATICO della UNIVERSITÀ DI PADOVA

GIOVANNI PORRIJ

θ-mappings and quasiconformal mappings in normed spaces

Rendiconti del Seminario Matematico della Università di Padova, tome 57 (1977), p. 173-182

http://www.numdam.org/item?id=RSMUP_1977_57_173_0

© Rendiconti del Seminario Matematico della Università di Padova, 1977, tous droits réservés.

L'accès aux archives de la revue « Rendiconti del Seminario Matematico della Università di Padova » (http://rendiconti.math.unipd.it/) implique l'accord avec les conditions générales d'utilisation (http://www.numdam.org/conditions). Toute utilisation commerciale ou impression systématique est constitutive d'une infraction pénale. Toute copie ou impression de ce fichier doit contenir la présente mention de copyright.

$\mathcal{N}_{\text{UMDAM}}$

Article numérisé dans le cadre du programme Numérisation de documents anciens mathématiques http://www.numdam.org/

θ-Mappings and quasiconformal mappings in normed spaces

GIOVANNI PORRU (*)

Introduction.

The θ -mappings introduced by Gehring in [2], and some definitions of quasiconformal mappings in \mathbb{R}^n , are meaningfull in every normed space. But such mappings have investigated, till now, almost exclusively in \mathbb{R}^n . Indeed, most of the procedures used in \mathbb{R}^n (as Lebesgue integral) are meaningless in a infinite dimensional space H.

In this paper we consider θ -mappings in a real normed space, and we prove for them a compactness theorem. Further, we show some properties of sequences of θ -mappings. Next we consider the metric definition of quasiconformal mappings in a real normed space, and we give a relation between the θ -mappings and the quasiconformal mappings.

1. θ -Mappings. Let H be a real normed space and Ω , Ω' domains of H. Following Gehring ([2], pag. 14) we give the

DEFINITION 1. A homeomorphism TX of Ω onto Ω' is said to be a θ -mapping if there exists a function $\theta(t)$, which is continuous and increasing in $\theta \leq t < 1$ with $\theta(0) = 0$, such that the following are true.

^(*) Indirizzo dell'A.: Istituto Matematico Università di Cagliari - 09100 Cagliari, Italy.

Lavoro eseguito nell'ambito del GNAFA del CNR.

(i) If $X_0 \in \Omega$ and $\|X - X_0\| < \inf_{Y \in \partial \Omega} \|X_0 - Y\| \equiv \varrho(X_0, \partial \Omega)$, then

$$rac{\|TX-TX_0\|}{arrho(TX_0\,,\,\partial\Omega')} \leq heta\left(rac{\|X_0-X\|}{arrho(X_0\,,\,\partial\Omega)}
ight)$$

(ii) The restriction of TX to any subdomain $\Delta \subseteq \Omega$, satisfies (i).

For the θ -mappings we now prove some properties.

THEOREM 1. Suppose that $\{T_nX\}$ is a sequence of θ -mappings (with the same distortion function $\theta(t)$) of Ω , that

$$\lim_{n\to\infty}T_nX=TX$$

uniformly on each bounded domain $\Delta \subset \Omega$ such that $\varrho(\Delta, \partial\Omega) > 0$, and that TX is a homeomorphism. Then TX is a θ -mapping.

PROOF. Let $\Delta \subset \Omega$ be a bounded domain such that $\varrho(\Delta, \partial\Omega) > 0$, and set $\Delta'_n = T_n(\Delta)$, $\Delta' = T(\Delta)$. Since T_nX are θ -mappings we have, for $X_0 \in \Delta$:

$$(1) \qquad \frac{\|T_{n}X-T_{n}X_{0}\|}{\varrho(T_{n}X_{0}\,,\,\partial A_{n}')}\leq \theta\left(\frac{\|X-X_{0}\|}{\varrho(X_{0}\,,\,\partial A)}\right),\;n=1,2,...$$

for $\|X-X_0\|<arrho(X_0\,,\,\partial\varDelta)$. We have to show that

$$\frac{\|TX - TX_0\|}{\varrho(TX_0, \partial \Delta')} \leq \theta\left(\frac{\|X - X_0\|}{\varrho(X_0, \partial \Delta)}\right)$$

for $||X - X_0|| < \varrho(X_0, \partial \Delta)$. First we prove that

(3)
$$\liminf_{n\to\infty} \varrho(T_nX_0,\partial\Delta'_n) \leq \varrho(TX_0,\partial\Delta').$$

We may suppose $\varrho(TX_0,\partial A')<\infty$. If (3) is not true there exists a subsequence $\{T_{nk}X\}$ and a positive real number σ such that

(4)
$$\lim_{k\to\infty} \varrho(T_{n_k}X_0,\partial\Delta'_{n_k})\geq \varrho(TX_0,\partial\Delta')+\sigma.$$

From (4) it follows that there exists a finitive ν such that

(5)
$$\varrho(TX_0, \partial \Delta'_{n_0}) > \varrho(TX_0, \partial \Delta') + \sigma/2$$

for $k > \nu$. By (5) we may find at least one point $X' \in \partial \Delta'$ and a ball B(X', r') centered in X', radius r', and contained in Δ'_{n_k} , for $k > \nu$. Further we may take a second ball $B(Z', r) \subset B(X', r')$ with $B(Z', r) \cap \Delta' = \emptyset$. Let Z_k be the points of Δ such that $T_{n_k}Z_k = Z'$. Since $\{T_{n_k}X\}$ converges uniformly to TX on Δ , we have

$$\|TZ_k - Z'\| = \|TZ_k - T_{n_k}Z_k\| < r$$

for $k > \nu_1$, where $\nu_1 \ge \nu$ is a suitable finite number. The latter inequality shows that TZ_k belongs to B(Z', r). Hence, we obtain a contradiction and inequality (3) does hold.

Since

$$\lim_{n\to\infty} \|T_n X - T_n X_0\| = \|TX - TX_0\|,$$

from (1) and (3), we derive (2).

Let now Δ be a subdomain of Ω . If $X_0 \in \Delta$ and $\varrho(X_0, \partial \Delta) = \infty$, let $\Delta_m \equiv B(X_0, m)$. For the previous result we have, for $\|X - X_0\| < m$:

$$rac{\|TX - TX_0\|}{arrho(TX_0\,,\,\partialec{\Delta}_m')} \leq hetaigg(rac{\|X - X_0\|}{arrho(X_0\,,\,\partialec{\Delta}_m)}igg) = hetaigg(rac{\|X - X_0\|}{m}igg),$$

where $\Delta_m' = T(\Delta_m)$. Since $\lim_{m \to \infty} \theta(\|X - X_0\|/m) = 0$ it must be

$$\lim_{m \to \infty} \varrho(TX_0, \partial \Delta_m') = \infty$$
. As $\varrho(TX_0, \partial \Delta') \ge \varrho(TX_0, \partial \Delta_m')$

it must be again $\varrho(TX_0\,,\,\partial\varDelta')=\infty\,,$ and inequality (2) holds for such $\varDelta.$

Finally suppose $\varDelta\subseteq\varOmega,\,X_0\in\varDelta$ and such that $\varrho(X_0\,,\,\partial\varDelta)==c<\infty$. Let $\varDelta_m=B(X_0\,,\,c-1/m)$ with m>1/c. Inequality (2) holds for \varDelta_m . Further we have $\varDelta'=T(\varDelta)\supset T(\varDelta_m)=\Delta_m'$, hence

$$\varrho(TX_0\,,\,\partial\varDelta')\geq\varrho(TX_0\,,\,\partial\varDelta_m')\,,\,\,\varrho(X_0\,,\,\partial\varDelta_m)=\varrho(X_0\,,\,\partial\varDelta)\,-\,1/m$$

and

$$\frac{\|TX-TX_0\|}{\varrho(TX_0,\partial \varDelta')} \leq \frac{\|TX-TX_0\|}{\varrho(TX_0,\partial \varDelta'_m)} \leq \theta \left(\frac{\|X-X_0\|}{\varrho(X_0,\partial \varDelta_m)}\right) = \theta \left(\frac{\|X-X_0\|}{\varrho(X_0,\partial \varDelta) - \frac{1}{m}}\right).$$

For $m \to \infty$, because $\theta(t)$ is continuous, we obtain inequality (2) for such Δ .

THEOREM 2. Suppose that $\{T_nX\}$ is a sequence of θ -mappings of Ω and that

$$\lim_{n\to\infty} T_n X = TX, \|TX\| < \infty$$

in Ω . Then TX is either a constant or a continuous and injective mapping.

In order to prove the Theorem we give some lemmas whose proofs are similar to those done by Gehring for $H = \mathbb{R}^n$ ([2]).

LEMMA 1. Suppose that $\{T_nX\}$ is a sequence of θ -mappings of Ω which are locally uniformly bounded on Ω . Then T_nX are locally equicontinuous in Ω .

PROOF. Let $Z \in \Omega$ and let B(Z,r) be a ball centered in Z, radius $r < \varrho(Z,\partial\Omega)$ and such that T_nX are uniformly bounded in B(Z,r). Choose $X_0 \in \Omega - \overline{B}(Z,r)$ and let $\Delta = \Omega - \{X_0\}$. By hypothesis there exists a finite constant A (depending on B(Z,r) and X_0) such that

$$||T_nX - T_nX_0|| \le ||T_nX|| + ||T_nX_0|| \le A$$

for $X \in B(Z, r)$ and all n. Hence

(6)
$$\varrho(T_nX, \partial A'_n) \leq \|T_nX - T_nX_0\| \leq A$$

for $X \in B(Z, r)$ and all n, where $\Delta'_n = T_n(\Delta)$. Since $r < \varrho(Z, \partial \Omega)$ and $X_0 \notin \overline{B}(Z, r)$,

$$\varrho(X,\,\partial\varDelta)\geq a>0$$

for $X \in B(Z, r)$. Now fix $X \in B(Z, r)$ and choose Y so that ||Y|

 $-X \| < a$. Then

$$\frac{\|T_{n}Y-T_{n}X\|}{\varrho(T_{n}X,\,\partial\varDelta_{n}')}\leq\theta\left(\frac{\|Y-X\|}{\varrho(X,\,\partial\varDelta)}\right).$$

and, for (6) - (7),

$$||T_nY - T_nX|| \le A \theta \left(\frac{||Y - X||}{a}\right).$$

Since $\lim_{t\to 0+} \theta(t) = 0$, this implies the desired equicontinuity of $T_n X$ in B(Z, r).

LEMMA 2. Suppose that $\{T_nX\}$ is a sequence of θ -mappings of Ω onto Ω_n' , that

$$\sup_n \, \|T_n X_0\| < \infty$$

for some $X_0 \in \Omega$, and that

$$\sup_{n} \; \varrho(0 \; , \, \partial \Omega_{n}^{'}) < \infty$$

where 0 denotes the null element of H. Then T_nX are locally equicontinuous in Ω .

PROOF. Fix a so that 0 < a < 1. Then, if we choose $Y \in \Omega$ and X so that $||X - Y|| < a\varrho(Y, \partial\Omega)$ we have

$$||T_nX - T_nY|| \leq \theta(a) \varrho(T_nY, \partial \Omega'_n)$$

for all n. Since

$$\varrho(T_n Y, \partial \Omega'_n) \leq ||T_n Y|| + \varrho(0, \partial \Omega'_n)$$

we thus obtain

$$||T_nX|| \leq M ||T_nY|| + N$$

where

$$M=1\,+\,\theta(a)\;,\quad N=\theta(a)\sup_n\,\varrho(0,\,\partial\Omega_n')$$

In particular we conclude that each point $Y \in \Omega$ has a neighborhood $U = U(Y) \subset \Omega$ such that (8) holds for all $X \in U$. Next, if we choose $X \in \Omega$ and Y so that $\|Y - X\| < \frac{a}{2} \varrho(X, \partial \Omega)$ we have

$$\|Y-X\|<rac{a}{2}\left(arrho\left(Y,\partialarOlimits\Omega
ight)+\|Y-X\|
ight)$$

and thus

$$\|Y-X\|<rac{a}{2-a}\,\varrho(Y,\partial\Omega)< a\varrho(Y,\partial\Omega)$$
 .

Hence we see that each point $X \in \Omega$ has a neighborhood $V = V(X) \subset \Omega$ such that (8) holds for all $Y \in V$. Now let G denote the set of points $X \in \Omega$ for which

$$\sup_{n} \|T_n X\| < \infty.$$

If $Y \in G$ and if U is the neighborhood described above, then (8) implies that

$$\sup_{n} \lVert T_{n}X\rVert \leq M \sup_{n} \lVert T_{n}Y\rVert \, + N$$

for all $X\in U$. Hence $U\subset G$ and G is open. Similarly, if $X\in \Omega-G$ and if V is the neighborhood described above, the same argument shows that $V\subset \Omega-G$, and hence that $\Omega-G$ is open. Since Ω is connected and $X_0\in G$, we conclude that $G=\Omega$. We have shown that for $Y\in G$, $\sup \|T_nY\|<\infty$. Further, by (8), follows that T_nX are uniformly bounded in a suitable neighborhood U(Y). The locally equicontinuity is now a consequence of Lemma 1.

LEMMA 3. Suppose that $\{T_nX\}$ is a sequence of θ -mappings of Ω , and that

$$\sup_{\mathbf{n}} \lVert T_{\mathbf{n}} X_{\mathbf{0}} \rVert < \infty \;, \quad \sup_{\mathbf{n}} \lVert T_{\mathbf{n}} X_{\mathbf{1}} \rVert < \infty$$

for a pair of distintic fixed points X_0 , $X_1 \in \Omega$. Then T_nX are locally equicontinuous in Ω .

PROOF. Let $\Delta = \Omega - \{X_1\}$ and $\Delta'_n = T_n(\Delta)$. Then $T_n X_1 \in \partial \Delta'_n$ and hence

$$\sup_{\boldsymbol{n}} \ \varrho(0, \, \partial \boldsymbol{\Delta}_{\boldsymbol{n}}') \leq \sup_{\boldsymbol{n}} \|\boldsymbol{T}_{\boldsymbol{n}} \boldsymbol{X}_1\| < \infty \; .$$

Lemma 2 implies now the locally equicontinuity of T_nX in Δ . Interchanging the roles of X_0 and X_1 we obtain the desired conclusion.

LEMMA 4. Suppose that $\{T_nX\}$ is a sequence of θ -mappings of Ω , that

$$\lim_{n\to\infty} T_n X = TX, \quad ||TX|| < \infty$$

in Ω , that $T_nX \neq Y'_n$ in Ω , and that

$$\lim_{n\to\infty} Y_n' = Y'.$$

Then either $TX \neq Y'$ in Ω or $TX \equiv Y'$ in Ω .

PROOF. Let G be the set of points $X \in \Omega$ for which TX = Y'. Lemma 3 implies that T_nX are locally equicontinuous in Ω . Hence TX is continuous and G is closed in Ω . Now suppose $X_0 \in G$ and let U be the set of points X for which $\|X - X_0\| < a\varrho(X_0, \partial\Omega)$, where a is some fixed constant, 0 < a < 1. Then we have

$$\|T_nX - T_nX_0\| \leq \theta(a)\varrho(T_nX_0, \partial\Omega'_n)$$

for all $X \in U$, where $\Omega_n' = T_n(\Omega)$. Since $Y_n' \notin \Omega_n'$, we see that

$$\varrho(T_{n}X_{0}, \partial\Omega'_{n}) \leq \|T_{n}X_{0} - Y'_{n}\|$$

and hence

$$\|TX-TX_0\|=\lim_{n\to\infty}\|T_nX_0-T_nX\|\leq\theta(a)\lim_{n\to\infty}\|T_nX_0-Y_n'\|=0$$

for all $X \in U$. Hence $U \subset G$ and G is open. Since Ω is connected, we conclude, as desired, that either $G = \Omega$ or $TX \equiv Y'$ in Ω .

PROOF OF THEOREM 2. Lemma 3 implies that T_nX are locally equicontinuous in Ω , hence TX is continuous. If TX is not one to

one, we can find a pair of distintic points X_0 , $X_1 \in \Omega$, such that $TX_0 = TX_1 = Y'$. Let $\Delta = \Omega - \{X_1\}$ and $T_nX_1 = Y'_n$. Then $T_nX \neq Y'_n$ in Δ and

$$\lim_{n\to+\infty}Y'_n=Y'.$$

Since $X_0 \in \Delta$ and $TX_0 = Y'$, Lemma 4 implies that TX = Y' in Δ and hence that TX is constant in Ω .

2. QUASICONFORMAL MAPPINGS. Let H be a real normed space, Ω , Ω' domains of H and TX a homeomorphism of Ω onto Ω' . For $X_0 \in \Omega$ and $0 < r < \varrho(X_0, \partial \Omega)$ we set

$$L(X_0, r) = \sup_{\|X - X_0\| = r} \|TX - TX_0\|$$

$$1(X_0\,,r)\ =\!\inf_{\|X-X_0\|=r}\!\|TX-TX_0\|$$

$$\delta(X_0) = \limsup_{r \to 0^+} \frac{L(X_0, r)}{1(X_0, r)}$$

According to Gehring metric definition of quasiconformality for $H = \mathbb{R}^n$, we give the following

DEFINITION 2. A homeomorphism TX of a domain Ω onto a domain Ω' is said to be K-quasiconformal if $\delta(X_0) \leq K$ for every point X_0 of Ω . TX is quasiconformal if it is K-quasiconformal for some K (finite).

If $H = \mathbb{R}^n$, a homeomorphism is quasiconformal if and only if it is a θ -mapping ([2]). Now we show the following

THEOREM 3. A homeomorphism TX of Ω onto Ω' is quasiconformal if $T^{-1}X$ is a θ -mapping.

PROOF. Let $X_0 \in \Omega$ and c, $0 < c < \varrho(X_0, \partial\Omega)$, so that

$$\|TX - TX_0\| < \varrho(TX_0, \partial \Omega')$$

for $\|X - X_0\| < c$. Next, for each r, 0 < r < c and $\varepsilon > 0$, choose X_1 and X_2 so that $\|X_1 - X_0\| = \|X_2 - X_0\| = r$ and so that

$$(10) \qquad \begin{cases} L(X_{0}\,,\,r) = \sup_{\|X-X_{0}\|=r\|} \|TX-TX_{0}\| < \|TX_{1}-TX_{0}\| + \varepsilon \\ 1\,(X_{0}\,,\,r) = \inf_{\|X-X_{0}\|=r\|} \|TX-TX_{0}\| > \|TX_{2}-TX_{0}\| - \varepsilon \end{cases}$$

If for some r and for each ε is

(11)
$$1(X_0, r) + \varepsilon > L(X_0, r) - \varepsilon$$

then we have $1(X_0,r)=L(X_0,r)$ for such r. If r is such that (11) is not true we have, for $0<\varepsilon<\varepsilon_0$, ε_0 suitable,

(12)
$$1(X_0, r) + \varepsilon < L(X_0, r) - \varepsilon.$$

Let $\Delta = \Omega - \{X_1\}$ and $\Delta' = T(\Delta)$. Then $\Delta' = \Omega' - \{TX_1\}$. From (9), (10) and (12) we obtain

$$||TX_2-TX_0|| < 1(X_0, r) + \varepsilon < L(X_0, r) - \varepsilon < ||TX_1-TX_0|| = \varrho(TX_0, \partial \Delta')$$
.

Since T^{-1} X is a θ -mapping we have

$$1 = \frac{\|T^{-1}(TX_2) - T^{-1}(TX_0)\|}{\varrho(T^{-1}(TX_0) \ , \ \partial\varDelta)} \leq \ \theta\left(\frac{\|TX_2 - TX_0\|}{\varrho(Tx_0 \ , \ \partial\varDelta')}\right) < \ \theta\left(\frac{1(X_0 \ , r) + \varepsilon}{L(X_0 \ , r) - \varepsilon}\right)$$

and, as $\theta(t)$ is increasing,

$$rac{L(X_0\,,\,r)\!-\!arepsilon}{1(X_0\,,\,r)\!+\!arepsilon} < rac{1}{ heta^{\!-\!1}(1)}$$

For $\varepsilon \to 0^+$ we obtain

$$rac{L(X_0\,,\,r)}{1(X_0\,,\,r)} \leq rac{1}{ heta^{-1}(1)}$$

and also

$$\limsup_{r o 0^+} rac{L(X_0^-,r)}{1(X_0^-,r)} \leq rac{1}{ heta^{-1}(1)} = K$$

As the latter inequality holds for each point X_0 of Ω , the theorem is proved.

Theorem 3 can be improved if TX is a diffeomorphism, that is a homeomorphism of Ω onto Ω' , such that TX and $T^{-1}X$ are differentiable. For this we have:

LEMMA 5. Suppose that TX is a quasiconformal diffeomorphism of Ω onto Ω' . Then the diffeomorphism $T^{-1}X$ of Ω' onto Ω is quasiconformal.

PROOF. Let $X_0 \in \Omega$. If A denotes the Frèchet derivative of TX in X_0 , we have ([3]), for some constant K,

(13)
$$0 < \sup_{Z \neq 0} \frac{\|AZ\|}{\|Z\|} \le K \inf_{Z \neq 0} \frac{\|AZ\|}{\|Z\|}.$$

Since the derivative of $T^{-1}X$ in TX_0 is A^{-1} , (13) implies

(14)
$$0 < \sup_{Y \neq 0} \frac{\|A^{-1}Y\|}{\|Y\|} \le K \inf_{Y \neq 0} \frac{\|A^{-1}Y\|}{\|Y\|}.$$

If X_0 ranges onto Ω , then TX_0 ranges onto Ω' , and (14) does hold in every point of Ω' . Thus ([3]) $T^{-1}X$ is quasiconformal.

Theorem 3 and Lemma 5 give the following.

COROLLARY. A diffeomorphism TX of Ω onto Ω' is quasiconformal if TX is a θ -mapping.

BIBLIOGRAFY

- [1] P. CARAMAN, N-dimensional quasiconformal mappings, Ed. Ac. Bucuresti and Abacus Press Tumbridge Wells, Kent, England (1974).
- [2] W. F. Gehring, The Carathèodory convergence theorem for quasiconformal mappings in space, Ann. Acad. Sci. Fenn. Ser. AI 336/11 (1963).
- [3] G. Porru, Quasiconformal mappings in normed spaces, In print by the Proceedings of the 3rd Romanian-Finnish Seminar on Complex Analysis (Bucharest, 28/6-2/7 1976).

Manoscritto pervenuto in redazione il 28 marzo 1977.