RENDICONTI

del
 SEMINARIO MATEMATICO della Università di Padova

GiUliano Bratti

A density theorem about some system

Rendiconti del Seminario Matematico della Università di Padova, tome 57 (1977), p. 167-172
http://www.numdam.org/item?id=RSMUP_1977__57__167_0

© Rendiconti del Seminario Matematico della Università di Padova, 1977, tous droits réservés.

L'accès aux archives de la revue «Rendiconti del Seminario Matematico della Università di Padova» (http://rendiconti.math.unipd.it/) implique l'accord avec les conditions générales d'utilisation (http://www.numdam.org/conditions). Toute utilisation commerciale ou impression systématique est constitutive d'une infraction pénale. Toute copie ou impression de ce fichier doit contenir la présente mention de copyright.

Numdam

Article numérisé dans le cadre du programme

A density theorem about some system.

Giuliano Bratti (*).

Introduction.
Let A be an open subset of R^{n}; suppose $P=P(x, D)$, $Q=Q(x, D)$ linear partial differential operators with $C^{\infty}(A)$ coefficients.

Definition 1). We say that the system

$$
(+)
$$

$$
\{P u=f, \quad Q u=o\}, \quad f \in C^{\infty}(A)
$$

is $C^{\infty}(A)$-locally solvable in A if for every $p \in A$ there is a neighbourhood, V_{p}, of p and a function $u_{p} \in C^{\infty}\left(V_{p}\right)$ such that the $(+)$ is satisfied in V_{p}.

Defintition 2). If B is an open subset of A, we say that the above system $(+)$ is $C^{\infty}(B)$-globally solvable if for every $f \in C^{\infty}(A)$ for which $(+)$ is locally solvable in A, there is a function $u \in C^{\infty}(B)$ such that $(+)$ is satisfied in B.

In (2) there is the following conjecture:
let $\left(B_{n}\right)_{n \in N}$ be a sequence of open subsets of A such that: B_{n} $\subset B_{n+1} \subset \sqcup B_{n}=B$ and the $(+)$ is $C^{\infty}\left(B_{n}\right)$-globally solvable for every $n \in N$. Then $(+)$ is $C^{\infty}(B)$-globally solvable.
(*) Indirizzo dell'A. : Seminario Matematico, Via Belzoni 7, 1-35100, Padova.

It is already known, (4), the conjecture is false in the case in which P and Q have constat coefficients and Q is semi-elliptic, but the conjecture is still open when Q is an elliptic operator.

It seems to the A. that to solve the above conjecture it is important to have some example of system like $(+)$ without $C^{\infty}(A)$ globally solutions for $f \in C^{\infty}(A)$ for which $(+)$ is $C^{\infty}(A)$-locally solvable.

Fisrt of all, by a Lojasiewicz-Malgrange's theorem, see (1), it is easy to show that : if P and Q are prime between them, the subspace of $C^{\infty}(A)$ of the functions for which the system $(+)$ is $C^{\infty}(A)-$ locally solvable is $\operatorname{ker} Q_{\mid A}=\left\{f \in C^{\infty}(A): Q f=o\right\}$.

The object of this paper is that to characterize the open subset A of R^{n} for which there are systems like (+), with Q elliptic, such that:

$$
P\left(\operatorname{ker} Q_{/ A}\right) \text { is not } C^{\infty}(A) \text {-dense in ker } Q_{/ A}
$$

1) Let A be an open subset of R^{n} and let $b(A)$ be its boundary.

Let G be the subset of $b(A)$ so defined :
$G=\left\{p \in b(A):\right.$ the connexe component, Z_{p}, of $R^{n}-A$ with $p \in Z_{p}$ is compact $\}$
$P=P(D)$ and $Q=Q(D)$ are linear partial differential operators, with constant coefficient ; Q will always be elliptic.

Lemma a). If we put: $Z_{A}=\sqcup_{p \in G} Z_{p}$ and $L=A \sqcup Z_{A}$, we have : L is an open set. Proof. It is sufficient to see that every compact component, Z, of $R^{n}-A$, is such that : $Z \wedge b(A) \neq \varnothing$. Then the proof. of the Lemma a) is in (5), pag. 235.

Lemma b). Let n be a distribution with compact support: $n \in \boldsymbol{E}^{\prime}\left(\mathbf{R}^{n}\right)$. If $m=Q(D) n$ has its support in A, then $n \in E^{\prime}(L)$.

Proof. If $p \notin A$ and Z_{p}, the connexe component of $R^{n}-A$ with $p \in Z_{p}$, is not bounded then there exists a neighbourhood of Z_{p} in which n is an analytic function. Because n has compact support, in such neighbourhood n must be zero. This shows that: if $p \in \operatorname{supp}(n)$ and $p \notin A$, then $p \in Z_{A}$.

Theorem. If $n \in E^{\prime}\left(R^{n}\right)$ and is orthogonal to all exponential solutions of the equation $P u=o$, then there exists $m \in E^{\prime}\left(\mathbf{R}^{n}\right)$ such that : $n=P(-D) m$.

Proof. See Lemmas 3.4.1 and 3.4.2. of (3) pagg. 77/78.

Lemma c). Let $g \in C_{c}^{\infty}(L)$ be a function such that : $P(-D) g \in C_{c}^{\infty}(A)$. If $P(-D) g$, with P hypoelliptic, is orthogonal to ker $P_{\mid A}$, then: if $p \in \operatorname{supp}(g) \wedge Z_{A}, g(p)=0$.

Proof. If δ_{p} is the Dirac distribution at the point p, the distribution $E_{p} * \delta_{p}$ is in ker $P_{\mid A}$ if E_{P} is a foundamental solution of P : $P E_{P}=\delta$. Then : $\left\langle\left(E_{P} * \delta_{p}\right)_{\mid A} \cdot P(-D) g\right\rangle=\left\langle\delta_{p} \cdot g\right\rangle=g(p)=0$.

Definition 3). We say that a compact subset K of L disjoins Z_{A} if there exists a partition of $G, G=G_{1}+G_{2}, G_{1} \neq \varnothing$, and an open subset B of L such that $\sqcup_{p \in G_{1}} Z_{p} \subset K \subset B$ and $B \wedge\left(\sqcup_{p \in G_{2}} Z_{p}\right)=\varnothing$.

Definition 4). We say that an open subset A of R^{n} has the b-propriety if $\left(\right.$ or $Z_{A}=\varnothing$ or) there is no compact K of L which disjoins Z_{A}.

Theorem. The following two propositions, p_{1} and p_{2}, are equivalent:
$\left.p_{1}\right) A$ is an open subset of R^{n} which has the b-propriety;
p_{2}) for every couple, (P, Q), of partial differential operators with constant coefficients, prime between them, with Q elliptic, we have:

$$
P\left(\text { ker } Q_{/ A}\right) \text { is } C^{\infty}(A) \text {-dense in ker } Q_{A}
$$

Proof.
From p_{1}) to p_{2}). Suppose there exists P prime with Q such that $P\left(\operatorname{ker} Q_{/ A}\right)$ is not $C^{\infty}(A)$-dense in $\operatorname{ker} Q_{/ A}$; we will show that absurd.

From the Hahn-Banach theorem, we have: there exists $m \in E^{\prime}(A)$ such that m is not orthogonal to $\operatorname{ker} Q_{/ A}$ but m is orthogonal to $P\left(\right.$ ker $\left.Q_{/ A}\right)$.

By the precedent theorem, there exists, then, a distribution $n \in E^{\prime}\left(R^{n}\right)$ such that: $P(-D) m=Q(-D) n$. Because P and Q are prime between them, there exists $n_{0} \in E^{\prime}\left(R^{n}\right)$ with : $m=Q(-D) n_{0}$, and, from lemma b), $n_{0} \in E^{\prime}(L)$.

Let K be the support of n_{0}; we will show that K disjoins Z_{A}, so we will have the absurd.

In fact: it can't be : $K \wedge Z_{A}=\varnothing$, because, otherwise, $n_{0} \in E^{\prime}(A)$ and so m would be orthogonal to $\operatorname{ker} Q_{\mid A}$.

Let G_{1} be the subset of $G, G_{1} \neq \varnothing$ with : if $p \in G_{1}, Z_{p} \wedge K \neq \varnothing$, (so that $Z_{p} \subset K$); we will show that there exists an open subset B of L with : $K \subset B$ and $B \wedge\left(\sqcup_{p \in G-G_{1}} Z_{p}\right)=\varnothing$.

Of course, this is the case if $G-G_{1}=\varnothing$. Otherwise, let $\left(B_{n}\right)_{n \in N}$ a sequence of open subsets ol L such that $B_{n} \supset B_{n+1}$ and $\wedge_{n} B_{n}=K$.

Suppose that $x_{n} \in B_{n} \wedge \sqcup_{p \in G-G_{1}} Z_{p}$ for every $n \in N$; we can suppose, directly, $\lim _{n} x_{n}=x_{0}$, with, of course, x_{0} in K.

It is ipossible that infinite terms of the sequence $\left(x_{n}\right)$ are in the same component $Z_{q}, q \in G-G_{1}$; in fact if it is so, we have $x_{0} \in Z_{q} \wedge K$; absurd.

It is easy to see that $x_{0} \in b(A)$, because every $\operatorname{segment}\left(x_{n}, x_{n+1}\right)$ has a point of A; it comes out that n_{0} must be an analytic function in a neighbourhood V of x_{0}. In such V there is a point $x_{n} \in Z_{q_{n}}$ with $q_{n} \in G-G_{1}$. Because $Z_{q_{n}} \wedge K=\varnothing$, in a neighbourhood of x_{n}, n_{0} is zero; so we can suppose n_{0} equal to zero in all V. Absurd, because x_{0} belongs to $\operatorname{supp}\left(n_{0}\right)$.

From p_{2}) to p_{1}). If K is a compact subset of L and K disjoints Z_{A}, let g be a function in $C_{c}^{\infty}(B)$, with $g=1$ on B^{\prime} with : $K \subset B^{\prime} \subset \bar{B}^{\prime} \subset B$. If $h=Q(-D) g, h \in C_{c}^{\infty}(A)$ if $Q(0)=0$; for the lemma c) above, h can't be orthogonal to ker $Q_{\mid A}$.

But : if $P=P(D)$ is an operator prime with Q and $P(0)=0$, h is orthogonal to $P\left(\operatorname{ker} Q_{\mid A}\right)$ because $P(-D) h=Q(-D) P(-D) g$ and $P(-D) g \in C_{c}^{\infty}(A)$.

This completes the proof.
The above theorem permits the construction of system like (+) without $C^{\infty}(A)$-global solution. So, for the system.

$$
\left(^{\circ}\right)\left\{D_{x} u=f \quad, \quad D_{x} u+i D_{y} u=0\right\}
$$

in the set $A \subset R^{2}$ so defined : $|x|<1,|y|<1, x^{2}+y^{2} \neq 0$, for the reason that $Z_{A}=(0,0)$, there is a function, $f_{0} \in \operatorname{ker}\left(D_{x}+i D_{y}\right)_{/ A}$ for which there is no global solution in A; on the other hand, by the Lojasiewicz-Malgrange theorem, (*), it is easy to show that there is a sequence, $\left(B_{n}\right)_{n \in N}$, of subset of A, such that:
(*) The theorem is the following : if $A(D)$ is the differential matrix $A(D)=\left\|a_{i, j}(D)\right\|, \quad I \leq i \leq p, \quad I \leq j \leq q, u \in E^{q}(A), f \in E^{p}(A)$, rispectively p and q times product of $E(A)$, the space of indefinitely differentiable functions over A, the system $A(D) u_{k}=f$ has a solution if and only if : for every $v=\left(v_{1}, \ldots, v_{p}\right), v_{i}$ polinomial, for which $v(x) A(x)=0$, we have $v(D) f=0$, if A is convex.
a) $\left.B_{n} \subset B_{n+1} \subset \sqcup_{n} B_{n}=A ; b\right)$ for every $n \in N$ there is an open subset $B_{n}^{\prime} \subset A$ such that: $B_{n} \subset B_{n}^{\prime}$ and the system (${ }^{\circ}$) is $C_{c}^{\infty}\left(B_{n}^{\prime}\right)$ - globally solvable.

Of course, this example is very near to show the De Giorgi's conjecture is false also in the case $: Q$ is elliptic.
2) I like to end this paper giving an abstract condition to have $P\left(\operatorname{ker} Q_{/ A}\right)=\operatorname{ker} Q_{/ A}$.

We put, over $C^{\infty}(A)$, the following T_{P} - topology :
V is a neighbourhood of zero in the T_{P}-topology if : $V \supset W+\operatorname{ker} P_{\mid A}$, for some W neighbourhood of zero in the usual topology of $C^{\infty}(A)$.

So we have : if A has the b-propriety, P and Q are linear partial differential operators, prime between them, and Q is elliptic,

Theorem. The following two proposition, q_{1}) and q_{2}), are equivalent :
$\left.q_{1}\right) P\left(\operatorname{ker} Q_{/ A}\right)=\operatorname{ker} Q_{/ A} ;$
$\left.q_{2}\right) \operatorname{ker}(Q \mathrm{oP})_{\mid A}=\operatorname{ker} Q_{/ A}+\operatorname{ker} P_{/ A} ; \operatorname{ker}(Q \circ P)_{/ A}$ is a complete subspace of $C^{\infty}(A)$ with the T_{p}-topology and $P: k e r(Q \cup P)_{\mid A} \rightarrow P(k e r$ $\left.(Q \circ P)_{\mid A}\right)$ is an open mapping.

Proof.
$\left.q_{1}\right) \Rightarrow q_{2}$). The first part of q_{2}) is simple. For the second part, we have : $\operatorname{ker}\left(Q^{\circ} P\right)_{/ A}$ is a closed subspace of $C^{\infty}(A)$ with the T_{p} - topology, so :
$\left(\operatorname{ker} Q_{/ A}\right)^{\wedge} \subset \operatorname{ker}\left(Q_{0} P\right)_{\mid A}$. On the other hand, $\operatorname{ker} Q_{/ A}+\operatorname{ker}$ $P_{\mid A} \subset\left(\operatorname{ker} Q_{/ A}\right)^{\wedge}$. Because $P: \operatorname{ker} Q_{/ A} \rightarrow \operatorname{ker} Q_{/ A}$ is an open mapping, (it is a surjective map between Frechet spaces), we have:
if W is an usual neighbourhood of zero in $C^{\infty}(A), P(W \wedge$ ker $\left.Q_{\mid A}\right)$ is open in $\operatorname{ker} Q_{\mid A}$, so : $P\left(W+\operatorname{ker} P_{\mid A}\right) \wedge \operatorname{ker}\left(Q^{\circ} P\right)_{\mid A} \supset P$ $\left(W \wedge \operatorname{ker} Q_{/ A}\right)$.
$\left.\left.q_{2}\right) \Rightarrow q_{1}\right)$. It is sufficient to see that in the diagram

the quotient is a Frechet space, so $P\left(\operatorname{ker}\left(Q_{0} P\right)_{\mid A}\right)$ is a Frchet space.

But the last one is also a dense subspace of $\operatorname{ker} Q_{/ A}$; so : $P\left(\operatorname{ker} Q_{\mid A}\right)=\operatorname{ker} Q_{\mid A}$.

Remark 1) It is very easy to see that: if A is $P(-D)$ - convex the topological part of q_{2}) it is always true. It comes out:

If A is $P(-D)$ - convex, (and it has the b-proriety, which is not a consequence if P is elliptic !), the necessary and sufficient condition to have :

$$
P\left(\operatorname{ker} Q_{/ A}\right)=\operatorname{ker} Q_{/ A}
$$

is : $\operatorname{ker}\left(Q^{\circ} P\right)_{/ A}=\operatorname{ker} P_{/ A}+\operatorname{ker} Q_{/ A}$.
Remark 2) The $P(-D)$ - convexity of A, is not, of course, a necessary condition to have the above result, as we can see by the system $\left(^{\circ}\right)$ in A like that, without the points : $x=o, o \leq y$.

BIBLIOGRAPHY

[1] A. Andreotti - M. Nacinovich, Complexes of partial differential operators, Annali Scuola Normale Superiore di Pisa, 1976.
[2] E. De Giorgi, Sulle soluzioni globali di alcuni sistemi di equazioni differenziali, Boll. U.M.I., (4), 11, 1975, pp. 77-79.
[3] L. Hörmander, Linear partial differential operators, Springer-Verlag 1966.
[4] M. Nacinovich, Una osservazione su una congettura di De Giorgi, Boll. U.M.I., (4), 12, 1975, pp. 9-14.
[5] R. Narasimhan, Analysis on real and complex manifold, Masson e Cie. Editeur-Paris, 1968.

Manoscritto pervenuto in redazione il 2 marzo 1977, e in forma revisionata il 23 marzo 1977.

