RENDICONTI del SEMINARIO MATEMATICO della UNIVERSITÀ DI PADOVA

VINCENZO ANCONA

Sui fibrati analitici reali E-principali. II. -Teoremi di classificazione

Rendiconti del Seminario Matematico della Università di Padova, tome 55 (1976), p. 49-62

http://www.numdam.org/item?id=RSMUP_1976__55__49_0

© Rendiconti del Seminario Matematico della Università di Padova, 1976, tous droits réservés.

L'accès aux archives de la revue « Rendiconti del Seminario Matematico della Università di Padova » (http://rendiconti.math.unipd.it/) implique l'accord avec les conditions générales d'utilisation (http://www.numdam.org/conditions). Toute utilisation commerciale ou impression systématique est constitutive d'une infraction pénale. Toute copie ou impression de ce fichier doit contenir la présente mention de copyright.

NUMDAM

Article numérisé dans le cadre du programme Numérisation de documents anciens mathématiques http://www.numdam.org/

Sui fibrati analitici reali E-principali.

II. - Teoremi di classificazione.

VINCENZO ANCONA (*)

Introduzione.

Si prosegue lo studio dei fibrati analitici reali E-principali sopra uno spazio analitico reale coerente X cominciato in [1], e si stabiliscono i teoremi di classificazione di tali fibrati, già noti (v. [5]) nel caso in cui ogni componente connessa di X abbia dimensione limitata.

Per le notazioni e le definizioni non richiamate esplicitamente si rinvia a [1].

§ 1. – Sia X uno spazio analitico reale coerente, ridotto, riunione numerabile di compatti, e sia \widetilde{X} una complessificazione di Stein di X, di antiinvoluzione α . Se U è un aperto di X, indicheremo con $\Gamma^c(U)$ (risp. $\Gamma(U)$) lo spazio vettoriale su \mathbb{R} delle funzioni continue (risp. analitiche) a valori reali su U; se inoltre K è un compatto di X, indicheremo con $\Gamma^c(K)$ (risp. $\Gamma(K)$) il limite induttivo degli spazi $\Gamma^c(U)$ (risp. $\Gamma(U)$) quando U percorre gl'intorni aperti di X.

È noto (v. [4]) che per ogni $f \in \Gamma(U)$ esiste un aperto \widetilde{U} di \widetilde{X} , α -invariante, tale che $\widetilde{U} \cap X = U$, e $\widetilde{f} \in {}^{\sigma}\Gamma(\widetilde{U})$ che estenda f; inoltre se ogni componente connessa di \widetilde{U} incontra U, l'estensione \widetilde{f} è unica. Ne segue che se K è un compatto di X, e $(\widetilde{U}_i)_{i\in I}$ è un sistema fonda-

^(*) Indirizzo dell'A.: Istituto Matematico dell'Università - Via Savonarola 9 - 44100 Ferrara.

Lavoro eseguito nell'ambito dell'attività del GNSAGA (CNR).

mentale d'intorni aperti α -invarianti di K in \tilde{X} , si ha:

$$\Gamma(K) = \varinjlim_{i \in I} {}^{\sigma}\Gamma(\tilde{U}_i)$$
.

Sia E un fibrato analitico reale in gruppi di Lie su X, il cui gruppo strutturale sia complessificabile, ed \tilde{E} una complessificazione di E, che supporremo definita su \tilde{X} , di antiinvoluzione θ . Se U è un aperto di X indicheremo con $\Gamma^c(U,E)$ (risp. $\Gamma(U,E)$) il gruppo delle sezioni continue (risp. analitiche) di E su U; se K è un compatto di X, denoteremo con $\Gamma^c(K,E)$ (risp. $\Gamma(K,E)$) il limite induttivo dei gruppi $\Gamma^c(U,E)$ (risp. $\Gamma(U,E)$) quando U percorre gl'intorni aperti di K.

Per ogni $f \in \Gamma(U, E)$, con U aperto di X, esiste un aperto α -invariante \widetilde{U} di \widetilde{X} , tale che $\widetilde{U} \cap X = U$, e $\widetilde{f} \in {}^{\theta}\Gamma(\widetilde{U}, \widetilde{E})$ che estenda f (v. [5]); inoltre se ogni componente connessa di \widetilde{U} incontra U, l'estensione \widetilde{f} è unica. Ne segue che se K è un compatto di X, e $(\widetilde{U}_i)_{i \in I}$ è un sistema fondamentale d'intorni aperti α -invarianti di K in \widetilde{X} , si ha:

$$\Gamma(K, E) = \lim_{i \in I} {}^{\theta}\Gamma(\tilde{U}_i, \tilde{E})$$
.

Nel caso in cui si consideri un fibrato vettoriale analitico F su X, $\Gamma(U,F)$ e $\Gamma(K,F)$ sono in maniera naturale spazi vettoriali su \mathbb{R} .

§ 2. – Con le notazioni del § 1, sia K un compatto di X, $(\tilde{U}_i)_{i\in I}$ un sistema fondamentale d'intorni aperti α -invarianti di K in \tilde{X} ; sia F un fibrato vettoriale su X, \tilde{F} una complessificazione di F che supporremo definita su \tilde{X} , di antiinvoluzione σ . Per ogni $i\in I$, ${}^{\sigma}\Gamma(\tilde{U}_i,\tilde{F})$ è uno spazio di Fréchet su \mathbb{R} per la topologia della convergenza uniforme sui compatti; è infatti un sottospazio vettoriale chiuso di $\Gamma(\tilde{U}_i,\tilde{F})$. Inoltre se $\tilde{U}_i\subset \tilde{U}_j$ $(i,j\in I)$, l'applicazione di restrizione ${}^{\sigma}\Gamma(\tilde{U}_i,\tilde{F})\to {}^{\sigma}\Gamma(\tilde{U}_i,\tilde{F})$ è compatta per il teorema di Vitali. Si è visto al § 1 che

$$\Gamma(K, F) = \varinjlim_{i \in I} {}^{\sigma}\Gamma(\tilde{U}_i, \tilde{F})$$
.

Assegniamo allora a $\Gamma(K, F)$ la topologia limite induttivo delle topologie di Fréchet su ${}^{\sigma}\Gamma(\tilde{U}_i, \tilde{F})$ (v. [3]); $\Gamma(K, F)$ diviene allora uno spazio vettoriale topologico localmente convesso, la cui topologia non dipende dalla scelta del sistema fondamentale d'intorni. Poichè K

ammette in \widetilde{X} un sistema fondamentale d'intorni α -invarianti numerabile, segue subito che $\Gamma(K,F)$, con la detta topologia, è uno spazio LS (v. [3]); dunque è separato e completo; inoltre un sottoinsieme $k \subset \Gamma(K,E)$ è compatto se e solo se esiste $i \in I$ tale che k sia contenuto in ${}^{\sigma}\Gamma(\widetilde{U}_i,\widetilde{F})$ e ivi sia compatto per la topologia indotta.

Nel seguito intenderemo $\Gamma(K,F)$ sempre munito della topologia ora detta; l'iniezione naturale di $\Gamma(K,F)$ in $\Gamma^c(K,F)$ è continua quando $\Gamma^c(K,F)$ sia munito della topologia della convergenza uniforme sui compatti.

Sia U un aperto di X; è allora:

$$\Gamma(U,F) = \lim_{\overline{k} \in \overline{U}} \Gamma(K,F)$$

ove K percorre i compatti di U. Se assegniamo a $\Gamma(U,F)$ la topologia limite proiettivo delle topologie su $\Gamma(K,E)$, esso diviene uno spazio vettoriale topologico su \mathbb{R} separato e completo. Intenderemo nel seguito $\Gamma(U,F)$ munito di questa topologia. Si ha allora, algebricamente e topologicamente:

$$\Gamma(U,F) = \varinjlim_{\widetilde{U} \supset U} {}^{\sigma} \Gamma(\widetilde{U},\widetilde{F})$$

 $(\tilde{U} \text{ aperto } \alpha\text{-invariante di } \tilde{X} \text{ tale che } \tilde{U} \cap X = U),$

$$\Gamma(K, F) = \varinjlim_{U \supset K} \Gamma(U, F)$$

(U aperto di X).

Inoltre l'iniezione naturale di $\Gamma(U, F)$ in $\Gamma^{\epsilon}(U, F)$ è continua quando quest'ultimo spazio vettoriale sia munito della topologia della convergenza uniforme sui compatti.

Sia ora E (come nel § 1) un fibrato analitico reale in gruppi di Lie su X, con gruppo strutturale complessificabile; sia \tilde{E} una complessificazione di E (di antiinvoluzione θ), che possiamo supporre definita su \tilde{X} . Sia F il fibrato in algebre di Lie complesse associato a \tilde{E} ; \tilde{F} è allora una complessificazione di F, la cui antiinvoluzione σ su ogni fibra \tilde{F}_x è l'applicazione lineare tangente a θ nell'unità della fibra \tilde{E}_x (v. [5], [6]). L'applicazione esponenziale $\tilde{\varrho}: \tilde{F} \to \tilde{E}$, che definisce un isomorfismo di un intorno della sezione nulla di \tilde{F} su un intorno della sezione neutra di \tilde{E} soddisfa alla relazione $\tilde{\varrho}\circ\sigma=\theta\circ\tilde{\varrho}$; inoltre la restrizione di $\tilde{\varrho}$ a F applica F in E e coincide con l'applicazione esponenziale

reale corrispondente $\varrho \colon F \to E$, e quindi applica isomorficamente un intorno della sezione nulla di F su un intorno della sezione neutra di E.

Sia K un compatto di X, $(\tilde{U}_i)_{i\in I}$ un sistema fondamentale d'intorni aperti α -invarianti di K in \tilde{X} . Per ogni $i\in I$, ${}^{\theta}\Gamma(\tilde{U}_i,\tilde{E})$ è un gruppo topologico completo per la topologia della convergenza uniforme sui compatti (v. [5]). Assegniamo allora a $\Gamma(K,E)$ la topologia limite induttivo delle topologie ${}^{\theta}\Gamma(\tilde{U}_i,\tilde{E})$. È facile allora vedere che $\Gamma(K,E)$, con tale topologia, è un gruppo topologico separato e completo, in cui gl'intorni della sezione neutra si ottengono trasportando in $\Gamma(K,E)$ mediante l'applicazione esponenziale gl'intorni della sezione nulla in $\Gamma(K,F)$.

Nel seguito intenderemo $\Gamma(K,E)$ munito della topologia ora detta; l'iniezione naturale di $\Gamma(K,E)$ in $\Gamma^c(K,E)$ munito della topologia della convergenza uniforme sui compatti è continua.

Sia U un aperto di X; è allora

$$\Gamma(U, E) = \lim_{\widehat{K} \subset U} \Gamma(K, E)$$

ove K percorre i compatti di U. Se assegniamo a $\Gamma(U,E)$ la topologia limite proiettivo delle topologie su $\Gamma(K,F)$ esso diviene un gruppo topologieo, separato e completo. Intenderemo nel seguito $\Gamma(U,E)$ munito di questa topologia. Si ha allora, algebricamente e topologicamente:

$$\Gamma(U, F) = \underset{\widetilde{U} \ni U}{\varinjlim} {}^{\theta} \Gamma(\widetilde{U}, \widetilde{E})$$

 $(\tilde{U} \text{ aperto } \alpha\text{-invariante di } \tilde{X} \text{ tale che } \tilde{U} \cap X = U)$

$$\Gamma(K, E) = \lim_{U \supset K} \Gamma(U, E)$$

(U aperto di X).

Inoltre l'iniezione naturale di $\Gamma(U,E)$ in $\Gamma^{\epsilon}(U,E)$ è continua quando quest'ultimo gruppo sia munito della topologia della convergenza uniforme sui compatti.

Sia C uno spazio topologico compatto, e $N \subset H$ due sottospazi chiusi di C. Chiameremo sezione NHC del fibrato E su un aperto U

di X un diagramma commutativo di applicazioni continue

$$H \xrightarrow{i} C$$

$$\downarrow \downarrow \sigma$$

$$\Gamma(U, E) \xrightarrow{i} \Gamma^{c}(U, E)$$

(ove i e j sono le iniezioni naturali), tale che per $t \in N$ h(t) è la sezione neutra di $\Gamma(U, E)$. Brevemente indicheremo una tale sezione con f(x, t). L'insieme delle sezioni NHC di E su U sarà denotato $\Gamma^1_{NHC}(U, E)$; è un sottogruppo chiuso di $\mathcal{C}(H, \Gamma(U, E)) \times \mathcal{C}(C, \Gamma^c(U, E))$, dunque è un gruppo topologico separato e completo.

Se A è un altro spazio compatto, è facile verificare che

$$C(A, \Gamma_{NHC}(U, E)) = \Gamma_{(N \times A)(H \times A)(C \times A)}(U, E)$$
.

Per omotopia NHC fra due elementi $g, f \in \Gamma_{NHC}(U, E)$ intenderemo un elemento $h \in C(I, \Gamma_{NHC}(U, E))$, ove I = [0, 1], tale che h(0) = g e h(1) = f.

Associando a ogni aperto U di X il gruppo $\Gamma_{NHC}(U,E)$ si ottiene su X un fascio di gruppi non abeliani. Denoteremo con $H^1_{NHC}(X,E)$ il primo insieme di coomologia non abeliana di tale fascio.

Analoghe definizioni valgono per il fibrato vettoriale F; in tal caso $\Gamma_{NHC}(U, F)$ e $\Gamma_{NHC}(K, F)$ sono spazi vettoriali topologici separati e completi su \mathbb{R} .

LEMMA 2.1. Sia f(x,t) un'applicazione continua di H in $\Gamma(K,F)$ (K compatto di X), nulla per $t \in N$. Esiste allora un intorno aperto \tilde{U} di K in \tilde{X} , α -invariante, e un'applicazione continua $\tilde{f}(x,t)$ di H in ${}^{\sigma}\Gamma(\tilde{U},\tilde{F})$, nulla per $t \in N$, tale che per ogni $t \in H$, $\tilde{f}(x,t)$ sia un'estensione di f(x,t). Tale estensione è unica.

DIMOSTRAZIONE. Sia k l'immagine di H in $\Gamma(K, F)$; poichè k è un compatto, per quanto osservato sulla topologia di $\Gamma(K, F)$, esiste un intorno aperto α -invariante, \tilde{U} di K in \tilde{X} , tale che $k \in {}^{\sigma}\Gamma(\tilde{U}, \tilde{F})$ ed è ivi compatto. Ne segue che l'applicazione \tilde{f} di H in ${}^{\sigma}\Gamma(\tilde{U}, \tilde{F})$ che si ottiene componendo f con l'iniezione di k in ${}^{\sigma}\Gamma(\tilde{U}, \tilde{F})$ è continua, dato che la topologia indotta su k da ${}^{\sigma}\Gamma(\tilde{U}, \tilde{F})$ coincide con quella indotta da $\Gamma(K, F)$. Si può supporre che ogni componente connessa di \tilde{U} incontri K; l'unicità dell'estensione \tilde{f} segue allora dal fatto che

per ogni $t \in H$, $\tilde{f}(x, t)$ è un'estensione di f(x, t). Da ciò segue anche che se per un certo $t \in H$ si ha $f(x, t) \equiv 0$, è pure $\tilde{f}(x, t) \equiv 0$; dunque $\tilde{f}(x, t)$ è nulla per $t \in N$.

COROLLARIO 2.2. Sia f(x,t) un'applicazione continua di H in $\Gamma(U,F)$ (U aperto di X), nulla per $t \in N$. Esiste allora un intorno aperto \widetilde{U} di U in \widetilde{X} , α -invariante, e un'applicazione continua $\widetilde{f}(x,t)$ di H in ${}^{\sigma}\Gamma(\widetilde{U},\widetilde{F})$, nulla per $t \in N$, tale che per ogni $t \in H$, $\widetilde{f}(x,t)$ sia un'estensione di f(x,t). Tale estensione è unica.

Il corollario segue subito dal Lemma 2.1 grazie all'unicità della estensione.

Nel caso del fibrato in gruppi di Lie E si ha

LEMMA 2.3. Sia f(x,t) un'applicazione continua di H in $\Gamma(U,E)$ (U aperto di X), neutra per $t \in N$. Esiste allora un intorno aperto \tilde{U} di U in \tilde{X} α -invariante, e un'applicazione continua $\tilde{f}(x,t)$ di H in ${}^{\theta}\Gamma(\tilde{U},\tilde{E})$, neutra per $t \in N$, tale che per ogni $t \in H$, $\tilde{f}(x,t)$ sia un'estensione di f(x,t). Tale estensione è unica.

DIMOSTRAZIONE. Grazie all'unicità, l'asserto è locale in t. Si può quindi supporre che esista $t_0 \in H$ tale che la sezione $g(x,t) = f(x,t_0)^{-1} \cdot f(x,t)$ prenda valori sufficientemente prossimi alla sezione neutra di E da potersi vedere, tramite l'applicazione esponenziale, come sezione di F; dal Corollario 2.2 segue che esiste un intorno aperto \tilde{U} di U in \tilde{X} , α -invariante, e un'applicazione continua $\tilde{g}(x,t)$ di H in ${}^{\theta}\Gamma(\tilde{U},\tilde{E})$, tale che per ogni $t \in H$, $\tilde{g}(x,t)$ sia un'estensione di g(x,t).

Sia inoltre $\tilde{f}(x, t_0)$ un'estensione di $f(x, t_0)$ a un intorno di U in \tilde{X} , che si può supporre sia ancora \tilde{U} . Poniamo allora $\tilde{f}(x, t) = \tilde{f}(x, t_0) \cdot \tilde{g}(x, t)$; si ottiene in tal modo un'estensione di f. Se inoltre si prende \tilde{U} in modo che ogni sua componente connessa incontri U, tale estensione è neutra per $t \in N$ e unica.

Ricordiamo il seguente Lemma, dovuto a Cartan ([2], Lemme 3):

LEMMA 2.4. Sia $i: H \to C$ l'iniezione canonica. Siano M ed M' due spazi di Fréchet (su \mathbb{R} o \mathbb{C}) e $\varphi: M \to M'$ un'applicazione lineare continua surgettiva. Siano $f': C \to M'$ e $g: H \to M$ due applicazioni continue tali che $f' \circ i = \varphi \circ g$. Esiste allora un'applicazione continua $f: C \to M$ che prolunga g e soddisfa alla relazione $\varphi \circ f = f'$.

Utilizzando tale Lemma si può provare il seguente:

LEMMA 2.5. Siano: \tilde{L} un compatto α -invariante di \tilde{X} , \tilde{U} un aperto α -invariante di \tilde{X} , tale che $\tilde{U} \supset \tilde{L}$, $j : {}^{\sigma}\Gamma(\tilde{U}, \tilde{F}) \to {}^{\sigma}\Gamma^{c}(\tilde{U}, \tilde{F})$ l'inclusione,

 $r\colon {}^\sigma \Gamma^\circ(\tilde{U},\tilde{F}) o {}^\sigma \Gamma^\circ(\tilde{L},\tilde{F})$ la restrizione, e $j'=r\circ j$. Siano $a\colon H o {}^\sigma \Gamma(\tilde{U},\tilde{F})$ e $b\colon C o {}^\sigma \Gamma^\circ(\tilde{L},\tilde{F})$ due applicazioni continue tali che $b\circ i=j'\circ a$. Esiste allora un'applicazione continua $c\colon C o {}^\sigma \Gamma^\circ(\tilde{U},\tilde{F})$ tale che $c\circ i=j\circ a$ e $r\circ c=b$.

DIMOSTRAZIONE. Poichè r è un'applicazione surgettiva fra spazi di Fréchet, per il Lemma 2.4 (ove si prenda l'insieme vuoto al posto di H), esiste un'applicazione continua $c': C \to {}^{\sigma}\Gamma^{c}(\tilde{U}, \tilde{F})$ tale che $r \circ c' = b$. Ne segue

$$r \circ (c' \circ i) = (r \circ c') \circ i = b \circ i = j' \circ a = r \circ (j \circ a)$$

da cui

$$r \circ (c' \circ i - j \circ a) = 0$$
.

Sia $\beta = c' \circ i - j \circ a \colon H \to {}^{\sigma}\Gamma^{c}(\tilde{U}, \tilde{F})$. Ancora per il Lemma 2.4 (prendendo come applicazione di C in ${}^{\sigma}\Gamma^{c}(\tilde{L}, \tilde{F})$ l'applicazione nulla), esiste un'applicazione continua $c'' \colon C \to {}^{\sigma}\Gamma^{c}(\tilde{U}, \tilde{F})$ tale che $c'' \circ i = \beta$ e $r \circ c'' = 0$.

Sia allora c = c' - c''. Si ha

$$c \circ i = c' \circ i - c'' \circ i = c' \circ i - \beta = c' \circ i - c' \circ i + j \circ a = j \circ a$$

e inoltre

$$r \circ c = r \circ c' - r \circ c'' = r \circ c' = b$$

e ciò dimostra l'asserto.

§ 3. – Un compatto K di X sarà detto speciale se esiste un compatto speciale α -invariante \widetilde{K} di \widetilde{X} tale che $K = \{x \in \widetilde{K} : \alpha(x) = x\};$ \widetilde{K} sarà detto una complessificazione speciale α -invariante di K.

Una terna (K, K', K'') di compatti di X sarà detta configurazione speciale di X se esiste una configurazione speciale α -invariante di prima specie $(\tilde{K}, \tilde{K}', \tilde{K}'')$ di \tilde{X} tale che K (risp. K', K'') sia la traccia su X di \tilde{K} (risp. \tilde{K}', \tilde{K}''); la terna $(\tilde{K}, \tilde{K}', \tilde{K}'')$ sarà detta complessificazione α -invariante di (K, K', K''). È evidente dalla definizione che dati comunque tre intorni $\tilde{U}, \tilde{U}', \tilde{U}''$ di K, K' e K'' rispettivamente in \tilde{X} , esiste sempre una complessificazione α -invariante $(\tilde{K}, \tilde{K}', \tilde{K}'')$ di (K, K', K'') tale che $\tilde{U} \supset \tilde{K}, \tilde{U}' \supset \tilde{K}', \tilde{U}'' \supset \tilde{K}''$.

Si ha il

TEOREMA 3.1. Sia N un retratto di deformazione di C. Allora:

- 1) Se K è un compatto speciale di X, il gruppo topologico $\Gamma_{NHC}(K,E)$ è connesso per archi.
- 2) Se K è un compatto speciale di X, ogni $f \in \Gamma_{NHC}(K, E)$ è prodotto di un numero finito di elementi di $\Gamma_{NHC}(K, E)$ prossimi quanto si voglia alla sezione neutra.
- 3) Sia (K, K', K'') una configurazione speciale di X. Per ogni $f \in \Gamma_{NHC}(K' \cap K'', E)$ esistono $f' \in \Gamma_{NHC}(K', E)$ e $f'' \in \Gamma_{NHC}(K'', E)$ tali che

$$f = f' \cdot (f'')^{-1}.$$

DIMOSTRAZIONE. Se K è un compatto speciale di X e \widetilde{K} è una sua complessificazione speciale α -invariante, diciamo che K è k-speciale se \widetilde{K} è (k,h)-speciale. Indichiamo allora con $(1)_k$ e $(2)_k$ le affermazioni (1) e (2) quando si riferiscano a un compatto K k-speciale e con $(3)_k$ l'affermazione (3) quando si riferisca al caso in cui $K' \cap K''$ sia un compatto k-speciale. Proviamo allora $(1)_0$, indi la serie d'implicazioni:

$$(1)_k \Rightarrow (2)_k \Rightarrow (3)_k \Rightarrow (1)_{k+1}$$
.

Prova di (1)₀. Si adatta facilmente la dimostrazione di (1)₀ che si trova in [2], p. 110, per il caso complesso.

- $(1)_k \Rightarrow (2)_k$: è ovvio.
- $(2)_k \Rightarrow (3)_k$: sia $f \in \Gamma_{NHC}(K' \cap K'', E)$; in base a $(2)_k$ si può scrivere $f = g_1 \dots g_p$ con $g_i \in \Gamma_{NHC}(K' \cap K'', E)$ prossimo alla sezione neutra quanto si voglia; g_1, \dots, g_p si possono guardare come sezioni NHC di F. Utilizzando i Lemmi 2.1 e 2.5 si possono trovare un intorno aperto α -invariante \widetilde{V} di $K' \cap K''$ in \widetilde{X} , e degli elementi $\widetilde{g}_1, \dots, \widetilde{g}_p \in e^0 \Gamma_{NHC}(\widetilde{V}, \widetilde{E})$ che estendono g_1, \dots, g_p rispettivamente. Sia $(\widetilde{K}, \widetilde{K}', \widetilde{K}'')$ una complessificazione α -invariante di (K, K', K'') tale che $\widetilde{K}' \cap \widetilde{K}'' \subset e^0 \widetilde{V}$. Posto $\widetilde{f} = \widetilde{g}_1 \dots \widetilde{g}_p$, si ottiene un elemento $\widetilde{f} \in {}^0\Gamma_{NHC}(\widetilde{K}' \cap \widetilde{K}'', \widetilde{E})$ che estende f. Per l'affermazione (3) della dimostrazione del Teorema 4.2 di [1] si può scrivere $\widetilde{f} = \widetilde{f}' \cdot (\widetilde{f}'')^{-1}$ con $\widetilde{f}' \in {}^0\Gamma_{NHC}(\widetilde{K}, \widetilde{E})$ e $\widetilde{f}'' \in {}^0\Gamma_{NHC}(\widetilde{K}'', \widetilde{E})$. Si ha allora $f = f' \cdot (f'')^{-1}$ ove f' (risp. f'') è la restrizione di \widetilde{f}' (risp. \widetilde{f}'') a K' (risp. K'').
- $(1)_k + (3)_k \Rightarrow (1)_{k+1}$: anche questa parte della dimostrazione si ottiene agevolmente adattando l'analoga dimostrazione di [2], p. 111.

Osserviamo che nel corso della dimostrazione abbiamo anche provato il seguente

LEMMA 3.2. Sia K un compatto speciale di X. Se N è retratto di deformazione di C, ogni elemento $f \in \Gamma_{NHC}(K, E)$ ammette un'estensione $\tilde{f} \in {}^{\theta}\Gamma_{NHC}(\tilde{V}, \tilde{E})$, ove \tilde{V} è un opportuno intorno aperto α -invariante di K in \tilde{X} .

Stabiliamo ora il seguente

TEOREMA 3.3. Sia N un retratto di deformazione di C. Ogni $f \in \Gamma_{NHC}$: (X, E) ammette un'estensione $\tilde{f} \in {}^{\theta}\Gamma_{NHC}(\tilde{U}, \tilde{E})$ ove \tilde{U} è un opportuno intorno aperto α -invariante di X in \tilde{X} .

DIMOSTRAZIONE. Dal Lemma 4.3 di [1] segue che X è riunione di una famiglia numerabile $(K_n)_{n\in N}$ di compatti speciali, tali che $K_n\subset K_{n+1}$. Indicata con f_n la restrizione di f all'intorno di K_n , proveremo che per ogni $n\in \mathbb{N}$ esiste un intorno compatto α -invariante, \tilde{K}_n , di K_n in \tilde{X} , e un'estensione $\tilde{f}_n\in {}^{\theta}\Gamma_{NHC}(\tilde{K}_n,\tilde{E})$, di f_n , in modo che $\binom{n}{k-1}\tilde{K}_k\cap \tilde{K}_{n+1}=\tilde{K}_n\cap \tilde{K}_{n+1}$, e le restrizioni di \tilde{f}_n e \tilde{f}_{n+1} a $\tilde{K}_n\cap \tilde{K}_{n+1}$ coincidano.

Procediamo per induzione su n. Si ottengono \tilde{K}_1 e \tilde{f}_1 grazie al Lemma 3.2.

Supponiamo quindi di aver costruito $\tilde{K}_1, ..., \tilde{K}_n$ e $\tilde{f}_1, ..., \tilde{f}_n$, e costruiamo \tilde{K}_{n+1} e \tilde{f}_{n+1} . In base al Teorema 3.1, (2), si può scrivere:

$$f_{n+1}(x, t) = g_1(x, t) \dots g_p(x, t)$$

(per $t \in C$ e x in un intorno di K_{n+1} in X) ove $g_i \in \Gamma_{NHC}(K_{n+1}, E)$ è sufficientemente prossimo alla sezione neutra da potersi vedere come elemento di $\Gamma_{NHC}(K_{n+1}, F)$. Utilizzando il Lemma 2.1, si può trovare un intorno compatto α -invariante \widetilde{W} di K_{n+1} in \widetilde{X} , e delle sezioni $\widetilde{g}_1(x,t),\ldots,\widetilde{g}_x(x,t)$, definite per $t \in H$ e x in un intorno di \widetilde{W} , di \widetilde{E} , θ -invarianti, continue in x e t e olomorfe in x, che per $t \in H$ estendano $g_1(x,t),\ldots,g_x(x,t)$ rispettivamente.

Si può supporre, restringendo eventualmente \widetilde{W} , che sia $(\bigcup_{k=1}^n \widetilde{K}_k) \cap \widetilde{W} = \widetilde{K}_n \cap \widetilde{W}$. Per l'unicità delle estensioni olomorfe si avrà allora: $\widetilde{f}_n(x,t) = \widetilde{g}_1(x,t) \dots \widetilde{g}_p(x,t)$ per $t \in H$ e x in un intorno di $\widetilde{K}_n \cap \widetilde{W}$. Utilizzando il Lemma 2.5, restringendo ancora, se necessario, \widetilde{W} , esten-

diamo $\tilde{g}_1(x, t), \ldots, \tilde{g}_{\nu-1}(x, t)$ anche per $t \in C$, ottenendo degli elementi di ${}^{\theta}\Gamma_{NHC}(\tilde{W}, \tilde{E})$ che estendano $g_1(x, t), \ldots, g_{\nu-1}(x, t)$.

Poniamo quindi

$$\tilde{g}_p'(x,t) = \left\{ \begin{array}{l} \tilde{g}_p\left(x,t\right) \text{ per } x \text{ in un intorno di } \tilde{W}, \text{ e } t \in H; \\ (\tilde{g}_1(x,t) \dots \tilde{g}_{p-1}(x,t))^{-1} \tilde{f}_n(x,t) \text{ per } x \text{ in un intorno di } \\ \tilde{K}_n \cap \tilde{W} \text{ e } t \in C; \\ g_p(x,t) \text{ per } x \text{ in un intorno di } K_{n+1} \text{ in } X \text{ e } t \in C. \end{array} \right.$$

Si può trovare un intorno compatto α -invariante \widetilde{W}' di K_{n+1} in \widetilde{X} , $\widetilde{W}' \subset \widetilde{W}$, tale che $\widetilde{g}'_p(x,t)$ per x in un intorno di \widetilde{W}' prenda valori sufficientemente prossimi alla sezione neutra di \widetilde{E} da potersi vedere come applicazione a valori in \widetilde{F} . Posto allora $\widetilde{L} = (\widetilde{K}_n \cap \widetilde{W}') \cup K_{n+1},$ $\widetilde{g}'_p(x,t)$ definisce, per $t \in H$, un'applicazione continua $a: H \to {}^{\sigma}\Gamma(\widetilde{W}',\widetilde{F})$ e per $t \in C$ un'applicazione continua $b: C \to {}^{\sigma}\Gamma^c(\widetilde{L},\widetilde{F})$ che soddisfano alle ipotesi del Lemma 2.5. Grazie a tale Lemma, si può estendere $\widetilde{g}'_p(x,t)$ a un elemento di ${}^{\sigma}\Gamma_{NHC}(\widetilde{W}',\widetilde{F})$, e quindi, per trasporto tramite l'applicazione esponenziale, a un elemento di ${}^{\sigma}\Gamma_{NHC}(\widetilde{W}',\widetilde{E})$ che denotiamo $\widetilde{g}_p(x,t)$. Poniamo allora per $t \in C$ e x in un intorno di \widetilde{W}' :

$$\tilde{f}_{n+1}(x, t) = \tilde{g}_1(x, t) \dots \tilde{g}_p(x, t) ...$$

Posto $\tilde{K}_{n+1} = \tilde{W}'$, è chiaro dalla costruzione che \tilde{f}_{n+1} e \tilde{f}_n coincidono su $\tilde{K}_n \cap \tilde{K}_{n+1}$.

Con ciò è provato il Teorema.

COROLLARIO 3.4. Se N è un retratto di deformazione di C, il gruppo topologico $\Gamma_{NHC}(X, E)$ è connesso per archi.

DIMOSTRAZIONE. Sia $f \in \Gamma_{NHC}(X, E)$; per il Teorema 3.3 esiste una estensione $\tilde{f} \in {}^{\theta}\Gamma_{NHC}(\tilde{U}, \tilde{E})$ di f a un opportuno intorno aperto α -invariante \tilde{U} di X in \tilde{X} . Si può supporre \tilde{U} di Stein, onde per il Teorema 4.2, (i) di [1], esiste un'omotopia $\tilde{G}(x, t, u) \in {}^{\theta}\Gamma_{N'H'C'}(\tilde{U}, \tilde{E})$ che lega \tilde{f} alla sezione neutra. La restrizione di \tilde{G} a X fornisce allora una omotopia NHC che lega f alla sezione neutra in $\Gamma_{NHC}(X, E)$.

TEOREMA 3.5. Sia N un retratto di deformazione di C. Ogni elemento di $H^1_{NHC}(X,E)$ si estende a un elemento di ${}^{\theta}H^1_{NHC}(\tilde{U},\tilde{E})$ ove \tilde{U} è un opportuno intorno α -invariante di X in \tilde{X} .

DIMOSTRAZIONE. Sia (f_{ij}) un cociclo NHC associato a un ricoprimento $(U_i)_{i\in I}$ di X; è allora $f_{ij}\in \Gamma_{NHC}(U_i\cap U_j,E)$. Si può supporre senza restrizione di generalità che $I=\mathbb{N}$, che il ricoprimento (U_i) sia localmente finito, che ogni U_i sia relativamente compatto e che ogni f_{ij} sia definito nell'intorno di $\overline{U}_i\cap \overline{U}_i$.

Applicando il Lemma 2.3 è possibile trovare un intorno aperto α -invariante \tilde{V} di X in \tilde{X} , un ricoprimento aperto di Stein localmente finito $(\tilde{V}_i)_{i\in I}$ di \tilde{V} , tale che per ogni $i\in I$ $\tilde{V}_i\supset \overline{U}_i$, e per $i,j\in I$ delle estensioni $\tilde{f}_{ij}(x,t)$, θ -invarianti, di $f_{ij}(x,t)$, definite per $t\in H$ e $x\in \tilde{V}_i\cap \tilde{V}_j$, continue in x e t e olomorfe in x, che soddisfano alle condizioni

(*)
$$\tilde{f}_{ij}(x,t) = \tilde{f}_{ik}(x,t)\tilde{f}_{kj}(x,t)$$
 per $x \in \tilde{V}_i \cap \tilde{V}_i \cap \tilde{V}_k$ e $t \in H$.

Bisogna allora estendere le $\tilde{f}_{ij}(x,t)$ anche per valori di $t \in C$, restringendo eventualmente \tilde{V} , in modo che le (*) rimangano verificate.

Per far ciò, procederemo per induzione. Supponiamo che si siano trovati degl'intorni aperti di Stein e α -invarianti $\tilde{U}_1, \ldots, \tilde{U}_n$ di $\overline{U}_1, \ldots, \overline{U}_n$ rispettivamente, e per $i, j \leqslant n$ delle sezioni $\tilde{f}_{ij}(x,t) \in {}^{\theta}\Gamma_{NHC}(\tilde{U}_i \cap \tilde{U}_j, \tilde{E})$ che estendano le $f_{ij}(x,t)$ e che soddisfino alle (*) per $i, j, k \leqslant n$. Cerchiamo allora un intorno aperto di Stein e α -invariante \tilde{U}_{n+1} di \overline{U}_{n+1} e per ogni $j \leqslant n$ una sezione $\tilde{f}_{n+1,j}(x,t) \in {}^{\theta}\Gamma_{NHC}(\tilde{U}_{n+1} \cap \tilde{U}_j, \tilde{E})$ che estenda $f_{n+1,j}(x,t)$ e che soddisfi alle condizioni (*) con i=n+1 e $j, k \leqslant n$. Su $\tilde{V}_{n+1} \cap \tilde{U}_j$ è definita, per $t \in H$, la sezione $\tilde{f}_{n+1,j}(x,t)$. Supponiamo di aver trovato $\tilde{f}_{n+1,j}(x,t)$ per $t \in C$ e per $j \leqslant k$ $(k \leqslant n)$ e cerchiamo $\tilde{f}_{n+1,k+1}(x,t)$ per $t \in C$ (1).

Come conseguenza del Corollario 3.4 si può scrivere:

$$f_{n+1,k+1}(x,t) = g_1(x,t) \dots g_p(x,t)$$

ove $g_1, ..., g_p \in \Gamma_{NHC}(\overline{U}_{n+1} \cap \overline{U}_{k+1}, E)$ sono sufficientemente prossimi alla sezione neutra da potersi vedere come sezioni NHC di F. Restringendo, se necessario, \tilde{V}_{n+1} e \tilde{U}_{k+1} (2), mediante il Lemma 2.1 si possono tro-

⁽¹⁾ Si fa cioè un'induzione all'interno della prima induzione. Si noti che i passi iniziali delle due induzioni sono implicitamente contenuti nei passi successivi.

⁽²⁾ Qui e nel seguito si presenta la necessità di restringere, oltre che \tilde{V}_{n+1} , anche quelli tra gli \tilde{U}_j $(j \leq k+1)$ che incontrano \tilde{V}_{n+1} . Ma poichè il ricoprimento $(\tilde{V}_i)_{i \in I}$ è localmente finito, in realtà ogni \tilde{U}_j $(j \in I)$ viene, in definitiva, ristretto solo un numero finito di volte.

vare delle sezioni $\tilde{g}_1(x, t), \ldots, \tilde{g}_p(x, t)$, definite per $t \in H$ e $x \in \tilde{V}_{n+1} \cap \tilde{U}_{k+1}$, θ -invarianti, continue in x e t e olomorfe in x, che per $t \in H$ estendano $g_1(x, t), \ldots, g_p(x, t)$ rispettivamente. Per l'unicità delle estensioni olomorfe si avrà

$$\tilde{f}_{n+1,k+1}(x,t) = \tilde{g}_1(x,t) \dots \tilde{g}_p(x,t)$$

per $t \in H$ e $x \in \tilde{V}_{n+1} \cap \tilde{U}_{k+1}$.

Restringendo ancora se necessario \widetilde{V}_{n+1} e \widetilde{U}_{k+1} , estendiamo mediante il Lemma 2.5 $\widetilde{g}_1(x,t),\ldots,\widetilde{g}_{p-1}(x,t)$ anche per $t\in C$, ottenendo degli elementi di ${}^{\theta}T_{NHC}(\widetilde{V}_{n+1}\cap\widetilde{U}_{k+1},\widetilde{E})$ che estendono $g_1(x,t),\ldots,g_{p-1}(x,t)$.

Posto, per semplificare le notazioni

$$\tilde{F}(x,t) = (\tilde{g}_1(x,t) \dots \tilde{g}_{p-1}(x,t))^{-1}$$

sia

$$\tilde{g}_{p}^{\prime l}(x,t) = \begin{cases} \tilde{F}(x,t) \cdot \tilde{f}_{n+1,1}(x,t) \cdot \tilde{f}_{1,k+1}(x,t) \\ & \text{per } t \in C \text{ e } x \in \tilde{V}_{n+1} \cap \tilde{U}_{k+1} \cap \tilde{U}_{1} ; \\ \vdots \\ \tilde{F}(x,t) \cdot \tilde{f}_{n+1,k}(x,t) \cdot \tilde{f}_{k,k+1}(x,t) \\ & \text{per } t \in C \text{ e } x \in \tilde{V}_{n+1} \cap \tilde{U}_{k+1} \cap \tilde{U}_{k} ; \\ \tilde{g}_{p}(x,t) \text{ per } t \in H \text{ e } x \in \tilde{V}_{n+1} \cap \tilde{U}_{k+1} ; \\ g_{p}(x,t) \text{ per } t \in C \text{ e } x \in \overline{U}_{n+1} \cap \overline{U}_{k+1} . \end{cases}$$

Restringendo eventualmente \widetilde{V}_{n+1} e $\widetilde{U}_1,\ldots,\widetilde{U}_k$ (3) si può supporre che $\widetilde{g}'_p(x,t)$ prenda valori sufficientemente prossimi alla sezione neutra di \widetilde{E} da potersi considerare a valori in \widetilde{F} . Procedendo come nella dimostrazione del Teorema 3.3 (servendosi del Lemma 2.5) e salvo un ulteriore restringimento, si può estendere $\widetilde{g}'_p(x,t)$ a una sezione $\widetilde{g}_p(x,t) \in \in {}^o\Gamma_{NHC}(\widetilde{V}_{n+1} \cap \widetilde{U}_{k+1},\widetilde{E})$. Si può porre allora $\widetilde{U}_{n+1} = \widetilde{V}_{n+1}$ e $\widetilde{f}_{n+1,k+1}(x,t) = = \widetilde{g}_1(x,t)\ldots\widetilde{g}_p(x,t)$ ottenendo la sezione $\widetilde{f}_{n+1,k+1} \in {}^o\Gamma_{NHC}(\widetilde{U}_{n+1} \cap \widetilde{U}_{k+1},\widetilde{E})$ cercata.

COROLLARIO 3.6. Se N è un retratto di deformazione di C, si ha

$$H^1_{NHC}(X, E) = (e) .$$

⁽³⁾ Vedi nota precedente.

DIMOSTRAZIONE. Ogni elemento di $H^1_{NHC}(X, E)$ si estende per il teorema precedente a un elemento di ${}^{\theta}H^1_{NHC}(\widetilde{U}, \widetilde{E})$ con \widetilde{U} intorno aperto α -invariante di X in \widetilde{X} . Si può supporre che \widetilde{U} sia di Stein. Il corollario è allora conseguenza del Teorema 4.2, (iii), di [1].

§ 4. – Sia P uno spazio fibrato E-principale su X (per la definizione si veda [2], p. 100). Si ha allora, come nel caso complesso:

Teorema 4.1. Ogni sezione continua di P su X è omotopa a una sezione analitica.

DIMOSTRAZIONE. Si procede esattamente come in [2], dimostrazione del Théorème 1 bis, utilizzando il Corollario 3.6.

TEOREMA 4.2. Sia (U_i) un ricoprimento aperto di X. Siano due cocicli analitici $f_{ij}: U_{ij} \to E$ e $g_{ij}: U_{ij} \to E(U_{ij} = U_i \cap U_j)$. Se esistono delle sezioni continue $c_i: U_i \to E$ tali che $g_{ij} = (c_i)^{-1} f_{ij} c_j$ in U_{ij} , esistono anche delle sezioni analitiche che soddisfano alle stesse relazioni.

DIMOSTRAZIONE. Il teorema risulta dal precedente come in [2] il Théorème A si deduce dal Théorème 1 bis (v. [2], p. 102).

TEOREMA 4.3. Sia X ricoperto da aperti U_i tali che \overline{U}_i sia un compatto speciale. Sia un cociclo continuo f_{ij} : $U_{ij} \to E$. Esistono allora delle sezioni continue c_i : $U_i \to E$ tali che il cociclo $g_{ij} = (c_i)^{-1} f_{ij} c_j$ sia analitico.

DIMOSTRAZIONE. Come in [2], p. 106-109, dimostrazione del Théorème B, utilizzando il Teorema 4.1.

Indicando con ξ^a (risp. ξ^c) il fascio dei germi di sezioni analitiche (risp. continue) di E, i Teoremi 4.2 e 4.3 si possono riassumere nel seguente:

TEOREMA 4.4. L'applicazione naturale $H^1(X, \xi^a) \to H^1(X, \xi^c)$ è bigettiva.

REFERENCES

 V. Ancona, Sui fibrati analitici reali E-principali - I: Alcuni teoremi sulle matrici olomorfe invertibili, Annali di Mat. pura e appl., 107 (1976), 343-357.

- [2] H. Cartan, Espaces fibrés analytiques, Symposium international de topologia algebraica, Universidad National Autonoma de Mexico, 1958.
- [3] K. Floret J. Wloka, Einführung in die Theorie der lokalkonvexen Raüme, Lecture Notes in Math. no. 56, Springer-Verlag.
- [4] A. Tognoli, Proprietà globali degli spazi analitici reali, Annali di Matpura e appl., 75 (1967), 143-218.
- [5] A. TOGNOLI, Sulla classificazione dei fibrati analitici reali, Annali Sc. Norm. Sup. Pisa, 21 (1967), 709-744.
- [6] A. TOGNOLI, L'analogo del teorema delle matrici olomorfe invertibili nel caso analitico reale, Annali Sc. Norm. Sup. di Pisa, 22 (1968), 528-558.

Manoscritto pervenuto in redazione il 24 gennaio 1975.