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On the Compactness of Minimal Spectrum.

GIULIANO ARTICO - UMBERTO MARCONI (*)

0. Introduction.

Let A be a commutative ring with 1; denote by Spec(A) the set
of all prime ideals of A equipped with the hull-kernel topology, by
Min(A) the subspace consisting of minimal prime ideals. Henriksen
and Jerison [HJ] found some sufficient conditions for the compactness
of Min(A); subsequently, Quentel [Q] discovered an equivalent con-
dition. Here we give another characterization of the compactness
of Min(A ), which seems to give more light to the topological situation;
this characterization, among other things, allows us to show that the
class of (weakly) Baer rings coincides with the class of rings such that:
1) their minimal spectrum is compact; and 2) every prime ideal contains
a unique minimal prime ideal.

We shall always deal with rings without non-zero nilpotents; but of
course all purely topological results are independent of this hypothesis.

1. All rings are commutative and with 1. Spec(A) denotes the
set of prime ideals of A, equipped with the Zariski topology; i.e.

Spec(A) has as a base of open sets the sets D(a) = Spec(A ) - =

= ~P E P~ . Thus, the subspace Min(A ) of minimal prime
ideals has f D°(a) D(a) f1 Min(A) : a E A} as a base of open sets.

For the sake of simplicity, we assume that A is semiprime (that is,
A has no non-zero nilpotents); however, it will be clear that all results

(*) Indirizzo dell’A.: Istituto di Matematica Applicata, Università di
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obtained here hold in the general case, with some obvious modifica-
tion (e.g., the nilradical of A in place of the zero ideal).

The sets are clopen in Min(A) ; for, denoting by Ann(a) the
annihilator of a, we have D°(a) = Min(A) - YO(a) = VO(Ann(a))
(if I is an ideal of A, V(I) is its hull in Spec(A), and = V(I) n
t1 Min(A)), (see [HJ]). Thus is a space with a clopen basis,
and, being Toy it is also a Hausdorff space.

LEMMA. Let A be a semiprime ring, P a prime ideal of A. The fol-
lowing are equivalent:

i) P is ac minimal prime.

ii) For every a E P, Ann(a) ~ P.
iii) For every finitely generated ideal I contained in P, P.

Thus, if A is semiprime and I is finitely generated, Ann(I) = 0 iff
vo(l) = 0.

PROOF. The equivalence of i) and ii) is proved in [HJ,1.1 ] .
iii) implies ii): trivial, ii) implies iii): let generate I ;
for each i = 1, ... , ~c choose bi E P; then b = b1 ... bn E
E Ann (I ) - P.

Plainly, iii) shows that no minimal prime ideal can contain a finitely
generated ideal whose annihilator is zero; conversely, if I is finitely
generated and Ann(I) contains a non-zero element b, then, since A is
semiprime, there exist some minimal prime ideal which does not
contain b ; every such prime necessarily belongs to 

THEOREM. Let A be a semiprime ring. The following are equivalent:

1) The family of a E A} is au subbase for the topology
o f Min(A ).

2) Min(A) is a compact space.

3) For every element a E A, there exists a f inite number of
elements a1, ... , an E A such that aai = 0 for each i = 1, ... , n and

Ann ..., an, a) = 0.

PROOF. 1) implies 2). By Alexander’s subbase theorem it is

enough to show that, if B is a subset of A such that n DO(a) = 0y
aeB

then there exists a finite number of elements in B, say ... , an such

that Let us observe that x) coincides with the
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set of minimal prime ideals disjoint from B. If S is the multiplicative
set generated by B, a prime ideal doesn’t meet S if and only if it doesn’t
meet B. Now, zero belongs to S for, otherwise, there would exist a
prime ideal, and then a minimal prime one, disjoint from B. But

if zero belongs to S, there exist aI, ..., an E B such that their product

is zero, and so

2) implies 3). If 3Iin(A) is a compact space, then is an open
compact set, and therfore it is a finite union of basic open sets, that
is VO(a) = D°(a1) u... V D°(an). Since DO(ai) is contained in VO(a)
for each i = 1, ... , n, every minimal prime ideal contains aai , and so
aai = 0 for each i. Moreover, the above relation implies that

Y°(a1, ..., an, a) = ø; by the Lemma, Ann(a1, ..., an, a) = 0.

3) implies 1). Choose a basic open set Let a1,..., an be
the elements given by 3). By the Lemma, the ideal I = (aI, ..., an , a) is
contained in no minimal prime; this implies that D°(a) D Y°(a1) t1 ... r1
r1 but since 0 for every i = 1, ..., n, equality actually
holds.

REMARK 1. Condition 3) is due to Quentel [Q, Proposition 4].

REMARK 2. Condition 1) allows us to state Theorem 3.4 of [H.J]
in the following way:

« The following conditions on a ring A without non zero nilpotents
are equivalent:

a) Min(A) is compact and, for every x, y E A, there exists z E A
such that Ann(x) t1 Ann(y) = Ann(z).

b) The family of sets is a base for the open sets
of Min(A).

c) For each x E A there exists x’ E A such that Ann (Ann(x’ )) -
Ann(x). )&#x3E;; ; thus, the assumption of compactness of Min(A) in con-
dition b) is redundant.

Notice also that condition 3) of the Theorem may be written as
f ollows :

3 bis ) For each there exist ai, ... , an such that

Ann (a) = Ann (Ann(ai , ... , 1 an)) g
which thus appears as a weakening of condition c) in the above theorem.
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2. In paper [K], Kist proves the equivalence of the following
conditions:

a) There exists a continuous function of Spec(A) onto Min(A )
which is the identity on Min(A).

b) A is a Baer ring, that is the annihilator ideal of each element
in A is generated by an idempotent.

This implies that, in a Baer ring, every prime ideal contains a unique
minimal prime ideal and that Min(.A ) is compact. We shall prove that
these two last conditions characterize the Baer rings. First, we need
two Lemmas:

LEMMA a. Let P be a prime ideal of A and let Op be the intersection
of the prime ideals contained in P. Then Op coincides with the ideal of
the elements of A whose annihilator is not contained in P.

(For a proof, one may look at [DMO, p. 460]).
LEMMA f3. Let A be a semiprime ring. The following are equivalent:

i) Every prime ideal contains a unique minimal prime ideal.

ii) If a, b are elements of A such that ab = 0, then Ann(a) +
+ Ann(b) = A.

iii) For every a, b E A, Ann (a) + Ann(b) = Ann(ab) .

PROOF, i) implies ii). If i) holds, then for every maximal ideal M,
OM is the unique minimal prime contained in M. If Ann(a) + Ann(b)
is contained in then, since OM is prime, either a or b belong to OM :
this is absurd for the characterization of OM given in Lemma a.

ii) implies iii). Of course Ann(a) + Ann(b) is‘ contained in Ann(ab).
If x belongs to Ann(ab), then (xa) b = x(acb) = 0 and so there exist

and z E Ann(b) such that 1 = y -f- z, hence x = xy + xz,
with and xZEAnn(b).

iii) implies i). If P is a prime ideal, let us see that Op is prime,
too. In fact, if ab belongs to Op, there exists an element x E Ann(ab)
that doesn’t belong to P. According to iii), x == ~ + z, with y e Ann(a)
and z E Ann(b); hence either P, or P; by Lemma cx, this is

equivalent to or b E 0 p .

Now we can state the following theorem.
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THEOREM. Let A be a semiprime ring. The following are equivalent :

1 ) A is a Baer ring.

2) Every prime ideact contains a unique minimal prime ideal and
Min(A) is a compact space.

3) retract of Spee (A ), that is there exists ac continuous
function 99 of Spec(A) onto Min(A) which is the identity on Min(A ).

PROOF. 1) implies 2). Trivially if A is a Baer ring, condition 3)
of Theorem 1 is satisfied and then Min(A) is a compact space. Let us
see that every prime ideal contains a unique minimal prime ideal,
proving that condition ii) of Lemma fl holds. Let a, b be elements
such that ab = 0 and let e, f be the idempotents which generate Ann(a)
and Ann(b), respectively. Since b E Ann(a) = (e), there exists c E A
such that b = ce, hence be = ce2 = ee = b and so (1- e) b = 0. Then

(1- e) E Ann(b) _ (f), so that Ann(a) + Ann(b) = (e) + ( f ) = A.

2) implies 3). Lest 99 be the map from Spec(A) to Min (A ) defined
by (p(P) = Ope Since Min(A) is compact, to prove that (p is a continuous
function it is enough to show that is a closed set (Theorem 1).
This is trivial because, from the characterization of Op given by the
Lemma a, we have qJ+-[DO(a)] = V(Ann(a)).

3) implies 1). First we prove that, if Q is a minimal prime ideal
contained in a prime ideal P, then Q is the image of P by the retraction 99.
In fact P E that is contained in gg’[99(Q)], so that 99(p) =

= Q. Hence the retraction maps a prime ideal into the unique
minimal prime ideal contained in it; therefore V(Ann(a)) = 
is a clopen set; then Ann(a) is a direct summand in A, because in a
semiprime ring an ideal I is a direct summand if and only if V(I) is
a clopen set.

REMARK 1. A Baer ring A is necessarily semiprime: assume x
nilpotent, and let n be the smallest non negative integer such that
xn = 0 . We want to show that n = 11 i.e. x = 0 . For, otherwise, we
have since A is Baer, Ann(x) = (e), =

= ( f ), with e, f idempotents ; since x E Ann (xn-l ) then x = x f , which
implies xn-1= xn-lj = 0, contraddicting the minimality of n.

REMARK 2. The ring A = K[x, where .g is a field and x, y
are indeterminates over .g, is a ring whose minimal spectrum is com-
pact, but it is not a Baer ring. A is a noetherian ring; then Min(A)
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is finite, hence compact (and discrete). It is easy to see that A. is a

semiprime ring with no non trivial idempotents. Using the fact that
K[z, y] is a unique factorization domain, it can be shown that

Ann(x + (xy)) is generated by (y + (xy)), so that A. is not a Baer ring.
REMARK 3. If .~ is a topological space, denotes the ring of

all real valued continuos functions on .X; .~ is said to be an F-space
when every prime ideal of C(X) contains a unique minimal prime ideal
[GJ, 14.25]. X is said to be basically disconnected if the closure of
every cozero-set is an open set [GJ, lH]. One can easily prove that
C(X ) is a Baer ring if and only if X is basically disconnected. There
exist I’-spaces X that are not basically disconnected, for instance

[GJ, 6M, 14.0]. Hence there are rings in which every prime
ideal contains a unique minimal prime ideal, without being Baer rings.
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