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The Interpreted Type-Free Modal Calculus MC~ II.

A. BRESSAN (*)

PART 2

Foundations of .MC°°

CHAPTER 3

AXIOMS OF MCOO AND BASIC CONSEQUENCES

15. Introduction to Part 2.

We construct the modal analogue MC- of the calculus EC°° [Chap. 1]
which is the extension to the case where individuals exist, of the ex-
tensional calculus on which [IST]-i.e. [3]-is based. In Chapter 3 we
lay down the axioms for and state their main consequences.
We write explicitly the proofs of those among these consequences that
are essentially modal. In chapter 4 we study relations and functions
syntactically; of course we take care especially of their modal prop-
erties ; in particular these properties are important in connection with
the various modal kinds of functions introduced in Part 1, n. 13. This

(*) Indirizzo dell’A.: Seminario Matematico, Universith - Via Belzoni 3-
35100 Padova.

This publication was worked out in the sphere of activity of the groups
for mathematical research of the Consiglio Nazionale delle Ricerche in the
academic year 1971-72.

Lavoro eseguito nell’ambito dell’attivith dei gruppi di ricerca matema-
tica del C.N.R.
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has counterparts on the notions of equipotence and class exponentia-
tion [nn. 27, 29].

Now let us describe the content of Part 2, divided into chapters 3
and 4, in more detail. As far as Chapter 2 is concerned, in nn. 16, 17
we state a set of logical axioms valid in ML’. For the calculus 
that thus arises, the well known metatheorems for first order calculi
hold [n. 16].

The axioms of MC’, especially those for individuals, sets, and
classes, are as close as possible to those of EC°° [nn. 2, 4], hence to the
axioms of the extensional calculus of classes, without individuals,
considered in [IST], and in part to Suppes’ extensional type-free logic
with individuals [7]. Nearly all axioms in [IST] for classes and sets
want some more or less relevant modal changes (indipendent of the
fact that unlike [IST] deals with individuals). For instance our
class building axiom A17.3 is practically the one in [1ST], while our
regularity axiom A17.7 has some modal features that make it stronger
than the direct analogue for ML’ of the regularity axiom in [IST].
This difference has counterparts on some consequences of A17.7 such
as theorems (19.1). Axiom A17.11 on classes and sets has no extensional
analogue; it is the analogue for ML°° of AS12.19 in [GIMC], i.e. [1].

In n. 18 we consider some basic theorems on ~l, In, Et, and class
existence, a part of which has no extensional analogue. For instance
we prove that if .sri can be an element, then s/ must be an element.
Lambda expressions for properties [relations and functions] are dealt
with in connection with the usual substitution properties in n. 18

[in n. 23]. In n. 19 we show how the elementary algebra of classes
for hence the one in [IST], can be carried over to ML’ by per-
forming very slight and standard changes on [IST, Sect. 2]. Only a
few essentially modal thorems must be proved anew.

Among the main consequences of the essentially modal axiom
A17.11 and either A17.1 on the non-existing object a~‘, or the version
A17.5’ of the pairing axiom, there is the possibility of introducing an
analogue &#x26;I, of the notion of elementary possible cases (1~’) within

MC" itself. We can deal with 61 [n. 20] with substantially the same
words as in [GIMC, nn. 47-49], so that hints sufhce. One of the main
consequences of our theorems on Cl is the assertion that for any set X,
its modal sum X’ also is a set [Theor. 21.1].

In n. 22 we briefly show that the intensional description operators t,,
and 1u, and the real case o (and ce and ~,~) can be dealt with in MC°°
with practically the same words as in [GIMC].
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In Chap. 4 relations and functions are studied. We have two main
kinds of functions; intensional f unctions, briefly function, and extend-
sionally univalent or extensionally invariant f unctions. The former are
useful to carry over to -Sle- the set theory in [IST], with very few
and rather standard changes. The latter constitute a special case of
the former, and are more similar to ordinary functions (such as the
i-th co-ordinate of a moving particle in a given inertial reference
frame at the instant í). In case the domain and range of an intensional
function, f, are absolute [D12.6] which certainly occurs in pure num-
ber theory), then f also is extensionally invariant. The aforementioned
pluralism of function kinds has counterparts of a modal nature in
connections with mappings [n. 25], class exponentiation [n. 27], and
equipotence [nn. 27, 29], equivalence relations [n. 30], and ordering
[n. 31]. This pluralism also gives rise to two versions of the replace-
ment axioms: a weaker one, A17.9, and a stronger version, theorem
(24.6),.

In order to relate the two kinds of entities being considered with
one another the (n-ary) intensionalization [D14.4, D24.1] and the
intrinsic extension class [D29.3] of any class A are studied

[nn. 2 7, 29] as well as the notion of weakly separated properties 
[D29.2], the strict subset class S~A [D20.5], and the modally con-

stant subset class smcA [D29.1] of any class A cf. n. 29.
Another source of essentially modal theorems is connected with

the fact that e.g. {a} is not an element in ML°°. Hence it is natural

to search for suitable explicata of the intrinsic (n-ary) extensionali-
zation of any attribute [n. 26]. Rank-preserving extensionalization
will be considered in Part 3 after ranks are defined within MC°°.

In connection with (intensional) functions, in Chap. 4 we carry
over to MC°’ sections 3-8 in [IST] very quickly, as in part has already
been said. We are referring to algebra of relations [n. 23] and functions
[n. 25], infinite Boolean operations and direct products [n. 28], power
classes [n. 29], equivalence relations [n. 30], and ordering [n. 31].

16. Asions for the lower predicate calculus, identity, and descriptions
in M Coo .

Modus ponens is the only inference rule in MCoo. We take the ana-
logues for of AS12.1-3 in [GIMC] i.e. AS1-3 in [6, p. 212] as
axioms of the extensional propositiona,l calculus. As axioms for the
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lower predicate calculus for MLaJ we take these analogues
and axioms A16.1-4 below (1).

where V, does occur free in p.

where p is modally closed,-cf. [GIMC, Def. 4.3]-i.e. is constructed

starting out o f matrices such as Npn by means of A, N,
and 

It is evident that AA16.1-6 are (logically) valid and that modus
ponens preserves validity.

The obvious analogues for of the theorems and metatheorems
considered in [GIMC, nn. 31-33] for the lower predicate calculus

of the modal w-sorted calculus hold and can be stated

by substantially the same procedures. Among others let us mention
the deduction, duality, equivalence, and replacement theorems; let us
add the generalization theorem and the theorem legitimating the
formal analogue of an act of choice (rule C) cf. [GIMC, Theor. 33.1]
i.e. the theorems on ordinary or modal rules G and C:

THEOR. 16.1. If p, , i.e. q can be deduced from PI’ ... , pn
(possibly) using rules G and C according to Defs. 33.1,2 in [GIMC], and
no variable introduced by any application o f rule C occurs free in q, then

(~) A16.1-6 are axiom schemes correponding to AS12.4-9 in [GIMC].
As well as other axiom schemes, they will be called here axioms for the sake
of simplicity.
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Axioms A16.7-10 below on identity and A16.11 on descriptions
substantially are Asl2. 10-13, 18 in [GIMC].

Let us mention the following essentially modal axiom-cf. [GIM(1,
A~I2.~3) :

The validity of A16.7-11 in can be checked on the basis of
rules (31), (~2), and (6,) to (6,) [n. 5], substantially as the validity in
MLI of the corresponding axioms for MCv in [GIMC, n. 12] (2). Fur-

thermore the obvious analogues for ML°° of the theorems on = and 7
that are stated in [GIMC nn. 34-39] and do not specifically concern
attributes, also hold in 1Vl C°°, up to the obvious very slight changes
due to the difference between ML and ML°° concerning types, and
can be proved in substantially the same way.

17. Axioms for individuals, sets, and classes.

We list a main set of axioms, AA17.1-11, for individuals, sets,
and classes and we also consider some alternative sets of axioms.

The validity in of all these axioms in the semantical system
(8.9) is long but easy to prove on the basis of rules

(61) to (6,) [n. 9] cf. the proof of (10.5).
We do not use all aforementioned axioms immediately. E.g. in

n. 18 we derive some properties for ll., In, and El, and some replace-
ment properties for lambda expressions on the basis of only AA17.1-6
and a part of A17.8 below. After this in n. 19 we use the other axioms
to extend elementary algebra of classes to Incidentally we in-

-- _-_

(2) Use Theor. 9.4 and rule (67) in N9 in connection with A16.11-cf.
Theors. 11.1-3 in [GIMC].
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clude lambda expressions only in the parts of AA17.1-11 that are not
used in n. 18.

Let us note that A17.1 is the modal analogue for MC°’ of A2.1
for .EC°°, that AA17.2-11 have the same connection with axioms

A4.1-7, 8’, 9, 10 for EC°’ and that axioms AA17.2,3 [AA17.10,11] are
the type-free analogues of axioms A812.14-17 [AS12.20919] in [GIMC]
for the calculus 

Let us remember that A is a primitive constant and the definitions
DD2.6-8 of class, individual, and set are understood.
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Someone might prefer to replace A17.1 with

The first helps considering ~l as a primitive term-cf. D2.5. How
ever it is confusing in my opinion cf. fn. 4 in Part 1. Either of the
latter axioms is compatible, unlike A17.1, with In = A. Therefore in
order to be able to prove some basic theorems such as (21.8) we propose,
in case A17.1 is replaced in the aforementioned way to turn A17.5
into

Obviously A17.5’ yields the weaker axiom A17.5. In n. 20

-cf. (20.3)1- we show that both follow from AA17.1,7-9 ; and neither
seems to follow from AA17.8,9 and either of AA17.I’, I".

Now let us remark that cannot be replaced in A17.4 with
u. Furthermore the infinity axiom A17.8 is a direct modal analogue

of A4.8’, which is equivalent to the usual infinity axiom in case no
individual exists.

Let us add that we cannot substitute Fnc for I’n [DD13.3,4] in
A17.10. Indeed the resulting assertion would be false e.g. at the value-
assignments for which holds.

Axioms A17.11 (I’) is equivalent to _AA17.3,11 (I ). Moreover by
A17.11 (I) the alternatives (II) and (II’) in A17.11 are equivalent;
but if (I) is disregarded, then (II) yields (II’) by A16.10 (3), while the
converse is false.

. 

The admissible axioms A17.11 (I’ ), (II’) can be regarded as theorems
in MC°° to be proved after having stated the usual substitution prop-
erties for lambda expressions [n. 18].

A17.11 (I’) is a direct analogue for MC’ of AS12.19 in [GIMC]
in that it is substantially turned into AS12.19 by replacing the type-
free variable F with a variable having an arbitrary attribute type.

Now remark that in ML’ classes are the only primitive attributes

(3) The substitution properties of A in n. 18 easily yield (a) 1 - (31&#x3E;" Y)
[D 10.8]. Now assume A17.11(II) and start with (b) 

By A17.11(11) and rule C with y we get (c ) x = y " = y " . By- (a) this
and (b) yield y = 1’B ¥. This, the theorem - y e El, and A16.10 yield Y E El.
We conclude that A17.11(11’) holds..
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and that there are substantially two (cumulative) types of classes:
classes and sets. Furthermore we prefer A17.11 (I) to A17,11 (I’).
Then it is quite natural to use, as an analogue of AS12.19, the parts (I)
and (II) of A17.11, which substantially are the versions of a same
assertion for classes and sets respectively.

18. Consequences of AA17.1-8 concerning classes existence, lambda
expressions for properties, A, In and El.

The analogue for XC’ of [GIMC, Th. 40.1] holds and can be proved
in the same way, up to the usual very slight changes. We write ex-
plicitly the main parts of this analogue: (18.1,2) below; furthermore
for the ease of the reader we explicitly prove the first of these parts
as an example of the aforementioned changes between corresponding
theorems in and MC°°.

By AA17.2,3 and D10.9, in case the variable B does not occur free in p

Then by A16.11 (a) we get (a) = (~B) ~(B)] (4). Fur-

thermore by A17.3 and rule G’ we deduce Then B = (1B) Ø(B)
holds, which yields (b) (1B)Ø(B)], where B does
not occur free. Then, first, we can use the modal rule G~-cf . [GIMC,
Def. 33.1] b~ which we obtain (c) h~ N(b) and, second, by Theor, 16.1
we can turn (c) into Now it is easy
to deduce the following strengthened versions of A17.3, where X does
not occur free in p:

The basic substitution properties for lambda expressions

(4) If in a proof we write « (a) ~n » and then «(a) ~-- q ~, we mean that

p f-- q. In case (a) had not been used to denote any matric, by « (a) f- q ~ we
mean that and that we denote this fact by « (a) #.
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are substantially proved as (45) in [GIMC, n. 40]. Incidentally

Of course, if p has the form d E f!4 n q we can drop d E Et from
(18.3 )1. E.g. in connection with DD3.2,3,5 and DDI0.11,13,14 we
have

Theorem (3.2) can be proved in MC°° in substantially the same
way as in EC°°. From AA17.4,8 we deduce, as analogues of A4.1 and
(4.5)a2013cf. DD2.1,7,8 and Convs. 3.2 and 10.2

Incidentally In CEI is false. By ÅA17.5,11 (I I ) and Convention
10.1, and by A17.11 (I) respectively we obtain

The latter result yields the important theorem-cf. Convs. 10.2
and 12.1

On its basis we can simplify formulas (10.2) on restricted variables.
Formulas (10.2,3) on class and set variables cannot be simplified for
the notion of class Cl is extensional.

The theorems

can be proved (in in a way that is similar to and easier than
the corresponding proofs in ECOO [n. 2] and is more similar with Suppes’
[7, Sect. 2.2] (because, like [7] and unlike EC°’, contains .~1 as a

primitive notion). Indeed by (10.1), A17.3, and rule C with X we get
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This, (a), and D2.6 yield X = ~’ Il. Then by A16.10 we have 
So (18.9 )1 holds. Thence we easily deduce (18.9 )2 by D2.6. and A17.2.

By DDll.1,2 and (18.3)

Lastly remark that by DD2.7,8 and Convs. 3.1,2

19. Extension to MC°° of elementary algebra of classes and relations.

We briefly show that most of the elementary set theory presented
in [IST, Chap. 1] can be carried over to and that generally this
can be done by slight and, so to say, standard changes. The most im-
portant of these changes concern restricted variables and the use of
~...~~~~ and =’instead of ~...~ and - respectively [DD11.1,2] in sev-
eral theorems. Some of the analogues for MC°° of the theorems proved
in [IST, Sect. 1] are explicitly written below. After each of them the

number of the corresponding item or items in [IST] is placed (5). Very
few of these analogues are explicitly proved as examples.

Among them are (19.1 )i.z below in that e.g. (19.1 )1 is similar to

the consequence (1.19) in [IST] of the regularity axiom: however the
versions of this axiom in [IST] and MC’ [A17.7] are not very similar
and the same holds for the aforementioned theorems and for their

proofs. Theorem (19.1)g is essentially modal.

(5) In [IST] there is a single numbering for axioms, defi,nitions, theorems,
and corollaries. When we write the analogue for .1YIC°° of one among the
items above, we place its number in [IST] at the end of it. E.g. by « (1.20,22) »
at the end of (19.2) we mean that the theorems (19.2) are the analogues
for MC° of theorems (1.20) and (1.22) in [IST].



29

The matrix cannot be replaced by d n-l EV dn in

(19’1)2-
To prove (19.1)1 we set ... , I and assume

(b) dn ===~ do EV EV ... E" as an hypothesis for reductio ad ab-
surdum. Then by A17.7 and rule C with a we have (c) and

(d) aV n ~ = ~1. By and (c) we have a =~ ~i for some i E {1, ..., n}.
Furthermore (a), (b), and (18.8) yield (e) and 

(i =1, ... , n). Then which contra-
dicts (d). Thus (19.1 )1 has been proved.

To prove (19.1)~ assume d1Ev ... EU e instead of (b).
Then .911, hence -,71, e~... E" contrast to (19.1),

We conclude that (19.1 )2 holds. For n = 1 it be-
comes (19.1)4’ which in turn yields (19.1 ) 5 as a particular case by (13.6)1.2; -.

yields in contrast to (19.1 )2 for n = 1.
Hence (19.1 )3 holds.

We have for some p by A16.12. Furthermore by
A16.7 and rule C with A we can write (?b) (b = =

Hence A so that by (13.6)1.2:
We conclude that {19.1)6 also holds. -

The following theorems are more similar with their correspondents
in [IST] and the same holds for their proofs.

where the metalinguistic definition D4.1 is understood. From D2.1,7 
*

and D4.1 we easily deduce

Since i-- El, (a)) cannot be replaced by « .9i» ~) in (19.3)1. Ob-

viously

The formula ( ) {a, bl is not valid. To prove (19.4)1 we first
deduce N(a, from AA17.5,11 (II), by rule C with u. Then by
(18.10)2 we get {a, bl(4) u, which by A17.4 and rule C with v yields
{a, Then by DD2.1,8 and Theor. 16.1 we easily conclude
that (19.4 )1 holds. From (18.10 )2 we deduce
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and the analogue for the (proper) classes b f and le, %} also holas

and can proved in substantially the same way. Let us now note the

following analogues for MCco of some theorems in [1ST] to be proved
in substantially the same way as the latter:

Let us only add that the proof of (19.8)2 is independent of tlieo-
rem (19.8~; this theorem follows from (19.8)2 and t117.8 and is a mate
of (18.6)2 in the present theory where individuals are dealt with. Theo-
rems (19.8h.3 are basic as well as

that are essentially modal. To prove (19.10), assume (cc) A c u, whence
(b) A = A r’1 u. By (19.9)1, A17.11 (II), and rule C with v we obtain (c)
z = A r1 u/A, r E Hence (b) yields (d) 3v (A = v E JfConst). Thus
(a) E- (d). Hence (19.10), holds.

To prove (19.11 )1 start with (e) A E 3ICowst and U (a), whence

O (c). By D12.5 this and (e) yield A = n v, which by A16.10 and the
analogue for of Convention 3.3 c~f. (10,I)i-yields A «’ So

(19.11), holds.
Now, to prove {19.11 );;, w-e assume (f) AEEl(l!) and (g) 

Then (h) A =- u for some u, so that, by (19.10),, A - v E MConst for
some v. Then, by (g) and (h), v =tB A. Hence We conclude,
that (19.11 )3 holds.

Theorems (19.12-18) below concern class operations. Our aim is
to show that all such theorems in [IST] hold for provided we use
class variables, but that some of them, such as (19.12)2, (19.16)2, or
(19.17 )3 also hold for general v ariables a/, f!J, .... Let us add that
theorem (19.~ 7 )1 below will be strengthened into (24.7)1,2.
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20. On fa, The analogue 81 of the class r of elementary possible
eases, defined within MC°’ itself. Consequences on N and o.

After stating some preliminaries on {a, of interest in themselves,
we show that the treatment of the analogue 81 of 1’ and the one of
the real case e presented in [GIMC, nn. 47-49] can be carried over to
MC°’ in a straightforward way. From the results on ~1 in this section
some basic properties of ~1 and El (and Fu) will be derived in n. 21.

By A17.1 and DD2.4,7 we obtain the first of the theorems

Now let us derive from AA17.1,8, (19.8),, and D2,7.
Furthermore Hence (19.1])1 yields (20.1)2. By
DD13.1-4

Furthermore by (20.2 )2 and DD11.11,12 - {O, a*l’ and
ta, bl. Hence by A17.9 we have Al 7.5:

Let us observe that our deduction of (20.3) is based on A17.1 via
(20.1 ) and is independent of A17.5 which obviously follows from A~ 7.~’.



32

Now we consider the notions of proper range (PR), subrange 
elementary range and (absolute) elementary range (el)-cf. [GIMC,
Defs. 47.1.2,3 and Def. 48.1]:

Let us only remark that by D20.1 and (13.6)1.2’  x ~~ y » in D20.2
means Na  b. Now let us define i.e. strict power set, and 5~:

From A17.4 we deduce the first of the theorems

which by (20.3)2 yields (20.4), By DD20.1,3-5

By (19.8)~ from (20.5)z and (20.4)z [(20.5)1 and (20.3)z] we have

Thus we have substantially proved in MC°° that the elementary
possible cases cf. [GIMC, nn. 48, 49]) form a set. Though
not hard to prove, this result is important. Some basic consequences
of its will be shown in n. 21.

21. Validity in 1Vl Cv of some theorems on 81, N, and 0 already stated
in MCV. Basic modal consequences on El and u’.

First we introduce the matrix lu that means: the case u(E ol) is

taking place-cf. [GIMC Def. 48.2]:
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Furthermore in (21.1-6) below we list the respective analogues for
MC°° of the following theorems on N, and Q proved for M"
in [GIMC, nn. 48, 49]: (82)2.3’ (83)1.3’ (83)4.6’ (89), (89), (90), (91), and
(92). They can be proved for MC°’ in substantially the same way as
for MO..

i f u does not occur free in p ; under the same assumption

W e also have

where ... , 7 p,,) is any matrix constructed out of pl to Pn b y means
of connectives (-, A) and quantifiers (BtV2), ...).

Now we can prove, on the basis of (20.6), some basic essentially
modal properties of El and uu. Since D21.1 yields by (21.3)2’
we easily get

TEOR. 10.1. I f an object, necessarily equals an element, then ~
is an element and (in case ~ is a set) its modal sum slu [D.10.14] is
a set. More precisely (in MCa)) we have

PROOF. To prove (21.8), we start with (a) d E(1 El(e) and !u’ By
rule C with 86, we deduce (b) from the well
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Now let us remark that from the strengthened version (18.2) of
,11 °i°.3 and rule C with ,3r we get

which by D13.3 and the consequence t-- Cl E l%Iconst of (21.1h easily
yields (d) and by (21.1)1’ D12.4 (for it -- 1), and D13.2 yields

By (d) and D13.4 this yields 1F « In addition from

(21.10) and D21.1 we easily deduce Dmn.J!7 = SI. Hence by ( 2 0.6 ) 1
and A17.9 we have (e) Rng:FEEl. By D11.12 and (21.10) we easily
deduce U Rng F = " ( la ) ~u ~~c (Iua E ~)~ . Furthermore (21.6) for

and for = pi yields e (Iua Ed) = O (Iua Ed),
and (21.5)~ yields Q( ~ua E ~~ = Q a E ~. Then-cf. D10.14

Hence by (e) and (19.8)3 we get ( f ) Vu E El. We conclude that
(a) t- ( f ). Now we easily see that thesis (21.8)1 holds.

By D2.8 and Conv. 3.3 modified according to (10.3), (21.8)1 yields
(21.8)2:

Lastly by D10.14 which by (19.8)~ yields 
D A This and (21.8), yields (g) t-- A EI1 D A Hence

dEn Cl t- 
Assume (h) and set A =D {‘)[‘ - al e Clv E0 = AA 

hence A e’ El«~ which by (g) yields A 



35

22. Hints at the intensional description operators lu and ?u; i and the
calculus ilfC- capable to deal with the real case p.

The operators depending on the parameter u (E 61) can
be introduced in in the same way as in 

IW ().1():

All properties of lu and 1u considered in (GI?VIC] and in particular
TheorH. 50.1 and 51.1 hold without any change in connection with

for unrestricted variables,.
Now let e be a constant of JI Coo not yet used. Let be the

calculus obtained from by adding the axiom

alloii.s us to interpret t) as representing the real (elementary)
COSC.

inow we can turn lu and i. into the parameterless description op-
(,,rators tr¿ and 19. Furthermore m-e (-an define p occurs in the real case

(/5P) 1 
_ _

considerations on o and ? made in nn. 52-54] hold for
in practically the same form. Furthermore one can use 

instead of [.~Ce] in the applications of the latter calculus
to the philosophical puzzles presented in [GIMC nn. 54,55].
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CHAPTER 4

ON RELATIONS AND FUNCTIONS

23. Relations and functions, corresponding lambda expressions.

The whole treatment of relations presented in [IST, Sec. 3] holds
for MC°° up to some simple and standard changes such as the use of
~ ~~i~ instead of ( ) in accordance with definition Dll.3 of ordered

couple, and the use of = ’instead of = cf . ft. 5 in n. 19 as far as
e.g. item (3.1) in [1ST] corresponding to (23.1) is concerned.

Remembering D11.9 we have

where as well in the sequel we use, after [IST], the following

CONVENTION 23.1. o aRb » stands for « (ac, b) E R » in case R C V2,
and « R(al, ... , an) » stands for « (al, ... , an) E f1ll" (n = 2, 3, ... , ).

The intensionalityprinciples for relations and f unctions read

respectively (23.3)1 for n = 2 is (3.2,ii) in [IST]. By DDll.8,9

We now introduce the relative product of (the relations) R
and S:
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Hence

All algebraic properties of the relative product and cartesian pro-
duct proved in [IST, Sec. 3] hold for classes in and the proofs
are substantially the same. We only mention some of them as examples.

By D4.2, D11.6.7, and the replacement theorems (18.3,4) of lambda
expressions for properties, it is now easy to deduce their following ana-
logues for n-ary relations and functions, where p and ... , ~n)
are matrices and d is a term:

(6) « 1~*A » is used in [IST] for the R-transform of A instead of our

R"A [D3.6].



38

24. it-ary intensionalization. Strengthening of the replacement axiom
and a theorem on i’.

We (leiiiie tlie of h’ by

Hence

Furthermore by 1) 12 .~ and 

By D24.1, and I &#x3E; &#x3E;0. r, 1)11.2 yields

nj)d viel(ts-cf. the proof of (3.14) im [1ST]

To prove the first of the theorems

w-e assume (a) By 1~.17 .11 (I ) and rule C with F
we obtain (b) F==(7 and (c) By (b), which by (a)
and (19.11), yields F En St, hence (d) Jf’ By (c) and (24.3),
L(24.3~] F(nl) C for n = I Sf) Sí) Sí) U U F for n = 2]. By
(19.16); and (‘?0.~)~ this and (d) yield (e) From (b) and
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(24.2)-,we have ( f ) I’ ~nI) - G(nIa which by (e) yields (g) BVe

conclude that N(a ) D ~’(g). Furthermore by (18.8), f- (ac) ~ N(a) and
by (21.8); H- lN’( g) D E Hence + (a) ~ EEl, i.e. ( ~~.~)x holds.

To prove (24.4), for ~z = ~, assume (h) (j ç;/’I 1’n and (i) G(nl) EEl.
Then we get (b), (c), and ( f ) again. From (c) u-e deduce (1) 1~’{~I~ 
Furthermore ( f ) yields F(n1) -cu G(II), so that by (19.11)1 we obtain

8t, lIenee (I’n) Furthermore (b ) and (i) yield 
Hence by (?-t.3’)~ we have U U U 11’(21) ,vhieh by (m), (19.J 6)3’
and (20.4)i yields This and (b) yield G E Furtliermore
f- (a) ’~ (c) m Henc·e G En by the modal rule G; thence

deduce G E by (? 1.8)1. We conclude that ( ’-. )2 holds foi &#x3E;1 2013 2.

its validity for n - 1 can be proved in a similar and eaHipl’ way.
The proofs of (’-l. t)1.2 2 for it = 3, 4, ... are similar with those for

ra =_ 2. They are based on some suitable generalizations of (24.3’).
By D13.3 yieldH W E hence .. t--11) E 

Then by ( ~.1.? )1 and D13.5 we deduce ,0~’l+1?~ e -4i’&#x3E;i~. Thus the first
of the theorems

has been proved. The second is the syntactical analogue ~1~.(~ 3.‘~ )~ of
(13. )2 (7). It follows easily from DD13.1,2 and T)T)12.4-6. At this

point S.L~(13.~)o i.e. is easy t o prove. This theorem

and DD13.1-5 easily yield (24.5 )3.
By (19.8)2 np Hence the repl ace-

ment a,xiom A17.9 is equivalent to the first of the theorems

’N-ow let us prove that the replacement axiom can 
(24.6)2. To this end we start with (a) and (b) 
This (b) and (24.4), for yield Thence by (24.2),

~ 

(7) If e,g. {r.s. ) labels a semantical theorem, i~---- p or then by
« ~SA(r, denote its syntactical correspondent !2013p or p respectively.
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we get (c) Dmn F(21) E From (a) and (24.5)1 we deduce .F’~2I~ E AFn.
Thence by (24.5), for n = 1 we get F (21) which by (24.6)1 and
(c) yields Rng F(21) ESt; thence by (24.2)5 we have (Rng F)(I) =n

E El. Then by (24.4)2 for n = 1, Rng F e El ; hence (d)
We conclude that (a), (b) t-- (d). So (24.6)2 holds by the

deduction theorem.

TEOR. 24.1. Assertion (19.17)1 can be strengthened into the modal
theorems

PROOF. [D10.11], (24.7 )1 follows from (24.7 )2 (8).
Therefore we now prove the latter theorem. To this end we assume (a)
A~e~ = Y and (b) as an hypothesis for reduction ad

absurdum.
Thence we get (c) ~~e~ = V. Now remark that- = {a, al(i),

so that yields by (19.4)1; hence (c) yields (d)
3,Ay Ef!4 /By = ~a~~~~~. Let us set

By A17 .11 (I ) and rule C with F we have

Then [D13.3], and cf. (d)-Rng F = V hold.
Hence, by the strengthened version (24.6)2 of the replacement axiom
A17.9, ~ Then le 0 El by (19.17),, by (19.8)2
and (24,9)21 which contrasts to (b). Hence ~-~ [(ac)n (b)], which is.

(24.7),.
To prove (24.8)1 we assume (e) and ( f ) as an

hypothesis for reduction ad absurdum. Then for

some G. Hence A17.11 (II) yields (g,) .bI = G = .F’~e~, (g2) and

(g3) .H E .MConst for some H.

(8) To prove (24.7), directly, assume (a) V a and (b) as

hypotheses for reductio ad absurdum. V, by (a) we have -4 C j~.
Hence (b) yields which contrasts with ( 19.1 )3 . Hence t- .v [(a) n (b)~
which by D2.1, D10,ll, and Convention 10.2 yields (24.7)1. ’
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From A16.12 we deduce (h) for some pl: By (e), 
Hence V bbEF(e) where b =D = b IBf’.JPl C = a). b

and, by (gl) and (93), So PI:Jf1 H(e) = V. Hence by (24.7)2
p, D’-’H 0 El(e). Then (h) yields (i) Q H 0 El(e), hence O H 0 El. By ( f ),
(gi), and (g.), H E m(e) (1 MConst which by (19.11)3 yields H E This

contrasts to (i). We conclude that (e) ~-- ~ ( f ). Hence (24.8)1 holds.
Thence (24.8)2 follows. q.e.d.

25. On elementary algebraic properties of functions.

Some theorems in MCoo asserting algebraic properties of functions
(Fn or Fnc) have a direct analogue in extensional logic. Others are

essentially modal. Many among the latter are stated via some se-

mantical theorems in n. 13. At this point we can easily prove the syn-
tactical analogues in MCOO of all semantical theorems asserted in n. 13.
Here are some examples of the aforementioned algebraic properties
-cf. D4.3, D11.10

By (23. 7}a, (25.1 ) is equivalent to theorem (4.1 ) in [IST]. By
DD13.1,3 (a, c), (b, c) E F IBF-l E Fn yields a =n b. With this in mind
the proof of (25.1) appears substantially the same as the one of (4.1)
in [IST]. Similar remarks can be made on theorems (25.2 )1,2 below,
which correspond to (4.3, i, ii, iii) in [1ST]. Some differences among
the former and the latter-cf. (25.2), below-are due to different
conventions about the functional notations, by which in [IST] e.g. V
has the role of our a*-compare Def. 4.2 in [IST] where individuals
are not taken into account, with D4.2. These differences cause only
trivial changes in the proofs.

The following form of the intensionality principle for functions
is similar to (23.4) and constitutes a direct analogue of (4.4,i)
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in lIST]:

Theorem (25.4), below ix 8A(~3.5),2013cf. f t. (8).

Thus Th. 4.6] has two analogues for 3fC°°. Remark that 
cannot be replaced by in (~5.5)1. The analogue of [IST, Theor. 4.~]
for is

Note that (iv) and (v) are twTo analogues of [IST, Th. 4.8, 
In parallel with I)D 14.1,2 it is natural to define « the n-ary func-

tion F (intension ally) maps [totall y maps] A into B (...t =~ B [A 
or « .~ is an function [acn extensionally univale11t or extensionally
invariant function] f rom A into B ~) as follows:
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Then remembering and 1)D13,3,4 we deduce (25.7)1-,
below

while (25.7)~ holds by 1)12.4. By D12.6 (25. 7}s show-s that no dupli-
cation of the usual notion of common in ex-

tensional set theory, arises in as far absolute concepts are con-
cerned. Let us remark that this is the case with pure set theory in 

Let us note that the analogue of (2f).7) for 2013 fails to holdy he-

cause, after settling 
n

we easily that

By D11.8 and the first of the theorems

holds. By ( ~3.~)1 and (24.1), it yields the second.

26. Basic theorems on and intrinsic n - ary extensionalization.

By DD12.1,2 we respectively have

Furthermore by (25.10),, (20.6)1, and (21.8)2

26.1. By the delinition-s (26.~ )2 and
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cf. DD12.1,2 and D4.2-we have

PROOF. Start with ( f , a), ( f , a’ ) E .~w~ . Thence by (26.3 ) we easily
get (a) and a, which by (26.1)2 yields (b)
a, a’ Since u does not occur (free) in a = n a’, by (21.4)2 (a)
yields Na = n a’, so that by (b) and (26.1)1 we have a =() a’. We con-
clude that (26.4), holds.

We deduce (26.4), from (26.3).
To prove (26.4)3 we start with (c) a E Then we easily de-

duce

By A17.10, (26.5)2, and rule C with IF, we get

q.e.d.
We now prove the following important corollaries of Theor. 26.1;

From (26.4) and (24.6)2 we deduce (26.7)1. Since

(26.7)1 and (19.8h yield (26.7)2:
Now we define the n-acry intrinsic extensionalization of F

-cf. D12.2:
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Thus by (26.7)1 and (19.8), we have the first of the theorems

Theorems (26.8)2,...,6 follow easily from D26.1 and DD12.1,2. Since

(14.4)2 (and the subsequent
considerations). The comparison of these facts with (26.8)8,2 affords
a motive to prefer to An and as an explicatum in Car-
nap’s sense of the intuitive notion (explicandum) of n-ary intrinsic
extensionalization.

27. Two modal exponentiation operations for classes. On equipotence
relations.

We defined intensional and extensionally invariant n-ary functions
[DD13.3,4] and the analogue was done with mappings [DD25.1,2].
In accordance with this we now introduce the symbol AB [BA] of (in-
tensional) exponentiation [total exponentiation] as follows (9):

Then by DD25.1,2

(9) The exponentiation operation for classe is denoted by « in most
text books and by « AB » in [IST].
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The analogue of (27.1)1 for BA fails to hold because under the de-
finitions (25.8), (25.9) holds and also does. By (27.1)g we have
AB - BA for A and B absolute, in accordance with the existence of
only one exponential operation for classes in extensional logic. Hence

AB = B 4 in pure number theory (,vhich deals with transfinite ordinals
and cardinals).

The well known algebraic theorems on 4B in extensional logic
-cf. (IST, Theors. 4.10-16]-also hold for AB and B-1 in MC" (and can
be proved in substantially the same ii-ay), up to the slight changes
spoken of below. WTe now give some examples of these theorems.

We can also assert the analogue of (27.2) (on - and left expo-
nentiation) for -7-(t) and right exponentiation (e.~’. t-OeO2013~~,
- BO = .

Here are some modal theorems concerning exponentiation outside
pure number theory and the equivalence 
c~f. DD14.1-3.

By DD14.1-3 we have SA( 14.1,~ ) c~f . ft. (6). ])14.1-3 and SA(I"’).1)2
easily yield

However cannot be replaced in (27.3) because
of the satisfiability of the set

By ,~ ce~ ‘~ cu are false except for very
particular choices of X; ho,yever

By (2~.6)2 and D14J
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but the analogue does not hold. To prove the first of the theo-

rems

it suffices to remark that by DJ4.4 and DD27.1,2

By DD13.3,4 ~-- Fn, Abs. This, DD25.1,2, and DD?7.1,2 yield
Hence- h, A E _Fn /B Dmn h =

This, DD 14.1,2, and (27. i )1 yield
(27. i )2. Thence by SA(14.1)1 ii-e deduce (27.7)3.

28. On infinite Boolean operations.

In correspondence with [IST, Theors. 5.2 (i-iii), 5.11 (i-iii)], by
DD3.10,11 we have (28.1-3) below, where (‘~8.3)1 is (19.8)3:

From D3.10,11 and D12.5 we ea,sily deduce that



48

Our definitions of first and second co-ordinate of the ordered couple
a/ (are meaningful, but have no interest, also in case ~ is not a couple;
hey) read

and work also in EC°° unlike [IST (15.13)] for EC°° deals with indi-
viduals :

We don’t need write explicitly the well known theorems in [IST,
Sees. 5, 6] on the indexed product indexed sum ~J Ai, and direct

t6l iei

product of the family A, i.e. the class-valued function A
whose domain contains I [I is not to be confused with I] :

Let us only mention that they hold not only for absolute entities.
As examples of direct products we may write

29. On subset classes, modally constant subset classes, and equipotence.

The main analogue for of SA (power set, or subset class of A)
is perhaps the strict power set S’A of A [D20.5]. Another acceptable
analogue of SA-useful e.g. in the pure theory of ordinals and to con-
struct analogues of Qls within itself-is the modally constant
subset class 
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The modal analogue for S"A of a theorem on ,SA in [IST]
whose proof is based on A4.4, holds in and its proof is based on
A17.4 [AA17.4,11]. Generally the direct modal analogue for S of a
theorem in [IST] does not hold in MC~’&#x3E;. As examples we may consider
(29.1,7) below where (29.1)1 seems to constrast with [IST (6.7)].

To prove (29.1 )~ we remark that by D3.9 and D10.11

From (29.2),,, and (24.8), we deduce (29.1),.
Direct proofs of (29.1)2,3 are easy-cf. D3.9 and D20.5.
By A17.11 (II) and A17.4 we have the first among the theorems (10)

D29.1 yields the second. To prove (29.3)3 assume (a) A E MConst
and (b) Then (c) x Cu A and x E MConst, so that y E x yields
y EU x. This yields in turn y EV A by (c), and YEA by (a ). We con-
clude that (a), (b) ~-- x 9 A. Since (a) is equivalent to N(a) -cf. SA(12.1)x
and f t. (8)- by the modal rule G, (a), (b) f-- x ~~ A. Thus by the
deduction theorem (a) yields (d) E MConst. Furthermore by
(29.3)~ S Then by SA(12.2)z we get Thus

(29.3)3 has been proved.
To prove (29.3)4 assume (a) and xESmcA. Hence (b). From (a)

and (b) we have already deduced x 9 .A, i.e. x E Sr. A. Hence (a) yields
Thus we have proved (29.3)~. To prove (29.3)5.8 is easy.

Remark that the antecedent in (29.3)4 is essential because

-- --

) To prove (29.3)1 we get x c and x E MConst by AI7.II(II) and
rule C with x. Then we have by A17.4, and rule C

with v. Then easily follows by D29.1. This

and (21.8)3 yields (29.3)1.
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The pure theory of ordinals and cardinals in MC~’&#x3E; [Part 3] will be
based on Fn and , while Fnc and +~6~ are important to apply this
theory to classes whatever [DD13.3,4 and 14.1,3]. In this situation

it often happens that an assertion involving h’n and ~ has an analogue
for and =6~. To be able to deduce quickly the latter from the
former in several cases, we first define n-ary weakly separated attribute
(WAgepn) for n = 1, 2, ... ,-cf. D12.1:

By I)D12.1,4, by D29.1, and by DD14.1-3 respectively we have

We now prove that eve1°Y set it is equiextensionalizable with a weakly
separated subset v of its:

By A17.11 (I) and rule C with .I~ we have 
so that u = Rng R. Then by A17.10 and rule

C with F and v we easily get F E .F’n, F C .R, Dmn = Dmn R, and
Then v E = v(e). Hence (29.5) holds.

It must be remarked that W,Sep cannot be replaced by in

(29.5). Indeed the result of this replacement is incompatible with
for ~==~(?~)(~={0,1}~V2013~={0}~).

By DD14.1-4 and D12.4 we have (29.6)1,3 below:

where (29.6)1,, are SA(14.1)1,2. By (29.6), and (29.4)x,3 I- A (n .. B(l) -
.. e $I. To prove the remaining part of (29.6) and (29.6)5 is

easy.
Remark that a suitable analogue of ~#(1) for f I is the notion of

intrinsic extension class d(E) of .91 (this notion is certainly a class
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Then by DD12.4,6 and D29J

Furthermore by D14.3 we easily deduce the first of the theorems

The second follows easily from ( 29.8), and from (29.7)1 and (29.4)1.3.
To I)rove (~9.8)3 remark that by ,i17,ll (I) and rule C with v we get

= U(E) and (b) v E lylConst. We have (c) v ,. c u(E) by (a), (29.8)1,
and the extensional character of sw~6~. Furthermore and (29.7)1
yield Thence by (b) and D12.6 we get By this
and (c), (29.8)3 holds.

Generally in pure mathematics only absolute classes and the modally
constant subclasses of them are considered (so that these subclasses
also are modally constant). Then the best modal version of Cantor’s
theorem [IST, (6.8)] is perhaps the first of the theorems

in case it is regarded as absolute; for it arbitrary (~9.9)~ seems the most
aatisfactory among the aforementioned versions.

The following proof of ( 2 9.9 )1 for any u is similar with the one
of IST (6.8)]. To prove precisely that

we start with (a) Then by A17.11 and rule C
with y we deduce y E J.1IConst and ~~ = E Smc vl - Hence

Then yields and conversely. So assumption
{c~) is absurd, which allows us to assert (29.1U), hence (29.9)1.

From (29.9), we ~ which by (29.7)1,2 and
(29.4)1,3 yields (?9.9)2.
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30. On equivalence relations.

In nn. 30, 31 we consider the analogues for of Sects. 7 and 8
in [1ST]. This is trivial as far as absolute concepts are referred to,
and is also straightforward in the general case, provided our usual
changes be performed in connection with restricted variables, col-
lections ({ } -~ ~ ~ ~i~ ), and identity (== 2013~ ==~)? and provided functions
be turned into Fn s and one to one functions be turned into for

which holds. These changes imply e.g. the use of (inten-
sionally) reflexive relations (Rfl), (intensional) partial order 

[n. 31], and so on-see D30.1 and D31.1 below. However outside

pure number theory the corresponding total notions (based on Fne
and not on Fn) may be of interest. Among them is the notion of to-
tally or extensionally reflexive relation In connection with the
aforementioned total notions some essentially modal considerations
are required to extend Sects. 7 and 8 in [1ST] to _1111 C°°. I think that
nn. 30, 31 and in particular the proofs of (30.2) and (31.5) below will
make it quite clear how to handle in with similarity of order
structures.

In accordance with tradition we should say (in that the

relation R is Rfl [.Rfl~t~] in case for all x, y E Fld R, x =n y [x = y] implies
xRy [Conv. 23.1]. However in accordance with [1ST, Th. 7.2, iv] it

is equivalent (and shorter) to state the following definitions-cf. D.5.1
and D11.9:

Transitive relations (Trns), (intensional) equivalences (Eqv) or ex-

tensional equivalences (EEqv) can be defined in MLoo in the sacme (custo-
mary) way as in ELoo-cf. [IST, Theor. 7.2, i, iii]:

For the notions Rfl, Trns, and Rqv we can prove in MCoo the theo-
rems that are well known in extensional logic, in particular the
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following:

By DD30.172 the first of the essentially modal theorems

holds. To prove (30.2)2 we first assume (a) R E (b) R E Trns,
and aRb. From (a) and (e) we

deduce and bRd. Hence by (b ) and aRb we have eRd. Now we
easily conclude, by D12,3, that (a), (b) t-REExt2. Hence (30.2 )2 holds.

By (30.1), (30.2h, and D30.5, (d) i-- EEqv C Ext2 f1 Eqv. With a
view to proving the converse of (d) we assume (e) R E Eqv, ( f ) R E Ext2,
and (g) a, = b. Then, using rule C with c, we easily get

so that by (g) and ( f ), bRc also holds. By (e) this yields aRb.
Hence (e) and ( f ) yield aRb]. Now we easily conclude by
D30.2 that (e), ( f ) t- R E -Rfi(t).

Hence by D30.~, ~- Eqv n Eqv = EEqv. Now by (d)
we have (30.2 )3. q.e.d.

Unlike the R-equivalence class represented by a, the ctass 

of R-equivalence clacsses with representatives in a must be redefined in
In correspondence with [IST, Def. 7.3, ii, iii] we state

the definitions

Now the well known theorems of Eqv, aIR. and a. can be
asserted in MC°°. For instance [IST, Th. 7.4] holds in MC~’&#x3E; with no

change.

31. Ordering.

Now we define partial order (POrd) element of X (R-
min El X), well f ounded relations simple ordering (80rd), well
ordering (WOrd), the corresponding extensional or total notions 
to and A is R-directed (A E .R-directed) [n. 4]-cf.[IST, 8.1,6,
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No change is required in the usual definitions of notions such as
R-lower bound of X, R-least element of X, and R-greatest lower bound
of X (R-g.l.b. X).

(11) The direct analogues of the definitions [IST, (8.6,vii), (8.12,i)] of the
R-minimal element of X and well founded relations are

We did otherwise in order to consider the two modal notions of R-minimal
elements above.
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Their well known properties, in particular the fixed point theorem
[IST, Theor. 8.7] hold, and some useful characterizations of IVOrd

(IST, Theors, 8.12,13] can be proved in .1JfCoo as in ECoo. The same

holds for the following analogue of [IST, Th. 8.9]:

Incidentally

We now introduce the notions of an (intensional) isomorphism and
a total isomorphism from R onto S:

THEOR. 31.1. It can proved in that the notions POrd, WFnd,
80rd, and WOrd and the corresponding notions to WOrd (t) are
extensional, and that the notion A E R-directed [D31.11] is extensional
1vith respect to A and R 1chile Ism (I~’, R, S) and Ism(t) (.F, R, S) are

so with respect to R and S. For instance

We proved in MC°° that any transitive and totally reflexive relation
is innerly extensional-cf. (30.2h. Hence by DD31.2, 8, 10
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On the basis of [IST] we can easily prove the following theorem,
where « x ç y » can be replaced by o x Dll.9:

PROOF. We assume (a) .R E POrd, i.e. I E POrd and R c- El [Conv. 3.1].
By A17.11 and rule C with T we obtain (b) so

that by (a), (31.3)1, and (19.11)1 we have (a’) TEPOrd.
Now we can repeat on T the reasoning made in the proof of [IST,

Th. 8.4, ii] on .R. In particular we set

Thus for any we have (c) Set

If a, b E Fld T and a # b, then by antisymmetry (a, T or

and hence or b E (F’ b - F’ a). Then (d)
VVe conclude that (a) E-~- (d).

Now we also assume (e) a, b E Fld T and ( f ) aTb. For 

we have cTa, which by ( f ) and (a’ ) yields eTb, hence We

conclude that holds, hence (g) (F’ a) ~S(F’ b). We easily
obtain (f) D (9)].

Now we assume (e) and Then and so

i.e. i.e. ~ (g). We easily conclude that

b’Q,b {(e) ~ [( f ) --_ {g)]~, i.e. Re-

membering (d), (31.6)21 (31.7),, and D31.12, we have Ism (F, T, S)
whence, by (31.3)2, (b) yields (h) Ism (F, 1~, ~S), where T does not occur.
We have (a) j (h) which by Th. 16.1 yields (31.5)1. q.e.d.
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