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Homogeneous Verbal Functions on Groups.

BENEDETTO SCIMEMI (*)

1. - This research was originated by our previous paper [4], whose
main results will be shortly recalled: let p be a prime number, P a
finite p-group of exponent p-, d a divisor of p -1, a a primitive
d-th root of unity, mod an automorphism of P of order d; then
every element h E P can be uniquely written as

The set P1= need not be a subgroup of P (we could take
any other P; . = (h, ; to avoid trivialities), but a loop
operation o can be introduced on Pl by letting for all x, y E P,,:
x o y = If this element is expanded in terms of basic commutators
in x, y

then a recursive formula naturally yields for the egponents eu some
rational (non-integer) values; all examples show evidence that these
numbers are independent of x, y, P, q and only depend on d.

The motivation for the present research was to prove this inde-
pendance, thus showing a more natural origin for the loop structures
we studied in [4]. After we noticed that we could assume without
loss ~’ = (Pl), it seemed natural to look for a group F** admitting

(*) Indirizzo dell’A.: Seminario Matematico dell’Universith - Via Bel.
zoni 3, 35100 Padova.

Lavoro eseguito nell’ambito dei Gruppi di Ricerca Matematica del C.N.R.
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an automorphism ø such that: if P is any finite p-group with n gen-
erators, and 99 is an automorphism of P inducing the a-th power on
these generators, then P is a homomorphic image of F** and 99 is
induced by 0.

By using a recent theorem of R. H. Bruck [1], a satisfactory answer
was found. The main theorem of the present paper (theor. 1, par. 5)
states the following:

Let F be a free group of finite rank n, generated by the free gen-
erators X, Y, .... For each positive number d there exist groups F*
and .F’** with the following properties:

1) .F~.F*~h**.

2) The elements of F* may be uniquely represented as infinite
ordered products in terms of basic commutators in X, Y, ...

where the exponents e. lie in the ring Z[d] of those rational numbers
rls such that no prime dividing s is =1 mod d.

3) The element of ~** are similar, with e. in the ring
obtained from by adjunction of a primitive (complex) d-th root
of unity a .

4) In 1** the « a-th-power » g" is defined (for each g E F**) and
there exists an automorphism 0 of ~’** such that

5) Every element g E F* (in particular, every word in ~Y, Y, ...)
can be uniquely written as

Now let p be a prime number, P a finite p-group of exponent pm
with n generators x, y, ..., d a divisor of a primitive d-th root
of unity, mod pm. Then there exists a unique homomorphism v of F**
onto P such that

If q is an automorphism of P such that X9, = xa, ygl = ya, ... it is clear
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that 0153fP == xa = (Xv)a = (Xa)v = (X~~v, etc. Hence it is easily seen that
for every = gv we as we wanted.

The consequences of 5) are derived in terms of « verbal functions ».
A verbal function on a group is the analog of a polynomial function
on a ring. Let H be a group, I’ the free group with free generators
Xl, X2, ..., Xn; to each word f = f (X1, X2, ..., Xn) E .~’ we associate
the « verbal function in n variables say 7, mapping the n-ple
( h1, h2 , ... , hn ) of elements into the element h2 , ... , hn ) E H
which is obtained from f by replacing each X by hi and taking inverses
and products in H. For n == 1, a verbal function is simply a power;
for n = 2 among the verbal functions (or verbal operations) we find
the usual group-multiplication and conjugation, associated to the
words Xl X2 and I etc. Clearly, the verbal functions in n
variables on H form a group -P (with respect to multiplication of images),
an image of F under the homomorphism If H is a finite

p-group, p ---1 mod d, then there is a natural way to extend the

homomorphism f - f to the group P**. If we apply this homomorphism
to the word g, factorized as in 5) above, we derive the following
(Cor. 1, par. 7):

Let P be a finite p-group of exponent pm, d a divisor of p -1,
a a primitive d-th root of unity, mod pm. Then every verbal func-

tion g on P can be uniquely written as with

By analogy with Analysis, a verbal function satisfying the above
condition for g; is said to be « a-homogeneous of degree j ». Since

(but in general g; ~ I’), the homogeneous factor g; is obtained

from a basic commutator expansion which is uniquely defined by
the word g and the number d, through a substitution of elements of P.

If we apply this to the group multiplication on P, thus letting
we find for gl a loop-operation on P (Theor. 2,

par. 7). In particular, for d = 2, we find, within isomorphisms, the
loop operation which has been extensively studied by G. Glauberman

(see ref. in [4]). When P admits an automorphism of order d, this

operation is easily proved to induce on the « eigensubset &#x3E;&#x3E; Pi the same
multiplication we defined above, i.e. 

Apart from loops, the whole subject in the present broader context
is strictly connected with the work of M. Lazard [3] on nilpotent
groups and Lie-algebras; the relation between his « suites typiques »
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and our homogeneous verbal functions is explained in par. 8: roughly
speaking, some of his results can be obtained from ours by letting d
tend to infinity.

2. - In this paragraph we consider the « binomial &#x3E;&#x3E; properties of
some rings; some of the following elementary remarks may be well-
known, but we do not know a complete source to refer to.

Let I~ be an integral domain of characteristic zero. We shall denote
by its ring of fractions with integer

denominators. If the element

as follows:
is defined

DEFINITION. A « binomial ring » is an integral domain C of char-

acteristic zero, such that is in C for every c in C and every non-

negative integer k.

Of course, Z is a binomial ring (the formula

accounts for negatives) . However, if x is an indetermi-

nate over Z, then the polynomial ring Z[z] is not binomial. Therefore
we introduce the set

(Polyals « ganzwertige Polynomen &#x3E;&#x3E;) . It is well-known that 

consists precisely of those polynomials in which assume integer
values whenever x is replaced by an integer. This characterization
has the immediate consequence is a binomial ring. More

generally, if Z is replaced by any binomial ring C, we define

and easily check that C f x} is a binomial ring. Clearly, if u is an element
of a ring containing C, then C f ~} _ C{x}} is a minimal
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binomial ring containing both C and u (thus is the « binomial

closure &#x3E;&#x3E; of C[x]). If x2 , ... , xn are algebraically independent elements
over C, it is natural to define by induction

An element e of this ring can be expressed as a linear combination
I I , I I

with coefficients in C of products I where the kils are

non-negative integers ; e is characterized by the properties :

... , x~ ] i ... , cn) E C

for all c,eC. In [1 ], an element of 7~~x~ , x2 , ... , x~,~ is called an

 integer-producing polynomial ». In particular, since 2/} =
_ ~ f x~ {y~, we must have « binomial identities » as

for some 

LEMMA 1. Any subring (with 1) o f binomial.

PROOF. Such a ring consists of all the fractions rls such that the
prime factors of s belong to a fixed set of primes. Then, by the binomial
identities above, it suffices to prove that for any prime p we have

1/p the subring generated by 1/p. To this aim we write

k ! = p-r with p ~ r ; then 1 /p = a + rc for some a e Z, c e hence,

by the binomial expansion for x + y , it suffices to prove B k / ? /
when In fact we compute

If d denotes a positive integer, we shall denote by Zed] the ring
of the rational numbers r/s such that no prime dividing s is =1 mod d
(e.g. Z[2] = ~~21 ~ Z[4] = 1, t, ...]).
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LEMMA 2. Zet oc be a primitive (complex) d-th root o f unity. For
every non-negative integer k there exists a polynomial e, e such

i

that k = f or all i c- 7 .
k

PROOF. Let us write k ! = ts, where the prime factors of t and s
are =1 and respectively # 1 mod d. In the factor ring the d-th
roots of unity are exactly d, say where

is a unit if mod d (for t = p- this is in Lemma 1

of [4]; then the Chinese remainder theorem applies). In let us

divide and write

where Î’k E Z[xl is a polynomial of degree smaller than c. By substitut-
ing x = ai we obtain

Since we deduce

From this we shall deduce yk E and

as we wanted. In fact, let us denote by y,, the image of y,, under the
natural homomorphism of onto We know that 

for i =1, 2, ... , d ; therefore yk is a polynomial having d distinct roots
in and degree smaller than d ; moreover, the difference of any
two such roots is a unit in Z/tZ, thus yk = 0 i. e. yk E 

LEMMA 3. = 

PROOF. By Lemma 1, is binomial; by Lemma 2, contains
(X Bk for every k. Since 1/d lies inz[dl I we As

for the inverse inclusion, we must only prove or,

equivalently, whenever p is a prime, p - 1 mod d.
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Since this is trivial when p = d, we can assume p = dq --~- h, 1 C h  d.
Since all the elements of the field are roots of x, we have

Then = -1 ) xh we derive that the remainder
/ uB

of the division of I

Replacing x by aa yields

We now sum over i and take into account that I whenever
1. Then Lemma 2 yields

As a binomial ring containing oc, contains the left hand term,
thus also lip, since p ,~ d.

Let us notice that ai - mi is a unit in whenever I fl j mod d.
This is easily proved by letting r = i - j in the following relation

LEMMA 4. Let p be a prime integer, p ---1 mod d..Let m be any
naturale number, a a primitive d-th root of 1 mod pm. Then there is a

unique ring homomorphism of onto mapping Lx into 

PROOF. Any element of Z[,] is written as a fraction rls, with p ,~ s ;
therefore s is a unit mod pm and hence the natural homomorphism
of Z onto Z/p-Z is uniquely extended to the ring of fractions 
Since is isomorphic to the factor ring where ød is
the cyclotomic polynomial, the statement will hold if we prove
~d(a) --- 0 mod pm. From xd -1 = TI ød, we derive that Ød(a) =t= 0

, 
d’jd

modpm implies ~~. (a) = 0 modpm’ for some 
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Since divides xd’-1, this implies ad’ which is im-

possible, as a is a primitive d-th root of 1 mod pm’ (see [4], Lemma 1).
Thus - 0 mod pm.

3. - We shall operate within a group whose existence and pro-
perties are the subject of a recent paper by R. H. Bruck [1]; from it
we borrow definitions and symbols, and refer to it for details. Here

is the statement of Theor. 1.1 of [1], in a slightly simplified form:
Let (A, ) be a simply ordered set, consisting of a finite number

n &#x3E; 0 of elements; (A~,  ) a universe of basic symbols, based on A;
Am the subset consisting of the elements of length L(u) = m.

Let (.F, ~ ) be a free group of rank n on a free set of generators
the corresponding set of basic commutators;

the subset of commutators whose total weight equals m.
If C denotes a binomial ring, then there exists a group FO whose

elements may be uniquely represented as ordered infinite products

, then for each we have

where ... uk are the elements of A~ of length smaller then
L(u) and Pu is a uniquely defined element of ... , xk; I

i.e. an integer-producing polynomial.
Fe is an extension of .F’, which is in fact represented by elements

11 go- with all exponents eu in Z (as in [2], theor. 11.2.4).
In Fe the « c-th-power » gl exists for every g E F°, c E C; if

The fact that Pu and Ru do not dep end upon C implies that for
their determination one can assume C = Z and operate within the
free nilpotent group (here .Fm denotes the m-th term of the
lower central series of .F’) by the «collecting process »,
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Let us point out some conseguences of this theorem (not all

explicitly stated in [1]~ :
The c-th power enjoys the basic properties of integer powers, i.e.

the last formula being a generalization of P. Hall’s ([2], 12.3.1).
By analogy with the language of C-modules, one can introduce

the concepts of C-groups (i.e. groups with c-th power for c E C),
C-subgroups, C-homomorphisms etc. by requiring the compatibility
with taking c-th powers. If one does so, some basic properties of F
are naturally generalized to FC; for example: the lower central series
of Fc consists of C-subgroups, each term F§’ consisting of those

elements gl-- for which eu = 0 when the factor-group

is a free C-module; since nF’ = (1), a statement holding
m

on may be proved to hold on FC, by induction on m. These
and others similar statements can be proved by a common procedure,
as follows: a property of F is r educed to a set of relations among the
(integer) exponents involved in the infinite-product representation.
Because of their polynomial nature, the same relation must hold
when Z is replaced by C, thus yielding the analogous property for Fe.
In par. 4 we shall exhibit some examples of this procedure.

Fc is called a « completion of F » with respect to the ring C. Here
« completeness » means substantially that if hl, h2, ... , h~ , ... is a sequence
of elements of Fc such that for every then the sequence
of partial products

converges to a unique element in other words k == kj modFf
for every j. Therefore some infinite products are meaningful in FO;
for example, the ordered product is a well-defined element

of F, provided the following condition holds: if L(u) = m, then

Fc. In fact, the finiteness of A implies that only a finite number
of basic commutators have weight m.

4. - One of the basic properties of the free group F implies that
for any integer c there exists a unique endomorphism of F mapping
every free generator ga (a E A) into its c-th power,
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The purpose of this paragraph is to extend in the natural way this
endomorphism to h~, letting c assume any value in C. To this aim,
we start with the basic commutators and define, for any c E C, v E A.

LEMMA 5:

PROOF. Since (c~) is true by definition if L(v) = 1, we shall induce
on m = .L(v) . Then we can assume

Therefore we calculate (compare par. 3)

where

where

Similarly we calculate the commutator and prove
statement ( a ) .

b ) It is a consequence of well-known commutator-relations

([2], 18.4.10 and foll. ) that in the group F we have --- g:m 
whenever m = L(v). This is equivalent to 8v,v(c) = cm, = 0

for L(u)  L(v) or Z(~) = Z(v), ~ ~ v for any c integer. is
a polynomial, the same must hold when c assumes any value in the
ring C. q.e.d.
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Now let be any element of FC. We define

First of all, we must prove that there is no problem involved with
the infinite number of factors. According to the final remarks in

par. 3, it will suffice to show that (gl,")e- E FO if m = L(v). In fact
we claim

This follows from Lemma 5, if we set

LEMMA 6. Let

ments of Aoo whose length is smaller than m, and Qu E x1, ... , 

PROOF. In order to calculate fu we only have to consider the finite
product v. Since we have just seen that I

a repeated use of the product formula (involving the polynomial Pu)
combined with Lemma 5 yields (b).

LEMMA 7. Let c E C. Then the mapping g r~ C-endomorphism
o f FO. I f then 

PROOF. Let )e elements of po. We write

and use Lemma 6 to show that

where
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But when 9 E F and c E Z, by construction, the mapping g r-~ gici
induces an endomorphism of F. Therefore s,, = t~ in this case, hence
also T u by the familiar argument, and (gg’)to = 

The proofs that (gccl)e e - and = g(cel are similar, involv-
ing polynomials in c, e, eUl’ ... , 

We conclude this paragraph with a definition and some remarks
which will simplify the proof of our main theorem in par. 5.

DEFINITION. A mapping E : will be called a C(z)-mapping
if for each u E A. there exists an element Eu E such that

for every c E C .

For example, if g is a fixed element in FIO, then the «exponential
function » c - gC is a by Lemma 6, the same holds for

More generally, our previous remarks show that products
and powers of C{x}-mappings are still such.

5. - Let c be an element of the binomial ring C, g - the endo-

morphism of Fc of Lemma 7, j a natural number. The element
will be defined to be « c-homogeneous of degree j » if gc’

(i.e. go is an « eigen-element » belonging to the « eigenvalue » Ci). The
term is suggested by the fact that such an element will produce
« c-homogeneous functions » in the sense of par. 1.

Let d be a positive number, and the rings defined in
par. 2; we apply the construction of par. 3 with these rings in the
role of C (by Lemma 1 and 4 both are binomial) and consider the
groups Then F is naturally embedded in FZ[dJ and the
latter in 

The main result of this paper is

THEOREM 1. Every element g E Fz Idi can be uniquely written as

i.e. a product o f a-homogeneous elements of degree j = 1, 2, ... , d.

PROOF. Let us write for short = 1~’** = It may
be worth to point out that gi is to be found in I’* although ga"’ is
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only defined in F**. By Lemma 7, a a-homogeneous element of

degree j is also ai-homogeneous of degree j for all integers i.
We shall operate mod-F-**, and induce on m.
For m == 1 we define:

It follows from Lemma 5 (or directly from the definition of g 
that any element of .F’** is a-homogeneous of degree 1, mod F’:*.
Therefore we have

the last congruence being trivial for j .--- 2, ... , d. The elements gl,;
are in J~* and they are unique since for j = ~, ... , d the
condition (gl,~)" = gi:~ --- (gl.~)"’ implies thus - 1
Then the other condition implies also g1,1 -= g.

Let us assume that we have proved the existence of d elements
which are unique mod 0f/* with respect to the following

conditions

We must construct d elements E F* satisfying similar congruences
and prove their unicity mod I’m+1. To this aim, we shall compute
the «mean value » of for c running over the d-th roots of
unity. Thus let us define

We now consider the mapping of into F** defined by

Since lies in F*, the final remarks in par. 4 show that is

a i.e.
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By letting c = (Xi (i = 1, 2, ... , d), the inductive assumption implies
~m,~(ai) ---1 therefore 8,,(ai) - 0 if L(u)  m. Thus we have

If we take into account that these ele-

ments are central we can compute:

We want to prove that the exponent of g,~ lies in 
In fact, by Lemma 2 for each positive integer k there exists a

ai
polynomial such it follows that for

every there is a polynomial

such that Since for
d

I as we wanted. Therefore we have proved

For j =t= m mod d let us define from 

by simply cancelling all factors of weight greater than m in its infinite-
product representation; for y == m mod d let us define

yve must now prove the congruences
We have by definition

Hence by Lemma 7 we compute
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Here we have used the fact that for all j we have

so that (mod .~’m+1) the order of the factors in the product is

irrelevant, and the exponent (Xj may be taken out of the parenthesis.
We still have to consider the m mod d. First we notice

that for m the construction above has given = 

then the inductive assumption g --- gm-1,1... gm-1~d combined
with the definition of gm.3 yields also Since we
have proved the congruence we deduce that we
can write

where z,,,, is a product of powers of basic commutators g. of weight
L(u) = ~n. From Lemma 5 we know that for such commutators we
have

This gives immediately and finally

As for unicity, let us assume that satisfy
the same requirements for -.

By the inductive assumption we can write,

Since the previous argument gives we can

compute in two different ways, namely:
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By comparison we get ~2U~.,,,~~ai-"~ -1, hence - 1
whenever j K m mod d. As for 1 == m, the first condition g - hm,1 ... hm,d
implies wm,l . ·.’Zl~m,d ---1, thus ~,vm, f =1. Thus the theorem is completely
proved.

Let us remark that along the proof the power mappings g - g",
have both been used. By Lemma 3, is a minimal

binomial ring containing a and Therefore, if this proof has to
be carried on in a group of type we cannot choose for C a smaller

ring than For the same reason we cannot expect to find the
homogeneous factors gj in a proper subgroup of F* = FZcdH even

if g lies in F.

6. The proof of theorem 1 gives a recursive method to compute
gm,; starting with so that gj can be determined mod 2~ for

arbitrary m. We shall apply the first steps of this procedure to the
element X Y of the free group F = X, Y~ , whose elements are re-
presented by ordered infinite products as

We first choose d = 2 (d = 1 is uninteresting). Then a = -1 and
= Zr2] = Z[’2-1- We compute :

Let us now choose d = 3. We compute
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For d = 2, 3, 4 and within weight 4 (i.e. mod .F’b ) we find the same
exponents appearing in [4], p. 215. The reason for this coincidence

(the computing method was there fairly different) will be explained
in par. 7. From theor. 3 it will also be clear why two different values
d  d’ yield the same elements for 

The case d = 2 is special: if we start from a word g E F we can
avoid recursive formulas and basic commutators expansions, since the
« mean value » of over the two roots ~1 gives directly the exact
formula for g1. In fact let us write

We claim: f 2 = g2 . We easily compute:

By unicity we must have f 1= 911 f = g2 as we wanted.
In particular, if g = X Y we find

7. We shall apply theor. 1 to finite p-groups; possible general-
izations will be discussed later. In this paragraph P will always denote
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a finite p-group of exponent pm, d a divisor of p -1, a a primitive
d-th root of unity, y mod pm.

There is a unique way to assign to P a structure of 
i.e. for any h E P, we define he to be the unique element
1~ E P such that ks = hr. Equivalently, we may consider the canonical
ring-homomorphism of Z onto Z/p-Z, extend it to the ring of fractions
Zed] by letting c = rls r-~ (r + + = b + pmZ and define
he = hb. P becomes also (although not canonically) a if

we define h" = ha i.e. we use the homomorphism of Lemma 4.
We now choose n generators zi , x2 , ... , xn for P and denote by F

the free group with free generators g1, g~, ... , gn . Then we see that

there is a unique of _ .F’**N onto P
such that 

° ’

If v is such a homomorphism, it is clear how it must act on a basic
commutator gu; as v is also then we must have
for any

where only finite factors are non trivial, as P is nilpotent. This
accounts for unicity. As for existence, we may define gv by the last
equation above; the proof that v is a Z[,,][a]-homomorphism follows
easily, y once the egponents eu have been replaced by proper integers,
i.e. by the ring homomorphism of on we described in
Lemma 4.

As we have already seen in par. 1, this implies in particular that
if (p is an automorphism of P = z~ , ... , Xn) such that = xt" for

i = 1, 2, ..., d then 99 is induced on by the automor-
phism 0: 9 F* 9 (,x) of .F’**.

Now we reconsider the homomorphism g 1--+ g described in par. 1,
mapping the free group I’ onto the group P of the verbal functions
in n variables on the p-group P. As before, there is the possibility
to extend this mapping to a Z[d][a]-homomorphism of F** (the finite
p-group P plays now the role of P above): if

for any n-ple (hl,h2, ... , hn ) of elements h i E P we define
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Clearly, if gjllll = g"’ in .F’**, then ij is a-homogeneous of degree j, i.e.

Then from Theor. 1 it follows

COROLLARY 1. Let P be a f inite p-group of exponent p-, d a divisor
of p -1, a a primitive d-th root of 1 mod pm. Then every verbal f unc-
tion (in n variables) on P can be uniquely written as a product of d
a-homogeneo2cs verbal functions of degree 1, 2, ... , d.

PROOF. Let 9 be a verbal function on P, corresponding to the
word We embed .F in .F’** and write g = gl g2 ... ga, I as

in Theor 1. Then gj may be not in .I’, but gi is a verbal function on P
(i.e. there is a word 9, / E .F’, 9 although depending on P, such that

91 = g3) and clearly being a-homogeneous of degree 1.
As for unicity, let us assume also liEF, ij a-homoge-
neous of degree j. We shall induce on the class c of P (or P), thus
assuming 1i == gi mod Pc . Then if we set the element

..., h~) lies in the center of .P for any hence:

Moreover, the assumption ~1 ... ~a = gl ... 9a implies 21(h, ..., hn) ...
... 2,,(h, 7 ..., hn) = 1. If we replace each hj by its power h11 we get
for the elements k, = z ~ ( hx , ... , hn ) the following relations:

These are equivalent to a set of d homogeneous linear equations in
the ZlpmZ-module P,,, whose coefficients have the (Vandermonde)
determinant Since ai - ai is a unit mod pm, there is

« 

only the trivial solutions 1 = k2 = ... = kd = 1. Therefore = 1 and

;j as we wanted.
When the word-operation g is the usual group product, associated

to the element 9 = XY of the free group .F = (X, Y~ , then Cor. 1
applies to the situation we studied in [4], and unicity forces j, to be
the same operation which was there denoted by the circle o; in fact,
if 99 is an automorphism of P and x, y E P ; then
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yields

where the fact that ii is a verbal function has been used to write the
first equality. Therefore the definition in [4] was: x o y = gl(x, y).
This settles a question which arose in [4], in connection with the

independence (upon P, a etc.) of the rational numbers listed in the
table of [4], p. 215; actually these exponents must be independent,
as they are uniquely defined by the factorization

of Theor. 1, and this is uniquely determined by the choice of d.
Since this factorization is possible in but not in F, it is also
clear why the independence of the formulas requires the use of rational
non-integer exponents.

Once this coincidence has been recognized, many arguments of [4]
may be repeated without substantial changes ; in fact, the automor-

phism (p is no longer available, but the first steps of the proof in
Theor. 1 imply x 0 y --- xy mod x, Y)2’ hence x o z = xz, x o (yz) = (0153 0 y) z
whenever z commutes with x, y ; on these relations most of the proofs
in [4] are based. The result is the following.

THEOREM 2. Let P be a f inite p-group. If we choose a divisor d
of p -1, write XY==glg2...gà as in T heor. 1 and define x o y =
= 91(X, y) for each x, y E P, then we obtain a loop P, 0 with the following
properties:

a) P, 0 is power- associative; the order of an element is the same
as in the group.

b) If the 3-generators subgroups of P have nilpotency class c e
then P, 0 is centrally nilpotent of class  [(c + d - 1)[d] ([...] = integer
part of ...~ .

c) I f a is a d-th root of 1 mod pm, the exponent of P, then the

power mapping: is a loop -automorphism of P, o.

Here are some particular cases: if d = 2, we find x 0 y = 
the loop of Glauberman (see ref. in [4]) ; if d = p - 1 and c C p,
then P, 0 is an abelian group (as we shall see, this is the additive group
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of the Lie-algebra associated to P, according to Lazard [3]). Since

x - y E x, y~, any subgroup of P is a subloop of P, o ,but the converse
is not true; for example, the set Pi of the « eigenelements » for an
automorphism of order d (see par. 1 ) is a subloop but need not be
a subgroup. Since x o y is a verbal operation on P, a group-auto-
morphism of P is a loop-automorphism of P, o; again, the converse
is not true, the mapping being a counterexample. The following
application may deserve some attention: if the 3-generators subgroups
of the p-group P have class  p, then the group of the automorphisms
of P is isomorphically embedded in the group of the automorphisms
of the abelian group P, o.

The assumptions of Cor. 1 can be weakened, but some caution
is needed; for example, we may remark that the finiteness of P was
only used to ensure both the finite exponent and the nilpotency of P.
The former is not required to define a structure of on a

p-group, since the ring Z/p-Z can be replaced by the ring of p-adic
integers; but in this case, if g, E I gj OF, then gj may not be
a verbal function on P. However, a more substantial obstacle to

generalizations is met if one wants to omit the nilpotency assumption
for P, as the homomorphism g - ) is defined only if the infinite pro-
ducts involved converge in P. On the other hand, there is no difficulty
in formulating Cor. 1 for any finite nilpotent group such that

p ---1 mod d for every prime p dividing the order of P.

8. In this paragraph we shall explain the connection between
the preceeding theorems and the results of M. Lazard ([3]).

THEOREM 3. Let C be a binomial ring eontain2ng let g be a-rz

element of = gl g2 ... gd the factorization of Theor 1. Then for
every cc C we have

We only give an outline of the proof, whose details would require
first to prove an improvement of Theor. 1.1 of [1 ], in order to take
into account the degrees of the polynomials Pu, Ru (see par. 2) in

the single variables. One finds that the Cfx}-mapping of C into pc
defined by
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is such that the degree of gu in x does not exceed L(~c) . On the other
hand, the conditions (g,)0" for i = 1, 2, ... , d implies that each
e. vanishes for x = a, oe 2, == 1; since clearly e vanishes also for
the (d+1)-th value one deduces ~u = 0 whenever 
Then (gicJ)-C =1 as we wanted. For j = 2, ... , d the proof
is similar.

COROLLARY 2. Let P be a p-group whose n-generators subgroups
have nilpotency class not exceeding d. Then every verbal f unction in n
variables on P can be uniquely written I where gj is

e-homogerceous of degree j for every integer c.

The proof is immediate, by Theor. 3 and the usual homomorphism.
There is a connection between these statements and some results

of M. Lazard ([3]); he introduced the concept of « suite tipique &#x3E;&#x3E; and
proved that such a sequence can be uniquely represented as an infinite
product ([3], p. 143)

where t is a parameter assuming non-negative integer values and b~
lies in a suitable extension, say E, of the free group F. Roughly
speaking, this is the factorization of our Theor. 3 for g = g(1 ) if we

let d tend to infinity, thus Zldl tend to the field of rationals Q and
F* = FZcdJ to FQ, in the role of E. In the following example this
connection will appear more precise: let

as in [3], theor. 2.4. Now let us apply Theor. 3 to the word g = X Y =

=~1~2...~. We have f or

every c. In particular, if we let c assume integer values t and embed
F* in E we obtain

By comparison it is easily seen that gi - bl, g2 --- b2, ..., gd --- 
Likewise, if .P is a p-group of class not exceeding p - 1, then our
Cor. 2 applied to g = X Y for d = p -1 yields substantially Lem-
ma 4.5 of [3]; by letting
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we assign to P a structure of Lie-algebra from which the original
group-multiplication is obtained through the Hausdorff formula. The

following (open) questions naturally arise:
Under the assumptions of Cor. 1 (i.e. without any bound for the

class of P) let us still write g = XY, gl (x, y ) = x -E- y, (g(x, y ) ) 2 =
- y~. Then P, + is a loop (Theorem 2), but what kind of structure
is (P, -~--, Q, ~) ~ Does there exist a formula enabling one to reconstruct
the group multiplication starting with the two new operations
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