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A Selection Theorem.

ARRIGO CELLINA (*)

1. - Introduction.

A well known theorem of Michael states that a lower semi-con-
tinuous multi-valued mapping, from a metric space into the non-
empty closed and convex subsets of a Banach space, admits a contin-
uous selection. It is also known that, when the multi-valued mapping
is instead upper semi-continuous, in general we have only measurable
selections.

This paper considers a compact convex valued mapping F of two
variables, t and x, that is separately upper semi-continuous in t for
every fixed x and lower semi-continuous in x for every fixed t, and
proves the existence of a selection f(t, x), separately measurable in t
and continuous in x. As a consequence, an existence theorem for
solutions of a multi-valued differential equation is presented.

2. - Notations and basic definitions.

In what follows R are the reals, X a separable metric space and Z
a Banach space. We shall denote by the set of non-empty com-
pact and convex subsets of Z. B[A, E] is an open ball of radius 8 &#x3E; 0

about the set A, A is the closure of A. We shall use the symbol d( ~ , ~ )
both for the metric in X and for the metric inherited from the norm
in Z. Also B) is the distance from the point a to the set B, while

(*) Indirizzo dell’A. : Istituto Matematico, University Via Belzoni 7,
35100 Padova.
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6*(A, B) = sup {d(a, B) : ac c Al and D is the Hausdorff distance, i.e.

D(A, B) = sup {6*(A, B), 6*(B, A)I. A mapping ~’ from a subset I of
the reals into the nonempty compact subsets of Z is called upper
semicontinuous (u.s.c.) if b’~ &#x3E; 0, ~ ~ &#x3E; 0 : 
c B[F(to), 8]. A mapping F : X - K(Z) is called lower semi-continuous
(l.s.c.) V~&#x3E;0, 3~&#x3E;0:~(~~)~~j~(~)cB[~(.r)~].

3. - Main results.

LEMMA. Let E c R be compact; let X be a separable metric space,
Z a Banach space. Let be upper semi-continuous
in for every x E X and lower semi-continuous in x for every
t E E. Then for every e &#x3E; 0 there exist a compact subset of E, with

and a single-valued continuous function f E: -~ Z

such that for (t, x) E Ee X X,

PROOF. Let D = be a countable dense subset of X. Set
4 = diam (E). For every j set

Since 0 is l.s.c. in x for every t, the set inside parenthesis is nonempty.
The following c~) and b) are the two main reasons for the above defi-
nition

a) The real valued functions are semi-continuous. Fix j
and t°. We wish to prove that

Assume this is false; then there exist ~tn~, and a positive
~: 6j(t.) &#x3E; 6j(tl) + $. By the very definition of for every n there

exists such that d(x, x~ ) c + ~/2 implies d(Yn, ø.
. (tn, x))  8/2. Since 0(-, x~) is u.s.c. at t°, d(yn, 0(tO, - 0. Tehn

from the compactness of 0(tO, xj) it follows easily that there exists
a subsequence converging to some y°G 0(tO, x.). Now fix any x

such that d(x, x,)  + ~/2. Then
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Since d(yO, yn) - 0, ~~ (~(t~ ~ x), 0(tO, x)) - 0 and d(yn, 0(t,,, x))  8, it

follows that d(yO, 0(tO, x)) c E/2.
Therefore + ~/2  a contradiction. This proves our claim

on ~j( ~ ).
The functions ~~( ~ ), being semi-continuous, are measurable. Applying
Lusin’s Theorem we infer the existence of a compact E1 c E with

such that on El each 3;( . ) is continuous.

b) For every {x: d(x, x,)  ~~(t)/2~. Then is

a covering of X (for each fixed t).
It is enough to show that if converges to x, then lim bj(t) &#x3E; 0.

Consider .r: since 0(t, -) is u.s.c., there exists d &#x3E; 0: d(x, x)  L1

implies 0(t, x) c B[O(t, x), 8/4]. We claim then: xi sufficiently close
to x implies ~,(~)&#x3E;J/2. In fact let /)/2; let 
so that d(x’, x)  L1. Take any y E 0(t, x) : there exists y) E 0(t, ;) :
d(y, y~)  E14. Hence

This proves that ~~(t) ~ 4/2 and our point b).
Consider now the mappings 1Jfj: E -+2Z defined by

By the definition of ~~, ~(0 is non-empty. Our next claim is that
the restriction of "P; to Ei is u.s.c. We shall prove first that it has
closed graph. Assume this is not true : there egist t0 and {tn},
points yn and y°, with and such that i. e.
there exist $ &#x3E; o and d(x, x~) ~ a~(t°) - ~ but

By the continuity of large implies &#x3E; d(x, x,), hence
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A contradiction, so 1Jfj has closed graph. We have in addition, that
~( ~ , x~) is u.s.c. and that its images are compact sets. This implies
that O(El, xj) is compact. Finally, 1Jfj, a closed mapping whose range
is contained in a compact set, is u.s.c.

Drop an open set of measure at most 8/2 so that on its complement
(we have  8) each is continuous. Then for

every j, for every t E Ee, there exist p(j,t)&#x3E;0 and n(j, t):0 
and 

r) implies 6,(t) &#x3E; lðj(7:).
Consider the collection 7:)},

It is an open covering of the paracompact Let {V(j, z)} be a
(precise) locally finite refinement, a partition of unity subor-
dinate to V(j, 7:); choose Yj,T E and set

We claim that the above Ie has the required properties.
In fact, fix (t, x) E E, X ~’. Let be such that p;,r(t, x) &#x3E; 0. Hence

(t, x) E 0(j, -r), i.e.

From point i), there exists y E d(y, Yj;r)  s/2 . Moreover It - 1’1 
C r~ ( j, z) implies 2 ~~ ( z) C ~ j (t). Hence from ii) and the definition of
Yj(t), we have

The convexity of 0(t, x) implies that the same relation holds for x),
a convex combination of Q.E.D.

THEOREM 1. Let I c R be compact, X a separable metric space
F: be u.s.c. for every fixed x E X, l.s.c. for every fixed
t E I. Then there exists a mapping f : IXX -+Z such that

i) for every

ii ) for every , is measurable,

iii) for every is continuous.
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PROOF. Let We claim first: there exist compact
En c I with and continuous such that

For ~==1 set in the preceding j~==7y (P=~ and
call f1 the fe obtained.

Assume we have constructed En , In up to n = N -1. Consider
· It is an open set; there exist a compact subset of
with  ~N/3. In the Lemma set E = ON-l’

F== ~ ~==~/3 to yield :
a compact subset K1 of with and

a function such that

Consider now the set and the mapping 0: 
defined by

By our induction assumption, 0(t, x) is non-empty. Moreover it is

compact and convex. In addition it is u.s.c. in t E for every
fixed x E X (its graph is the intersection of two closed graphs and
the range is contained in a compact set) and l.s.c. in x for every
fixed t [1].

Applying the Lemma to 0, and eN, we infer the existence of
a compact K’ c E,,,, EK§__i )  eN and a f 2 : K2, X X - Z such
that

Hence for f 2 both

and
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Set EN==K1uK; and define by

We have that = U ((I B~N)~ c ~N/3 +
+ 2e,/3 = EN, and the claim is proved.

Now set

Then and = 0. Fix Then

)~ is a Cauchy sequence of continuous functions and converges
uniformly to a 99(t, x), continuous in x. Fix x. Then for every n AN,

x) is the pointwise limit of fN(t, x), hence measurable. For t E n AN,
let ’(t, -) be any continuous selection from ~(~ ’) [1].

The function

has the required properties. Q.E.D.
From Theorem 1 the following Theorem 2 can easily be proved:

THEOREM 2. Let Z be a finite dimensional space, Q an open subset
of F: Q-+K(Z) be u.s.c. in t for every fixed x and l.s.c. in x
for every fixed t, t and x in S~. Moreover assume that the range of F
is contained in some compact subset of Z. Let (t°, x°) E S~. Then the

Cauchy problem

admits at least one solution.

Also, applying a result of Scorza Dragoni [2] to the function f of
Theorem 1, the following Corollary can be derived:

COROLLARY. Let I c R be compact, X a separable metric space,
be u.s.c. for every fixed l.s.c. for every fixed

Then for every c&#x3E;0 there exist Ke, a compact subset of I

and a continuous that is a selection from F.
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