RENDICONTI del Seminario Matematico della Università di Padova

ARRIGO CELLINA

A selection theorem

Rendiconti del Seminario Matematico della Università di Padova, tome 55 (1976), p. 143-149

http://www.numdam.org/item?id=RSMUP_1976_55_143_0

© Rendiconti del Seminario Matematico della Università di Padova, 1976, tous droits réservés.

L'accès aux archives de la revue « Rendiconti del Seminario Matematico della Università di Padova » (http://rendiconti.math.unipd.it/) implique l'accord avec les conditions générales d'utilisation (http://www.numdam.org/conditions). Toute utilisation commerciale ou impression systématique est constitutive d'une infraction pénale. Toute copie ou impression de ce fichier doit contenir la présente mention de copyright.

\mathcal{N} umdam

Article numérisé dans le cadre du programme Numérisation de documents anciens mathématiques http://www.numdam.org/ REND. SEM. MAT. UNIV. PADOVA, Vol. 55 (1976)

A Selection Theorem.

ARRIGO CELLINA (*)

1. - Introduction.

A well known theorem of Michael states that a lower semi-continuous multi-valued mapping, from a metric space into the nonempty closed and convex subsets of a Banach space, admits a continuous selection. It is also known that, when the multi-valued mapping is instead upper semi-continuous, in general we have only measurable selections.

This paper considers a compact convex valued mapping F of two variables, t and x, that is separately upper semi-continuous in t for every fixed x and lower semi-continuous in x for every fixed t, and proves the existence of a selection f(t, x), separately measurable in tand continuous in x. As a consequence, an existence theorem for solutions of a multi-valued differential equation is presented.

2. – Notations and basic definitions.

In what follows **R** are the reals, X a separable metric space and Z a Banach space. We shall denote by K(Z) the set of non-empty compact and convex subsets of Z. $B[A, \varepsilon]$ is an open ball of radius $\varepsilon > 0$ about the set A, \overline{A} is the closure of A. We shall use the symbol $d(\cdot, \cdot)$ both for the metric in X and for the metric inherited from the norm in Z. Also d(a, B) is the distance from the point a to the set B, while

^(*) Indirizzo dell'A.: Istituto Matematico, Università, Via Belzoni 7, 35100 Padova.

Arrigo Cellina

 $\delta^*(A, B) = \sup \{d(a, B) : a \in A\}$ and D is the Hausdorff distance, i.e. $D(A, B) = \sup \{\delta^*(A, B), \delta^*(B, A)\}$. A mapping F from a subset I of the reals into the nonempty compact subsets of Z is called upper semicontinuous (u.s.c.) if $\forall t^0 \in I, \forall \varepsilon > 0, \exists \delta > 0 : |t - t^0| < \delta \Rightarrow F(t) \subset C B[F(t_0), \varepsilon]$. A mapping $F: X \to K(Z)$ is called lower semi-continuous (l.s.c.) if $\forall x^0 \in X, \forall \varepsilon > 0, \exists \delta > 0 : d(x, x^0) < \delta \Rightarrow F(x^0) \subset B[F(x), \varepsilon]$.

3. - Main results.

LEMMA. Let $E \subset \mathbf{R}$ be compact; let X be a separable metric space, Z a Banach space. Let $\Phi: E \times X \to K(Z)$ be upper semi-continuous in $t \in E$ for every $x \in X$ and lower semi-continuous in x for every $t \in E$. Then for every $\varepsilon > 0$ there exist E_{ε} , a compact subset of E, with $\mu(E \setminus E_{\varepsilon}) \leq \varepsilon$ and a single-valued continuous function $f_{\varepsilon}: E_{\varepsilon} \times X \to Z$ such that for $(t, x) \in E_{\varepsilon} \times X$,

$$d(f_{\varepsilon}(t, x), \Phi(t, x)) \leq \varepsilon$$
.

PROOF. Let $D = \{x_i\}$ be a countable dense subset of X. Set $\Delta = \operatorname{diam}(E)$. For every j set

$$\delta_{j}(t) = \sup \left\{ \delta \colon 0 < \delta < \varDelta \colon \exists y \in \Phi(t, x_{j}) \colon d(x, x_{j}) < \delta \Rightarrow d(y, \Phi(t, x)) < \varepsilon/2 \right\}$$

Since Φ is l.s.c. in x for every t, the set inside parenthesis is nonempty. The following a) and b) are the two main reasons for the above definition

a) The real valued functions $\delta_j(t)$ are semi-continuous. Fix j and t^0 . We wish to prove that

$$\lim \delta_j(t) \leqslant \delta_j(t^0) \; .$$

Assume this is false; then there exist $\{t_n\}, t_n \to t^0$ and a positive $\xi \colon \delta_j(t_n) > \delta_j(t^0) + \xi$. By the very definition of δ_j , for every *n* there exists $y_n \in \Phi(t_n, x_j)$ such that $d(x, x_j) < \delta_j(t^0) + \xi/2$ implies $d(y_n, \Phi \cdot (t_n, x)) < \varepsilon/2$. Since $\Phi(\cdot, x_j)$ is u.s.c. at $t^0, d(y_n, \Phi(t^0, x_j)) \to 0$. Tehn from the compactness of $\Phi(t^0, x_j)$ it follows easily that there exists a subsequence converging to some $y^0 \in \Phi(t^0, x_j)$. Now fix any x such that $d(x, x_j) < \delta_j(t^0) + \xi/2$. Then

$$d(y^{0}, \Phi(t^{0}, x)) \leq d(y^{0}, y_{n}) + d(y_{n}, \Phi(t_{n}, x)) + \delta^{*}(\Phi(t_{n}, x), \Phi(t^{0}, x))$$

144

Since $d(y^0, y_n) \to 0$, $\delta^*(\Phi(t_n, x), \Phi(t^0, x)) \to 0$ and $d(y_n, \Phi(t_n, x)) \leq \varepsilon$, it follows that $d(y^0, \Phi(t^0, x)) \leq \varepsilon/2$.

Therefore $\delta_j(t^0) + \xi/2 \leq \delta_j(t^0)$, a contradiction. This proves our claim on $\delta_j(\cdot)$.

The functions $\delta_j(\cdot)$, being semi-continuous, are measurable. Applying Lusin's Theorem we infer the existence of a compact $E_1 \subset E$ with $\mu(E \setminus E_1) \leq \varepsilon/2$ such that on E_1 each $\delta_j(\cdot)$ is continuous.

b) For every $t \in E_1$, $V_{j,t} = \{x: d(x, x_j) < \delta_j(t)/2\}$. Then $\{V_{j,t}\}$ is a covering of X (for each fixed t).

It is enough to show that if $\{x_i\}$ converges to \hat{x} , then $\lim_{t \to \infty} \delta_i(t) > 0$. Consider \hat{x} : since $\Phi(t, \cdot)$ is u.s.c., there exists $\Delta > 0$: $d(x, \hat{x}) < \Delta$ implies $\Phi(t, \hat{x}) \subset B[\Phi(t, x), \varepsilon/4]$. We claim then: x_i sufficiently close to \hat{x} implies $\delta_i(t) > \Delta/2$. In fact let $d(x_i, \hat{x}) < \Delta/2$; let $x' \in B[x_i, \Delta/2]$, so that $d(x', \hat{x}) < \Delta$. Take any $y \in \Phi(t, \hat{x})$: there exists $y'_i \in \Phi(t, x_i)$: $d(y, y'_i) < \varepsilon/4$. Hence

$$d(y_j', \varPhi(t, x')) \! \leqslant \! d(y_j', y) + d(y, \varPhi(t, x')) \! < \! arepsilon \! / \! 4 + arepsilon \! / \! 4 = arepsilon \! / \! 2$$
 .

This proves that $\delta_{i}(t) \ge \Delta/2$ and our point b).

Consider now the mappings $\Psi_i: E \to 2^z$ defined by

$$\Psi_{j}(t) = \{ y \in \Phi(t, x_{j}) \colon d(x, x_{j}) < \delta_{j}(t) \Rightarrow d(y, \Phi(t, x)) \leq \varepsilon/2 \}.$$

By the definition of δ_j , $\Psi_j(t)$ is non-empty. Our next claim is that the restriction of Ψ_j to E_1 is u.s.c. We shall prove first that it has closed graph. Assume this is not true: there exist t^0 and $\{t_n\}, t_n \to t^0$, points y_n and y^0 , with $y_n \in \Psi_j(t_n)$ and $y_n \to y^0$ such that $y^0 \notin \Psi_j(t^0)$, i.e. there exist $\xi > 0$ and $\hat{x}: d(\hat{x}, x_j) < \delta_j(t^0) - \xi$ but

$$d(y^{0}, \boldsymbol{\Phi}(t^{0}, \hat{x})) > \varepsilon/2$$
 .

By the continuity of δ_j , *n* large implies $\delta_j(t_n) > d(\hat{x}, x_j)$, hence

$$d(y^{_0}, \varPhi(t^{_0}, \hat{x})) \! \leqslant \! d(y^{_0}, y_{_n}) + d(y_{_n}, \varPhi(t_n, \hat{x})) + \delta^*(\varPhi(t_n, \hat{x}), \varPhi(t^{_0}, \hat{x})) \; .$$

Since $y_n \in \Psi_i(t_n)$, $d(y^0, \Phi(t^0, \hat{x})) \leq \varepsilon/2$ or

$$y^{\scriptscriptstyle 0} \in \Psi_j(t^{\scriptscriptstyle 0})$$
 .

10

Arrigo Cellina

A contradiction, so Ψ_j has closed graph. We have in addition, that $\Phi(\cdot, x_j)$ is u.s.c. and that its images are compact sets. This implies that $\Phi(E_1, x_j)$ is compact. Finally, Ψ_j , a closed mapping whose range is contained in a compact set, is u.s.c.

Drop an open set of measure at most $\varepsilon/2$ so that on its complement $E_{\varepsilon} \subset E_1$ (we have $\mu(E \setminus E_{\varepsilon}) < \varepsilon$) each $\Psi_j(\cdot)$ is continuous. Then for every j, for every $\tau \in E_{\varepsilon}$, there exist $\varrho(j, \tau) > 0$ and $\eta(j, \tau): 0 < \langle \eta(j, \tau) \leq \varrho(j, \tau): |\tau - t| < \varrho(j, \tau)$ implies $D(\Psi_j(t), \Psi_j(\tau)) < \varepsilon/2$ and $|\tau - t| < \eta(j, \tau)$.

Consider the collection $\{O(j, \tau)\},\$

$$O(j, \tau) = \{(t, x) : |t - \tau| < \eta(j, \tau) \text{ and } x \in V_{j, \tau} \}.$$

It is an open covering of the paracompact $E_{\varepsilon} \times S$. Let $\{V(j, \tau)\}$ be a (precise) locally finite refinement, $\{p_{j,\tau}\}$ a partition of unity subordinate to $V(j, \tau)$; choose $y_{j,\tau} \in \Psi_j(\tau)$ and set

$$f_{\varepsilon}(t,x) = \sum p_{j,\tau}(t,x) y_{j,\tau}$$

We claim that the above f_{ε} has the required properties.

In fact, fix $(t, x) \in E_{\varepsilon} \times S$. Let j, τ be such that $p_{j,\tau}(t, x) > 0$. Hence $(t, x) \in O(j, \tau)$, i.e.

i)
$$|t-\tau| < \eta(j,\tau)$$
 and ii) $|x-x_j| < \frac{1}{2}\delta_j(\tau)$.

From point i), there exists $\hat{y} \in \Psi_j(t)$: $d(\hat{y}, y_{j,\tau}) < \varepsilon/2$. Moreover $|t - \tau| < \langle \eta(j, \tau) \rangle$ implies $\frac{1}{2}\delta_j(\tau) < \delta_j(t)$. Hence from ii) and the definition of $\Psi_j(t)$, we have

$$d(y_{j, au}, \Phi(t, x)) \leqslant d(y_{j, au}, \hat{y}) + d(\hat{y}, \Phi(t, x)) < \varepsilon/2 + \varepsilon/2 = \varepsilon$$
.

The convexity of $\Phi(t, x)$ implies that the same relation holds for $f_{\varepsilon}(t, x)$, a convex combination of $y_{j,\tau}$'s. Q.E.D.

THEOREM 1. Let $I \subset \mathbf{R}$ be compact, X a separable metric space $F: I \times X \to K(Z)$ be u.s.c. for every fixed $x \in X$, l.s.c. for every fixed $t \in I$. Then there exists a mapping $f: I \times X \to Z$ such that

- i) for every $(t, x) \in I \times X$, $f(t, x) \in F(t, x)$,
- ii) for every $x \in X$, $f(\cdot, x): I \to Z$ is measurable,
- iii) for every $t \in I$, $f(t, \cdot): X \to Z$ is continuous.

 $\mathbf{146}$

PROOF. Let $\varepsilon_n \downarrow 0: \sum \varepsilon_n < \mu(I)$. We claim first: there exist compact $E_n \subset I$ with $\mu(I \setminus E_n) \leqslant \varepsilon_n$ and continuous $f_n: E_n \times X \to Z$ such that

$$egin{aligned} &dig(f_n(t,\,x),\,F(t,\,x)ig)\!\leqslant\!arepsilon_n\,\,,\qquad t\in E_n\,,\;n=1,\,\ldots\,,\ &dig(f_n(t,\,x),\,f_{n-1}(t,\,x)ig)\!\leqslant\!arepsilon_{n-1}\,,\qquad t\in E_{n-1}\cap E_n\,,\;n=2,\,\ldots \end{aligned}$$

For n = 1 set in the preceding Lemma $\varepsilon = \varepsilon_1$, E = I, $\Phi = F$ and call f_1 the f_{ε} obtained.

Assume we have constructed E_n , f_n up to n = N-1. Consider $I \ E_{N-1}$. It is an open set; there exist C_{N-1} , a compact subset of $I \ E_{N-1}$, with $\mu((I \ E_{N-1}) \ C_{N-1}) < \varepsilon_N/3$. In the Lemma set $E = C_{N-1}$, $F = \Phi$, $\varepsilon = \varepsilon_N/3$ to yield:

- a compact subset K_N^1 of C_{N-1} , with $\mu(C_{N-1} \setminus K_N^1) \leqslant \varepsilon_N/3$ and
- a function $f^1(t, x)$: $K^1_N \times X \to Z$ such that

$$d(f^1(t, x), F(t, x)) \leq \varepsilon_N/3 < \varepsilon_N$$
.

Consider now the set $E_{N-1} \times X$ and the mapping $\Phi: E_{N-1} \times X \to K(Z)$ defined by

$$\Phi(t, x) = F(t, x) \cap \overline{B[f_{N-1}(t, x), \varepsilon_{N-1}]}.$$

By our induction assumption, $\Phi(t, x)$ is non-empty. Moreover it is compact and convex. In addition it is u.s.c. in $t \in E_{N-1}$ for every fixed $x \in X$ (its graph is the intersection of two closed graphs and the range is contained in a compact set) and l.s.c. in x for every fixed t [1].

Applying the Lemma to Φ , E_{N-1} and ε_N , we infer the existence of a compact $K_N^2 \subset E_{N+1}$, $\mu(E_{N-1} \setminus K_{N-1}^2) < \varepsilon_N$ and a $f^2: K_N^2 \times X \to Z$ such that

$$d(f^2(t,x), \Phi(t,x)) < \varepsilon_N$$
 .

Hence for f^2 both

$$d(f^2(t, x), f_{N-1}(t, x)) \leq \varepsilon_{N-1}$$

and

$$d(f^2(t, x), F(t, x)) < \varepsilon_N$$
 hold.

Arrigo Cellina

Set $E_N = K_N^1 \cup K_N^2$ and define $f_N \colon E_N \times X \to Z$ by

$$f_N(t, x) = \left\{ egin{array}{ll} f^1(t, x) \ , & t \in K_N^1 \ , \ f^2(t, x) \ , & t \in K_N^2 \ . \end{array}
ight.$$

We have that $\mu(I \setminus E_N) = \mu((E_{N-1} \setminus K_N^2) \cup ((I \setminus E_{N-1}) \setminus K_N^1)) \leq \varepsilon_N/3 + 2\varepsilon_N/3 = \varepsilon_N$, and the claim is proved.

Now set

$$A_N = \bigcup_{n=N}^{\infty} (I \setminus E_N) .$$

Then $A_N \subset A_{N-1}$ and $\mu(\cap A_N) = \lim \mu(A_N) = 0$. Fix $t \notin \cap A_N$. Then $\{f_N(t, \cdot)\}$ is a Cauchy sequence of continuous functions and converges uniformly to a $\varphi(t, x)$, continuous in x. Fix x. Then for every $t \notin \cap A_N$, $\varphi(t, x)$ is the pointwise limit of $f_N(t, x)$, hence measurable. For $t \in \cap A_N$, let $\varphi(t, \cdot)$ be any continuous selection from $F(t, \cdot)$ [1].

The function

$$f(t, x) = \begin{cases} \varphi(t, x), & t \in I \setminus \cap A_N, \\ \varphi(t, x), & t \in \cap A_N, \end{cases}$$

has the required properties. Q.E.D.

From Theorem 1 the following Theorem 2 can easily be proved:

THEOREM 2. Let Z be a finite dimensional space, Ω an open subset of $R \times Z$, $F: \Omega \to K(Z)$ be u.s.c. in t for every fixed x and l.s.c. in x for every fixed t, t and x in Ω . Moreover assume that the range of F is contained in some compact subset of Z. Let $(t^0, x^0) \in \Omega$. Then the Cauchy problem

 $x' \in F(t, x)$, $x(t^0) = x^0$

admits at least one solution.

Also, applying a result of Scorza Dragoni [2] to the function f of Theorem 1, the following Corollary can be derived:

COROLLARY. Let $I \subset \mathbf{R}$ be compact, X a separable metric space, $F: I \times X \to K(Z)$ be u.s.c. for every fixed $x \in X$, l.s.c. for every fixed $t \in I$. Then for every $\varepsilon > 0$ there exist K_{ε} , a compact subset of Iand a continuous $f_{\varepsilon}: K_{\varepsilon} \times X \to Z$ that is a selection from F.

148

REFERENCES

- [1] E. MICHAEL, Continuous selections, Ann. Math., 63 (1956), pp. 361-362.
- [2] G. SCORZA DRAGONI, Un teorema sulle funzioni continue rispetto ad una e misurabili rispetto ad un'altra variabile, Rend. Sem. Mat. Univ. Padova, 17 (1948), pp. 102-108.

Manoscritto pervenuto in redazione il 19 giugno 1975.