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The Interpreted Type-Free Modal Calculus MC~

A. BRESSAN (*)

PART 1

The Type Free Extensional Calculus E C°° Involving Individuals,
and the Interpreted Language lVIL°° on which M Coo is Based.

CHAPTER 1

THE CALCULUS EC°°

1. Introduction (* *).

First we describe quickly the whole work. Then we give a more
detailed account of the content of Part 1. The analogue for the other
parts of the work is done in the respective introductory sections.

In the present work an interpreted type-free modal calculus, 
whith identity and descriptions is constructed. It is both a type free
analogue of the modal interpreted calculus which has types of all
finite levels and is constructed in [GIMC], i.e. [1], and a modal analogue

(*) Indirizzo dell’Autore: Seminario Matematico, Universita - Via Bel-
zoni 3 - 35100 Padova.

Lavoro eseguito nell’ambito dell’attivita dei gruppi di ricerca matema-
tica del C.N.R.

(**) This publication was worked out in the sphere of activity of the

groups for mathematical research of the Consiglio Nazionale delle Ricerche
in the academic year 1971-72.
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of an extension to the case where individuals exist, of the extensional
type-free calculus NBGM according to Neumann, Bernays, G6del, and
Morse, on which [IST], i.e. [4], is based (1). The extension referred
to above is the extensional interpreted calculus EC°° to be considered
in Chap. 1 as a step towards the construction of in that the

analogues for of many theorems in [IST] are direct analogues
of only the corresponding theorems in EC~° ; furthermore, to state the
transfinite semantical rules for the language MLoo on which MC’ is
based, we need the use of an extension of the set theory in [IST] such
as EC°°.

As to the calculus M C" of which is a generalization, it is

based on a type system containing types for properties, relations,
and functions of all finite levels. Function types can be eliminated
by defining functions to be certain modally constant relations-cf.
[GIMC, n. 14]. The problem of reducing relations to properties in
ML’ can be solved in a way similar to some procedures that are well
known in extensional logic. An aim reached by MC’ is the complete
elimination of types and the achievement of the possibility (lacking
in MO") of dealing with sets whose elements have different and even
transfinite ranks. (ifC" or in particular MCI can be considered as a
subtheory of 

In Part 1, after introducing EC’, we state semantical rules for
MLI, that assign designators quasi intensions, briefly Qls, and are
based on elementary possible cases, briefly P- cases, and other entities.
In Part 2 we state the axioms of (obviously valid in ML’), and
some basic theorems on classes and sets. Some among them are briefly
hinted at because they are similar with their analogues in [IST], up
to some changes of certain standard types; other theorems are essen-
tially modal and in part can be derived by means of the analogues of
r-cases defined within MC’ itself. These analogues can be dealt with
quickly by a straightforward extension to MC°° of nn. 47-49 in [GIMC].
In Part 2 relations and functions in M 000 are also considered. Part 3

deals with ordinals, transfinite induction, ordinal arithmetics, and re-
lated topics.

(1) As is customay, we call set any class that is an element of another
class, and we call proper class a class that is not a set. [IST], i.e. [4], deals
both with sets and proper classes, while e.g. the Zermelo-Skolem-Fraenkel
theory, briefly ZFS, Mostowski [5], and Suppes [7] deal (axiomatically) with
sets only.
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One of the main aims of Parts 2 and 3 is to show that on the basis
of certains modal preliminaries mostly stated in Part 2, the set theory
presented in [IST] can be carried over to MC°° rather simply by means
of certain changes of standard kinds. This is true especially in con-
nection with pure number theory where only (transfinite) numbers
and classes of them are considered. Of course the definitions of some
basic notions such as ordinal class (Ord) also have some important
modal features. However after they have been stated in several

sections of [IST] practically need only be hinted at.
The essentially modal theorems in Part 2 are numerous and basilar

for the whole work, while those in Part 3 are less frequent and in part
are only important in limited fields. However several of them are

important to apply pure number theory to arbitrary classes.

***

Now let us describe the content of Part 1 with more detail. In [5]
Mostowski pointed out a simple way of extending Neumann’s axioms
for set theory to the case where individuals (i.e. non-classes) exist
-cf. [3, p. 160]. However, as Monk remarks in [4, p, 14] on the basis
of [7], the inclusion of individuals complicates the development of set
theory considerably. Therefore in Chap. 1 we explicitly sketch the
aforementioned extension EC°° of NBGM to the case where individuals
are present, and we show a way based on the introduction of certain
restricted variables, by which the whole theory developed in [IST]
can practically be extended to EC°° in a rather straight forward way
[n. 5]. Only a few theorems on non-pure number theory differ from
their correspondents in [IST] in such a way that explicit enunciates
of them in EC°° and the explicit presentation of some steps of their
proofs are wanted. Among them are some theorems on universes
[n. 6], and in particular Theor. 6.2 on the notion of a partial universe,
which generalizes the one of universe.

Incidentally EC°° also differs from [IST], the theory [5] of Mostowki,
and Suppes’s book [7] in that in EL°° the description operator 1 is

included and identity is defined. EC°° differs from [5] and [7] in that,
as well as [IST], it deals (axiomatically) with proper classes. EC°°

differs from [IST] in that, as well as [7], it contains a primitive constant
that expresses the empty set !1 and is useful to deal with individuals (2).

(2) More precisely two versions of EC°° are considered in Chap. 1. In

the first we need no additional symbol such as Mostowski’s predicate of being
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Our tratment of EC°° [Chap. 1] differs from [7] in that, among other
things, only in Chap. 1 certain topics such as strongly inacessible
cardinals and universes are considered. We mention them because

they are affected by the assumption that individuals exist.
Let us add that in MC°° identity cannot be defined unlike in

[GIMC].
According to Fraenkel, Skolem, and [IST], set theory must not

include individuals, so that A is the only elementless entity (and it
is an element). Such theories were well accepted by many logicians
and mathematicians after Fraenkel criticized Zermelo’s theory by its
referring to entities whose origin is non-mathematical or even non-
conceptual, in that this characteristic is unuseful for the construction
of mathematics according to Fraenkel. We are aiming at a logical
theory fit for axiomatization of physics or other unspecified natural
sciences, where non-classes such as mass-points or cows are referred
to, so that non-classes are also to be considered in our extensional
semantical metalanguage. In spite of this we are doing pure logic
and are using pure mathematics because our individuals are unspecified.
In not accepting the aforementioned Fraenkel’s criticism Zermelo

proved to prefer a more general point of view on mathematics.
In Chap. 2 we introduce the modal type-free language with

identity and descriptions [n. 8] and we state transfinite semantical
rules for it [n. 8]. The notions of modally separated and absolute n-ary
attributes Absn), introduced in [GIMC], appear basilar also
for ML’ and need some slight changes. The (new) notion of inner
identity of n-tuples { =n) [n. 12] also is basilar.

We have two kinds of functions, which become equivalent in con-
nection with absolute classes, and in particular as far as pure number
theory is concerned [n. 13]. Likewise we have two (main) notions
of equipotence: intensional and extensional equipotence ( ~, sw6».
The first is useful to carry over to MC’ most theorems in [IST] on pure
number theory, the second is basilar for applying this theory to

arbitrary classes [n. 14].

an individual-cf. [5]-in that is identified with A; the second

(and main) version, as well as [7], contains as a primitive constant.
Let us add that [7] will be followed in part to prove the 

[Theor. 4.1] and that, among other things, Chap. 1 differs from [7] in that
it includes explicit semantical rules for the language (EL°° ) on which the
calculus being considered is based.
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Lastly the notions of an ordinal class (Ord) and an ordinal number
(Ord) are defined within XL’ [n. 14]; furthermore the semantical
designation rules for EL°° are explicitly stated [n. 7].

2. The extensional type-free language Definition of = . First
axioms.

The primitive symbols of EL°° are the variables Vl, V2, ..., the
constants c1, c2 , ... with for and the additional
seven symbols « ~ », « n &#x3E;&#x3E;, c ‘d », « 1 », « E », « ( » and « ) ». Let us define

the designators, or wffs of ELoo, i.e. its terms and matrices recursively
by the following conditions (1) to (4):

(1) ei and Yi are terms.

(2) I f 4 and L11 are terms, then {d E L11) is matrix.

(3) If p and q are matrices, then such are ~ (p), (p n q), and

(4) If p is a matrix, then (7 is a term.

We consider a set DE of (extensional) individuals, and the sets of
any transfinite rank a based on D,, as well as in [IST] except that in
that book DE is assumed to be A. I think of EL°° as speaking about
those among the entities above for which 0  (X  fJ, where 0 is a given
strongly inaccessible cardinal-cf. [IST, p. 159]. We have a = 0 for
individuals and a = 0 for proper classes for E.L°°.

We understand that V, :), _, ~ (is not), 3 (there is), ~~1&#x3E; (there is
at most one), and 31 (there is exactly one) are defined in the usual
way. Furthermore let ~, d’, 3, A, V7 =~ and -D have decreasing
cohesive powers (as in [GIMC]).

We shall write e.g. for c (bx) » and (3 x, y) or ~x,~ for ~c (~ ~)(~ y) &#x3E;&#x3E;.
Furthermore we shall use ~c ~ », ~c ~’ », and ~c ~ », possibly with sub-
scripts, as unrestricted variables (i. e. VI, Y2 , ... ).

Now let us begin the construction of the type-free extensional
calculus EC°°. We can use any set of axioms for propositional calculus
and quantification. Let us accept the analogues for EL°° of axiom
schemes 1 to 6 in [6, p. 212], i.e. those of AS 12.1-6 in [GIMC].

Syntactical notions and symbols, such as deduction and « J- » are
understood to be defined for EC°’ as in [6], i.e. as for [GIMC,



162

n. 29]-so that modus ponens is the only inference rule in EC°° and
for every axiom A, (B7’Vi)A also is an axiom. The theorems of de-

duction, generalization, and rule C (which is the formal analogue of
an act of choice) obviously hold for E.L°°.

We introduce metalinguistically the predicate El of being an ele-
ment, its opposite B7 being the predicate of being a proper class (3).

(where Vi is the first variable that does not occur free in 11).
After the axioms for classes are laid drown, it will appear useful

to define the equality d = 111 by the condition that 11 and 111 should
have the same elements [properties] in case either 11 or 111 has an ele-
ment [d and 41 are elementless]:

where the variables ~/ and 0’ are chosen in the obvious way (they
are the first variables that do not occur in d or 41).

It is easy to deduce from DD2.1,2 that identity ( _ ) is 

symmetric, and transitive.
Following [IST] we identify zero with the empty set 11.. Since we

want to take individuals into account, we consider two alternatives
for ~l. Either A is a primitive notion, expressed in EL°’ by the con-
stant CI, or it is identified with the « non-existing object »

In both cases our axioms in n. 4 will yield the theorem

where, as well as in any formula, we understand that « ( ) » is any string
of quantifiers, that its scope is the whole part of the formula at its

(3) E.g. the sign « (ML°°) o in D2.1, DD3.2-6, or Convention 3.1 below
means that D2.1, DD3.2-6, or Covention 3.1 is also understood to hold for
the modal language ML°° to be introduced in n. 8. We shall use « (MCOO) »
with the obvious analogous aim.
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own left, and that it includes the restricted universal quantifiers formed
with the restricted variables in the formula.

In the present section we can consider (2.1) as an axiom for the
sake of simplicity, or as a tacit assumption in theorems (2.2) and
(3. 2-4, 8-10), only until Theor. 4.1 will be proved.

In the first alternative, i.e. when D2.5 is rejected, we accept e.g.
the first of the axioms

We consider this alternative as the main one because D2.5, together
with D2.4 may turn out to cause confusion (4). We mentioned the
second alternative [D2.5] only because it allows is to reduce the number
of primitive constants.

The only axiom for ?-cf. A.12.18 in [GIMC] is

Now we introduce the notions (or predicates) of class (Cl), indi-
vidual (In), and set (St), considering "IF as a suitably chosen variable:

From A2.2 the usual properties of ~ follow; e.g.

3. On the lambda operator and class operations in EOcn. Conventions
on italicized symbols, non-italicized symbols, and restricted variables.

Finite conjunction { n n), finite disjunction (V)? lambda expres-
t-i i-1

sions ((~,aa~)p), and collections (fdi, ..., are understood to be

(4) E.g. according to DD2.4,5 the condition that f (x) is not defined for
reads /(1) = 0.
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defined in EL°’ as usually. For instance

where 0&#x26; is the first variable different from Y’ that does not occur
free in p. Furthermore it is useful to define c - » (complement), c r1 »,
« _ » (difference), « U &#x3E;&#x3E;, « TT &#x3E;&#x3E;, « ~ », and « c » as usually in connection
with any terms L1 and L11:

where Vi [V;] is the first variable that does not occur free in d

[4 = dl].
The extension of El or St [of In]-cf. DD2.1,8,7- is a mathema-

tical object, and precisely a class [a set],so that it can be denoted by
the corresponding lambda expression. E.g. the extension of El is

(ÂVI) V, EEl [D3.1]. The analogue does not hold for italicized notions
such as Cl, to be considered as properties holding for some proper clas-
ses. Indeed, for instance, by D3.1 and D2.8 i-- V, E E Cl) = V, 
In spite of this, for the sake of uniformity we state the following

CONVENTION 3.1. (MLOO) The non-italicized symbol, say Sym, corre-
sponding to any italicized symbol, Sym, is understood to be defined by
the corresponding lambda expression : Sym =D (~,Y1 ) V, E Sym.

Another useful convention is the following :

CONVENTION 3.2. We may combine the aforementioned itali-
cized symbols with one another and with terms of EL°° or MLOO [n. 8]
using « = » and the symbols  - &#x3E; (complement),  r1 », ... , 7 « c »

DD3.2-5,7,8. E.g. stands for 
and stands simply for 
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To present some applications of the conventions above we write
the definitions

and the theorems

Furthermore, on the basis of D2.6 we turn DD2.7,8 into

and from DD2.6,7 and (2.1) we deduce in (EC°’)

where we need not write « ( ) » by the generalization theorem.

CONVENTION 3.3. (MLOO) (a) We use the symbols L1, L11, L12, ... for
any designators, the script capital letters d, -4, ~, ~, 1/, iF (possibly
with subscripts) as unrestricted variables, non-script capital letters such
as A, B, C, X, Y, Z, U, V, W ... as class variables, the lower case Latin
letters a, b, c, d (possibly with subscripts) as element variables, and the
lower case Latin letters x, y, w, (and xl, x2, ... ) as set variables; hence
in EL°° we can write

where Vi is the first variables without free occurrences in ~(X )~ 0(a),
or O(x) respectively.
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(b) Roughly speaking e.g. a E A stands for and if p
contains restricted variables, then p stands for r ~ p, where r expresses
the restrictions on those restricted variables (E.g. r is X, Y E Cl f1 a EEl
in case p is a E X E Y. ) ,

In contrast to usual properties of f1, U, and -, we have e.g.

Of course the usual formulas involving r1 to - hold if only class
(or set) variables are used.

Let us define the power class or subseot class (SLI), union class ( U J),
and intersection class (n j) of 4 as follows (5)

CONVENTION 3.4. (MLOO) If VI, ... , Yn are distinct variables and

L11, ..., dn, L1 are expressions in ELoo (or MLOO) , then we denote the ex-
pression obtained f rom L1 by simultaneously substituting L1 i for Vi

Remark that by Convention 3..3 and D3.10

where and the (distinct) va-

riables a and ~ ~ do not occur free in ’L1. 
I 

Note that

By (3.9), we could use only unrestricted variables in D3.10, and
by (3.10) the analogue does not hold for D3.11.

(5) We write e.g. 4 » for e d *, and 4 » for
« x e ~, as is customary.
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CONVENTION 3.5. If after 2cs2ng Ø(Vi) as a matrix, we write Ø(L1)
where L1 is a term, then we understand that d is free for Vi in Ø(Vi)

and is and ( ) is d ( )

4. Axioms in E C°° for classes and sets ; some basic consequences.

First we define the successor 6(X) of the class X:

The axioms for classes and sets of EC°° are AA4.1-10 below; AA.4-10
are very similar to the corresponding axioms 1.12 to 1.36 considered
in [IST, p. 180]. If the (extensional) domain DB of individuals is as-
sumed to be empty (In = A = 0) as is in [IST], then A4.1 can be
included in A4.8.

As is well known, by A4.4 Hence we can replace
AA4.1,8 by the single axiom

It asserts the existence of a set u that contains the elementless
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entities and is closed with respect to the successor operation. In case

no individual exists, A4.8’ is equivalent to A4.8.

THEOR. 4.1. We have (2.1 ), i. e. f- 

PROOF. We follow in part Sec. 2.2 of Suppes’ book [7] which, unlike
EC°°, exludes proper classes according to Fraenkel, and assumes = as
a primitive notion.

From A4.3 with p replaced by ~’ ~ ~’, Convention 3.3, and rule
C with 0’ we get ( a ) and 9

hence This, (a), and D2.6 yield (d) By D2.2
and (d), So (c) yields where #i’ does
not occur. Hence (2.1) holds. q.e.d.

By D2.6 and by D2.4 and A4.8 we respectively have

From DD2.1,2 and A4.2 we respectively deduce

Now, to prove that

we first assume (a) and (b) 
Then (c) X = Y follows by D2.2. Now assume (a) and - (b).

Then (4.1)1 yields Y =1J. and X = ~l, so that by the symmetry and
transitivity properties of = [n. 2] we have (d) X = Y. So t- (a) D
D X = Y.

To prove the converse implication, remark that (b) and X = Y
yield (a) by D2.2; furthermore - (b) yields (a) trivially, so that
&#x3E; X = Y:J (a). We conclude that (4.3) holds.

Definition D2.2 of identity may push us to weaken A4.2 into

THEOR. 4.2..For any matrix 0(,Ql, -4, ~)
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PROOF. It is easy to prove (4.4) by induction on the length of
0(.-2/19, . The starting steps are those where 0(,c/, -4, ~) is Y’ E CC

Let the first alternative hold and start with (a) a= -4 and 
Then ~~~~Y’ E ~ follows by (4.2)~. Hence Then by (4.3),
(a) and "Y E d yield Hence (a) yields Like-

wise it yields the converse implication. Hence (4.4), holds in the present
case.

Now let 0(,Q/, fll, ~) be W E and start with (a). Then by A4.2
E 1// - fJl E 1//), hence c/ E We conclude that

t- (a) ~ "Y), which is (4.4)1 in the present case. Thus the
starting steps have been dealt with.

Now let (4.4)1 [(4.4),] hold in case the lenght of le) is
 n [ n + 4]. Then we can easily prove the validity of (4.4)1 in the
cases where Ø(d, -41 ~) has any of the forms V E L11, L11 c- le, - p, 
and Vyr p. Furthermore we can derive (4.4)2 from the inductive hy-
thesis (4.4)1 by (2.2). q.e.d.

***

Theorem (4.3) also holds in [IST] (where = is considered as a

primitive notion). However the part of EC°° where all variables are
restricted to classes obviously differs from [IST] in that for 
we can set X = ~a~ and Y = ~b~ where a and b are individuals;
then both and are true, and

b Y.
The ordered couple (a, b) is defined to be ~~a~, la, b~}. Furthermore

we identify the n-tuple (a,, ... , an) with al for n = 1, and Wi.th

((a1, ..., an_1), an) for n = 2, 3, .... The notions of n-ary relations and

functions (Fn) are understood in the ususal way cf. [IST, Secs. 3, 4].
The same holds for the domain Dmn R, range Rng R, and field Fld R
of the largest binary relation belonging to the set R.

We use « X &#x3E;&#x3E; for cartesian product and Y2 for Y X Y, so that

means that R is a binary relation.
Following substantially [3], we introduce the notations F’a and

for the value of the (function) -5F at a and the $’-transform of
the (class) X respectively.
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Now we can state the last two axions of EOC»:

A4.9 (Substitution) 

A4.10 (Relational axiom of choice)

It is useful to introduce the symbol 

where L1 is a term, V,,, ..., Vn are the (distinct) vari ables having free
occurrences in it, and Vj is the f irst variable different f rom Yl to Yn
without free occurrences in p.

Of course t- (~,~’) p. We can now introduce lambda ex-
pressions for n-ary relations and functions

where d1 to d n are distinct variables and ~‘ is the f irst variable distinct
from them that has no free occurrences in d . The theorems

can be proved in substantially the usual way-cf. in particular (4.1)
and A2.2. For n = 1 (4.6) is (4.5).

Let us explicitly note that-cf. (3.4)-we can prove [AA.4.1,8]

5. A straightforwrad way of constructing the analogue for EC’o of the
theory of sets and transfinite numbers used in pure mathematics.

It is straightforward to express in EC°° the elementary set theory
presented in [IST, Chap. 1] (Boolean algebra of classes, algebra of
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relations, functions, infinite Boolean operations, equivalence relations,
and ordering). In order to give some hints how to do this and for
later purposes, we now define the identity relation I, the R-equivalence
class of the element (a/.R may be a proper class), and the class

of the R-equivalence classes having representatives in A-cf.
[IST, Def. 7.3]:

We say cf. [1ST, Def. 8.12 ] that (1) R is a partial order (R E POrd )
if R is a relation antisymmetric, reflexive, and transitive-cf. n. 30
below.

(2) is well founded (R E W.F’nd) if R is an asymmetric relation
every non-empty subset A of whose field has an R-minimal element x

hence 

(3 ) R is a well-ordering if R - I is well-founded and R is a simple
ordering (i.e. R E POrd and 

It is also very simple to construct the analogue for EC°° of the
theory of ordinals and cardinals presented in [1ST, Chaps. 2-4]. To

give some hints we define e-transitive class (e-Trns), ordinal class (Ord)
and ordinals number (Ord):

In accordance with Convention 3.1

The analogues for [IST] of the three definitions above constitute
Def. 9.1 in [IST]. The basic (and only) difference between the former
and the latter definitions consists of the inclusions of the condition
d E Cl in D5.4. The analogues for EC°° of the theorems and proofs
in [IST, Chap. 2] can be safely written in practically the same way,
provided one be careful about the use of restricted variables and in
particular one remember that x E Ord implies that x, y, and z
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are classes (sets)-see (5.2) below. The fact that under the assump-
tion In = A made in [IST], axiom A4.1 is embodied in the conse-

quence Oc-St of A4.8 will be relevant very seldom-see (5.9) below.
In particular we can prove in Eooo-cf. [IST, Theors. 9.2-9]-that

We write  xRy for « (x, y) E .R [IST]-and for the re-
striction of the function .F’ to the class A. Then the general recursion
principle [IST, Theor. 13.1] reads in EC°° as follows :

THEOR. 5.1. Let R be a well f ounded relation such that, for every b
in the Field of R, ~a~ (a, b) is a set; and let F be a function of
domain (Fld R) x V. Then there is a unique f unction G such that
Dmn G = FldR and for all a E Fld .R

We have only changed Monk’s set variables x and y into our ele-
ment variables. Practically so simple is the conversion of the proof.
The analogue holds for the recursion theorems 13.2-8 in [IST], i.e. the
general and usual recursion principles for ordinals, the same principles
considered in connection with a parameter, the iteration principle,
and primitive recursion.

All theorems of ordinal arithmetic, those stating equivalents for
the axioms of choice in [IST, Chap. 3], and the theorems on cardinal
numbers in [IST, Chap. 4] are carried over into EC°° together with
their proofs by similar (extremely slight) changes, and by taking A4.1
into account as far as [IST, Theor. 15.18] i.e. (5.8) below-is con-
cerned. Let us mention in particular Theor. 13.10 in [IST] which is
the assertion that every well ordering whose field is a set, is similar
with an ordinals number; furthermore the following-cf. [IST, Def. 15.16
to Theor. 15.20]-where we start using Greek lower case letters as

variables restricted to ordinals, unless otherwise noted:
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THEOR. 5.2. There is a unique f unction e with domain V, such
that for every element a we have (6)

We call ea the rank of a (a The rank of ~1. or any individual
is 0. The theorem

can be proved in EC°° (by induction) as its analogue, Theor. 15.18,
in [IST], except that we have to add at the outset of the proof that

and that t- MI E St by A4.1. Then we can follow the proof of

Theor. 15.18 in [IST, p. 113] (on the basis of A4.4).
The analogues for EC°° of [1ST, Theor. 15.20] is rather straight-

forward :

(6) If 0153 and fl are ordinals, then 0153 =D 0153 and ---D 0153 E {3.
Now, to prove Theor. 5.2, let the function I’ in (5.6) be defined by

Now let a E Et. Then either a E In U ~0~, hence f. with f. =~ a}
is the empty set (and by (*) = 0); or a E St so that J. = a. We con-
clude that Then (*) and Theor. 5.1 for G = g and JR = (Aa, b)

[so that is equivalent to easily yield Theor. 5.2.
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As far as the equivalents of the relational axiom of choice A4.10
are concerned, let us only mention the following:

Counting principle : For every set x there is an a E Ord and a
one to one function F that maps x onto a.

Practically the theory of cardinals developed in [IST, Chap. 4]
becomes its analogue for EC°° by simply including the condition
u A and B are classes » in the definition [IST, Def. 18.1] of equipo-
tence : We say that A is equipotent with B if A and B are classes and
there is a one-to-one mapping of A into B. We also say that A is
a cardinals (number) if A E Ord and A is not equipotent with any a E A.

By the counting principle, f or any set A there is a unique cardinal m
(m =D J.AI) such that A and m are equipotent-cf. [IST, Theor. 18.3].

6. On universes.

The extension of the «pure number theory)&#x3E; in [IST] to EC°° is
straightforward, as was shown in n. 5; this holds in particular
for weakly and strongly inaccessible cardinals-cf. Def. 23.10 and
Theor. 23.11 in [1ST]. Somewhat less stranghtforward is the ana-

logous extension of the theory of universes, which is closely related
to those cardinals.

We understand that A is defined to be a universe, in EL°° as well
in the metalanguage, in case we have

where (JJ ist the first limit ordinal (&#x3E; 0).
This definition can be obtained from [IST, Def. 23.12] by re-

stricting variables suitably, in connection with (6.1)4, and by adding
condition (6.1)3. This addition is quite natural in that in [IST]

so that (6.1)3 follows from (6.1)2,4; furthermore it induces

very slight changes in the theorems on universes in [IST]. More pre-
cisely Theor. 23.13 and its proof keep holding in without any

changes, except that some variables have to be suitably restricted in
one of the aforementioned ways. Thus the following wffs are (syn-
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tactical) consequences (in EC°°) of the hypothesis that A is a universe:

where X &#x3E;&#x3E; »] denotes cartesian [direct] product-cf. [1ST, p. 55].
The analogue of [IST, Theor. 23.14] is the following:

THEOR. 6.1. A is a universe iff A = Me for some strongly inac-
cessible cardinal lS larger than llnl. .

This theorem differs from its analogue by the addition of the

(obvious) condition {} &#x3E; The proof of =&#x3E; reads as in [IST, p. 161 ] ;
the one of = also, except that the condition % &#x3E; linj is essential to
deduce the inequality Mo (which is the initial step of an induction)
from the assumption A = M~ where 0 is a strongly inaccessible car-
dinal.

Incidentally, from the proof of Theor. 6.1, which is a very slight
generalization of the one of [IST, Theor. 23.14], it results that i f A
is a universe, than A = Mo IA I.

It will cause no confusion to understand that e.g. Mo is defined
within both EL°° and the metalanguage. The same holds for the

object system ~a (x) of rank a based on the set 0153:

Obviously is the set of the objects of relative

to x », furthermore M(X = (5.9)2, (5.10).
Let us say that A is a partial universe, br:efiy if con-

ditions (6.1)1,3~,5,6 hold, i.e. A is a universe according to [1ST, Def. 23.12].
A universe-defined by conditions (6.1) in A-is a partial universe;
in addition if then (6.2-6) hold and cf. the proof of

[1ST, Theor. 23.14] and where 0, is the first strongly
inaccessible cardinal larger than the rank or of x.
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Furthermore, by the 8-transitivity of the partial universe A
-cf. (6.1)4 it is easy to see that the following analogue of Theor. 6.1
or [IST, Theor. 23.14] holds.

THF,OR. 6.2. (a) I f A is a partial universe, then

(b) If (6.8)1 holds where J ç In and 4 is a strongly inaccessible
cardinal larger than then A is a partial universe and (6.8)2.3 hold.

PROOF. To prove (a) let (6.8)2,3 hold and let A be a partial universe,
so that lfl is strongly inaccessible-cf. (6.5)1. Then we can deduce
the first of the assertions

by the reasoning obtained from the deduction of Mf) ç A within the
proof (of the part=» of Theor. 23.14 in [IST, p. 161], by means of the
replacement We can deduce (6.9)2 as in the same proof.

Now let (6.9)3 not hold, as an hypothesis for reductio ad absurdum.
Then there is an element b of ) with the least rank.

Since b E A, by (6.9)z p&#x26;~. We cannot have ~b = 0, for this
yields and Then b is a non-empty set.

By (6.1)4 b CA. Then the case obviously contrasts with
the above minimum property of ~b. Hence b 9 T(.f). Since ~Ob  0,
this yields b E by (6.7), so that (since eb + 1  0) b E 
which contrasts with an assertion above (’). Then (6.9)3 must hold.
This and (6.9)1 yield (6.8)1. Thus part (a) holds.

Now let the assumptions in part (b) hold. Then the validity of
conditions (6.1)1,2,4,5 is easily checked. To check (6.1)6 suppose that
(a) and (b) I hold. Since 0 is strongly inacces-
sible, by induction one easily deduces

Hence (c) 0, so that by the assumption (6.8)1 we have
thesis (6.8)3. From (b) and (c) we deduce Ixl C . Now we can re-

(7) By « + 8 [« + )1 we denote the sum of ordinals [cardinals]-cf. [1ST].
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mark, as in [IST, p. 162], that, since 4 is regular,

Hence which by assumption (6.8)1 yields So (6,1)~
holds.

We can prove V~ [a ~a(~) ~’1 In] by induction. This and

(6.8)1 1 yield (6.8)2. q.e.d.

7. A semantical system, for 

We call semantical system for EL°° (of cardinality lS) any triple

where 0 is a strongly inaccessible cardinal and where for some (exten-
sional) domain of individuals DE we have = 0°°(a)]

Incidentally from (6.7) we see that for any limit ordinal 
(i.e. with 

In particular 0 ~ contains a set, A, having an element of rank m
for every m  a~, so that A # OY for all y  c~. The replacement of
a + 1 with a in (7.2) would cause e.g. 0’ to contain only members
of the sets Oy with y  w. By (7.2) Oa is the class of extensions of
rank  a. The sets in constitute while 0$ - 
is the class of the proper classes in 

In accordance with [GIMC] we say that V[M] is a value-assign-
ment [model] for EL°’ if it is a function from the variables [constants]
of EL°° into 0$ [for which M(Ci) = A]. 

_

We define the extensional designatunl Lï = des MV( L1) of the expres-
sion L1 in EL°° in the semantical system (7.1), at (the model) M and
(the value-assignment) TT~ recursively by the conditions (1) to (4)
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below, where 1 and 0 stand for true and false respectively and where
we understand that Lïi = i) (i =1, 2) :

(1) I f d is Vi [ci], then d is V(Vi) [M(Ci)].

(2) I f d_is d_~ E d 2 , then d is 1 or 0 according to whether or

not L11 E Lï2:

(3) I f d is ,,-,L1I’ or (’iVi)Ll1 where d~ and d ~ are ma-
trices, then d is in order 1 - j,, d 1 ’ Lf2, or the product of the
numbers extended to all value-assignments V’ with

V’(V;)= V(V;) for j=;6i.

(4) If d is (i Yi ) (d 1 ) where d 1 is a matrix, then either (a’) there
is exactly one b E 0~ for which desMy,(Ll1) = _1 where Y’ ( Yi ) = b
and V’(V,) = V(V,) and (a") Lf = b; or (b’) the
exact uniqueness condition (a’ ) on b above fails to hold and
we have (b") Lï a,.

CHAPTER 2

THE INTERPRETED TYPE-FREE MODAL LANGUAGE ML°°

8. The type free modal language ML-. Quasi intensions.

The primitive symbols of MLoo are those of ELoo [n. 2] with the
addition of « =» (contingent identity) and « N» (necessity). We de-
fine the expressions or wffs of MLt» (i.e. its terms and matrices) recur-
sively by conditions (1)-(4) in n. 2 (for EL°°) and the following two
additional conditions

(5) I f L1 and L11 are terms, then (4 = d 1 ) is a matrix.

(6) If p is matrix, then such is N(p).

To construct a semantical system for let D and be two

disjoint sets of individuals with and ~.1~~ &#x3E; 1. We consider .1~
as the class of elementary possible cases, br’efiy Furthermore
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we assume that the class Ord of ordinal numbers (for the metalanguage)
contains some strongly inaccessible cardinal 2013cfr. [1ST, pp. 159]
larger than so that the set If$(D U F)-cf. (7.2 ) is a uni-
verse (n. 6). Then we can consider TO(D U T) to be the universe re-
lated to the semantical system for EL°° (desMy(In) = D u 1~).
In u F) is the class of elements, i.e. sets and individuals
(for whereas the subsets of the same class that are not elements
of its i.e. the elements of If$(D U.P)-are the proper
classes (for .EL°°).

We want to define the analogue of for ML°°.
To this end let ~ be a mapping of .1~ onto S(D) and assume that (a)

where aE (E D) will be used in connection with descriptions (whithout
making any r-case privileged). Incidentally the substitution of 11. for

~a$~ in (8.2) and the addition of the condition aE E D would make a
F- case y privileged, via the condition 

We say that f is a quasi intension of modal rank  0, and we write
f E QIo, if f is a mapping of a subset of F into D, such that f (y) E 9(y)
for all y E r1 (and we shall consider these QIs as binary relations for
the sake of homogeneousness). Using the direct product Pc-rAv of
any family A,,-cf. [1ST, p. 55]-we can write

In the r-cases out of the domain of represents (the extension
of) A; if then in y f represents the nonexisting
object, i. e. nothing. To identify a~ with ~1. may cause confusion
-cf. [GIMC, fn. 27, p. 106].

Looking forward to stating the rule (~3) of quasi intensional desig-
nation [n. 9], we now define the class QI~ of quasi intensions of modal
rank c a for 0 C a E Ord by transfinite induction using formal nota-

(8) By » we denote the class of the mappings of into B.
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tions in the metalanguage (as we did in (8.3)):

Thus, I , 
a,nd then either y 0 Fld $ and $ represents

~1. in y, or and there is a unique b E .9(y) such that (y, b) E ~
and $ represents b in y, or else there are some C E U Qlp such that

x

(y, ,) E and represents, in y, the class of these ’s (or the property
holding only for them).

If a is the least ordinal for then we

call a the modal rank (mr ~) of $. It is useful to set z1.

THEOP.. 8.1. The (ordinary) rank of any nonempty 
where ot is the modal rank mr $ of ~, is a f unction rm a of a (the rank
of the Qls of modal rank a), defined for a C 0:

PROOF. First suppose a = 0. Then by (8.3), $ is a non-empty
set of couples of elements of T and D. Hence rm a = 3.

Now assume a &#x3E; 0 . Then for all for

every 6  L-t there is an ordinal P such 
has at least one element of the form (y, ~y) with and ~Y E QI ,
whose rank is 2. Now we easily see that by (8.4) we have

Hence rm0153= a if a is a limit number, and rm (a + 1) = rm a + 3.
This yields (8.5). q.e.d.

Let 0 be a strongly inaccessible cardinal larger than and 

Then [n. 6] can be considered as a universe U (for
In = D w T) . By (8.5), (7.2), and (6.7)
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Since P = (007 this and (7.2) yield

We say that the triple (determined by D, 7~ aE, and ~)

is a semantical system for ML°°, and that any; E Qlf) with mr ~ 
[mr ~ = 0] is a QI in for elements [non-elements].

Incidentally, since has elements of modal rank a,

Let us remark that the classes Oa (a E Ord) are cumulative anal-
ogues of the classes of extensions 0" t considered in [GIMC, n. 7, p. 25]
for ELv. Furthermore in [GIMC, n. 7] it was observed that the Qls
of the type (1), i.e. those for properties of individuals of type 1, could
be identified with functions from V-cases (i. e. elements of .I’) to classes
of QIs of type 1 (for individuals); however in [GIMC] another alter-
native choice for these Qls was preferred to keep their levels as low
as possible.

The choice (8.3) of the QIs for ML°’ is in accordance with the latter
alternative. These QIs have low levels by (8.7) and (8.8)1. This fact

is important for MCoo, because (8.8)1 yields rm [rm 0] = rm 0 and in
connection with this it will allow us to define suitable (direct) anal-
ogues of the QIs in both for sets and classes, within MC’
itself; furthermore this definition is basilar for carrying over to .MC°°
a large part of the theory for MCy developed in [GIMC, Chap. IX].

An analogue for for the alternative possible choice of the
QIs for XL", discarded in [GIMC], is afforded by the function Ql’ of a
that is defined for as follows:

These QIs are simpler and give rise to a perhaps simpler definition
of equivalent QIs [n. 9]. However the analogues of the QIs (8.11)
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can be defined within MC’ itself only for elements (and not for e.g.
proper classes). This is related to the fact that the analogue rm’ of
the function rm [Theor. 8.1] fulfills, in contrast to the analogue of (8.5),
the condition

(8.12) rm’ (Wi + n) = Wi + 3 + 3n hence + 3 .

Let us explicitly prove equality (8.12 )2 that has the main interest.
To this end we first note that (0 is strongly inacces-
sible) for a C ~  0. Hence o4%o = 0.

Now (so that 0 is the modal rank of ~).
Then $ is a set of couples (y, where y c-.V and either ay C or

If ~aY were  0 for all y E r, then (since Irl  0 and 0 is

regular) P = U would hold. Then aY E for all y E r (obvi-
yEr

ously there is an a with hence 

in contrast to an assumption above. We conclude that
say = ~ for some so that e~ = 0 + 3. Thus (8.11) has been proved.

9. Equivalent Qls, Z-determinate and extensions. Rules of inten-
sional designation for ML-.

DEF. 9.1. We say that 8 and q are equivalent QI8 in the r-case y

These theorems are the analogues for ML’ of Theors. 10.1,2 in
[GIMC] for M.Ly. The theorems above can be proved very easily,
unlike Theor. 10.2 for MLv, in accordance with the fact that the Q18
for M.L°° have one type unlike those for 

Let QIa-QIo(0  so that by (8.3,4) ~ is a (binary) relation
with first members in r; let us set
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Then $’ is a function of domain 1’. In case this function is con-

stant, we call ~ an L-determinate QI(L-QI) of modal This

is rather in harmony with Carnap [2, § 22]. Furthermore we call

L-determinate QI of modal rank  0 any $ E QIo for some

r¡ E Dr] such that $(y) 0 a., (y) holds for at most one y E r-cf. (8. 9 )2 .
Incidentally (9.1) yields

and either or ?7 = aM, then we say
that q is the extension of ~ in y and that the modal rank of q is the
extensional rank of ~ in y.

Our identification of extensions with L-determinate Qls is rather
in harmony with [2, § 23]. Another natural way of defining the ex-
tension of ~ in y would be to identify it with the class of QIS
that are equivalent to ~ in y. However and Ee,,, 0 QI,,.
Therefore we preferred the first definition.

Then (a) for every exactZy
one extension, of ~ in y. Furthermore (b) the modal rank mr ~ o f ~
is C ~ strongly inaccessible cardinal larger than iff rm
17y {} for all 

PROOF. Thesis (a) holds obviously, so for all 
If the condition for all y E r obviously holds.
Now assume this condition. Then by (8.3,4) and (9.1) 9$  U eqv.

yEr
Since I~’ ~ C ~ and for all we have er¡y  ~, this yields e~  0.
Hence mr ~ C ~~ C ~. q.e.d.

THEOR. 9.4. Assume ~y E Qlo for all y E F. Then (a) there is an

~ such that q =y ~y for all y E r; and (b) if the modal rank of ~y is

for alt then that also is  ~.

PROOF. By (9.2)2 we haveq = ~(y, ~)~~ E ~Y~, hence thesis (a) holds.
Thesis (b) follows by Theor. 9.3. q.e.d.

***

Let t = (.1, .2 , ... ) and Y’ _ ( , ’Y 2 , ... ) be two denumerable
successions of elements of with 11, to be used
as a model and value-assignment (i. e. to assign values to constants and
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- -

variables) respectively. Then the intensional designatum d = 

of the w f f LJ in ML’ at (the model) ~l and (the value assignment) 1/
is defined recursively by the following table where 4, J,,, and d 2 are
wffs and where the definitions

are understood:

-

It is easy to realize the effective existence of the function 
of and L1 provided one use thesis in Theor. 9.3 to check

-

the existence of the QI [(7 Vi)L1I].
On the basis of (6,) we shall use « A » for ((e,)) in wffs in MLoo.

Let aV, 1/E with Al = A. Then we say that the
matrix p (in MLoo) holds or is true in y at (the model) -#Y and (the
value-assignement) Y’ in case y E in the opposite case we
say that p is false in y at JI and Furthermore we say that p is
logically valid (II- p) if it is true in every F-case and at all models
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and value assignments; we also say that q is a logical (semantical)
consequence of p (p n- q) in case at all models and value assignments,
q holds in all F-cases where p does. This is equivalent to 11- p:J q.

10. Some conventions. Introduction of n , ~, 3~~ 3 c i ‘~ , 31, 6

In connection with ML°° we use the metalinguistic notations ~/, ~,
==, (3 (Vi), (V V,,,, ... , Vrn) in the usual way, i.e. as in connection
with EL°° [n. 2]. Let us add that we use the notations =~ D",
and ==n for strict equality, y strict implication, y and strict equivalence
respectively-cf. [GIMC, Defs. 6.3-5] and we use E~ in the correspond-
ing way. We mean that e.g. the following definitions are understood

The sign " will be -used, as in [GIMC], e.g. in the combinations
= v, D~, and E v according to the definitions

The cohesive powers ~E~B ... and the ones of D~, == u , ... are
equivalent to those of D, =-7 ... respectively.

We understand that the non existing object a* and the notions,
or metalinguistic predicates, of element (.E~), individual (In), class (Cl),
and set (St) are introduced within ML°° as in EL°°, i, e. by means of
DD2.1,3,6-8. This is meant by the sign written in these
definiti ons.

Let us now introduce in ML’ the operators (3(~~’)[(3~~~)]
(there is at most one [a strictly unique] Y’ such that) and (31Y’) [(3fi ]
(there is exactly one [a strictly unique] Y’ such that):

where W is the first variable without any occurrences in W(Y’).
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* * *

We consider Convention 3.2 on the combination of El, Cl, ... with
U, (1, ... as holding for MLoo also-hence the matrices (3.1) are valid
(in ML°°). We keep (in MLoo) the definitions DD3.1-11 for 
and the symbols for class operations, we keep Convention 3.1 on cor-
responding italicized and non-italicized symbols (such as El and El)
cf. fn. 3; furthermore we also accept Convention 3.3 on restricted
variables in connection with MLoo, except that the restrictions are
meant as holding necessarily, so that (3.5-7) are turned into

CONVENTION 10.1. As in [GIMC] we call  N &#x3E;&#x3E; the modal quantifier.
By « (N) » [«() »] we denote any string of quantifiers that may [cannot]

include « N ».

The extensionalization of a class, li, is defined to be the class
of the elements that equal (i.e. are equiextensional with) the elements
of Z); we also define the notion Ext of being extensional and the modal
striction J’ [modal sum of 4-cf. fn. (5):

where the distinct variables QY and ir are the first variables without
free occurrences in LI.

CONVENTION 10.2. We shall use the analogues for italicized symbols
of notations such as  I’~e~ »,  .F~ », and «Fv» as shorts for the corre-

sponding analogues of the R.B.8.s (right hand sides) of DD10.11,13,14.
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E.g. we understand, under a suitable choice of 0, the validity of

By (10.4)2 « Ete&#x3E; &#x3E;&#x3E; expresses the important notion of equiextensio-
nality with an element. Theor. 9.4 (b) yields the first of the assertions

which constitute the main result of this section. The second follows

easily from D2.1, D10.3, and rule (~3) in n. 9.

11. On collections, relations, (4)p), and relational and functional
lambda expressions.

We define and intensional collections { ~~i~ by

where d is a suitable variable-cf. Def. 18.13 in [GIMC]. A satis-
factory modal analogue of Kmratowski’s definition of (ordered) n-tuple,

can be based on {}~:

In Chap. 3 we shall prove some basic syntactical theorems on the
notions being introduced now. The corresponding semantical theo-
rems are immediate consequences of the former. This induces us
to avoid presenting many proofs. For instance we may quickly say
that (dl, ..., dn) _ (di, ..., dn) yields (2 = 1, ..., n) and that,
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since ~-Tj~2~ ~al, ..., an) is a proper class while {J,, ..., and

..., dn~~i~ are sets.
We consider the definitions D4.2,3 of F’a and -q’W as holding

in ML°° also; D4.4-6 have to be turned into Dll.5-7 below:

where the distinct variables ~1 to d n are the f ree variables in the term d, I
so that these variables are bound in 

Now we can define the n-ary relational and n-ary functional lambda

expressions :

where aI, ... , are distinct vari abtes and b is the first variable that does
not occur free in the term 11 and is disti nct f rom al to an .

The lambda expressions above have the usual basic substitution
properties-see (18.3) in Part II.

We can now define the cartesian product X X Y of the classes X
and Y, and the n-th cartesian power X n of X:

where the variables a and b are suitably chosen. Of course « L1 
means (in that 4 is an n-ary relations. We now define the con-

(or of the relation 4, domain (Dmn), range (Rng) and
field (Fld) :

Now we define the restriction a 19 [9 r a] of (the relational
part of) f1Ã to the class d, in its first [second] members:
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12. Inner identity of n-tuples and modally constant, modally separated,
and absolute n-ary attributes in lVIL°° .

We define d and LI¡ are innerly identical n-tuples,

where the a’s and b’s are suitable distinct variables, because intuitively
the condition d =n 41 is useful, it follows from d = L11 but by no
means does it imply L1 = 41 unless n = 1.

The notion Ext of extensionality [D10.12], which is much used,
is completely useless in connection with relations by what we said
about n-tuples (n &#x3E; 1). The same holds for in case 4 C V" (n &#x3E; 1 ).
Therefore we now define n-ary extensionalization (.F’~ne~) and n-ary
extensionality (.Extn) on the basis of D12.1-cf. DD10.11,12:

where b is the first variable that does not occur free in J.
The notions and L1 v [DD10.13,14] are satisfactory and

are in accordance with the corresponding definitions in [GIMC] also
in case d is an n-ary relation (n &#x3E; 0). The preliminary definition
D12.1 also allows us to introduce the notions of a modalty constant
attributes (MConst) and a modally separated [absolute] n-ary attributes

(Msepn [Absn]) in substantial accordance with [GIMC, Defs. 13.1 and
ls.g,9] :

In a similar way D12.1 allows us to define in ML°° the notions
of quasi modally constant attributes (QMConst) and quasi modally sep-
arated [absolute] n-ary attributes [QAbsn]) in accordance
with [GIMC, Defs. 24.1-3]. Obvious semantical analogues of the syn-
tactical theorems on MSep, and Abs proved in [GIMC, n. 41 ]
hold in 
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CONVENTION 12.1. (a) We shall use u Ext », »MSep », and « Abs »
for « Ext1 », and « Abs1 » respectively.

(b) « Pred E Ext )) [« Pred E MCon8t »], where « Pred » stands for any
italicized predicate such as El or Cl, is an abbreviation of « Pred = Pred(l))),
[« Pred~ = Pred ’ »]-cf. Conv. 3.2. The analogue holds for e. g. MSep
and Abs.

Now, for instance the obvious semantical analogues for M.L’ of
[GIMC, Th. 41.1, (IV), (VIII), (IX)] can be expressed as follows:

At this point let us mention the analogues of [GIMC, The. 41.1,
(V)(VI)]:

Remark that (12.2 )1.2 are meaningful and true even if .F’, (~, and 0
are replaced by italicized predicates.

13. Functions.

we want to define (a general or intensional) n-ary f unction (Fnn) (9)
and the more particular notions of an extensionally univocal (or exten-
sionally invariant) n-ary f unction (Fncn), and an absolute n-ary func-
tion To this end we first define (intensional) univocality ( Un)
and n-ary extensional univocality-or invariance-(EUnn)-cf. D12.1:

(9) D 13.3 is in accordance with the modal definition of functions in terms
of relations proposed in [GIMC, n. 14, p. 54].
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and we shall use the notations EUn, .F’n, Fnc, and AFn for 
to Afni respectively.

By D13.3 and Dll.11-13

By DD13.3,5 and D12.6 we deduce the first of the theorems

The second follows easily from DD12.4-6 and DD13.1,2 while

(13.2)1,2 yield the third. To prove (13.2)4 we remark that

The notion AFnn holds for all mathematical n-ary functions, and
other functions too. Ordinary non-mathematical n-ary functions such
as the i-th co-ordinate T) of the particle .~ at the instant T,
in the Galileian frame #-are extensionally invariant and by this
are included in Fncn . Of course by D12.3 and DD13.1-4 the con-
dition .F’n r1 Ext.+, does not at all L-imply F E .Fncn . In fact

The notion .Fnn holds for the most general n-ary (intensional)
functions such as ~,-cf. (13.6,7) below. It is a cumulative analogue
of the intensional notion of an ary function used in [GIMC].

To show some examples, we first introduce the identity relation I
(among elements) and the successor function 6-cf. D4.1:
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Now we state that the constant denotes (in the
natural number n, but we simply use o n » for it. We understand
D2.4 and the definition n -E-1 which can be written as follows

As another example we consider the (intensional) function

by which (13.8)1 below holds.

We deduce (13.8)2 from (13.~)1.

14. Equipotence. Hints at intrinsic extensionality and ordinals.

With a view to defining equipotence let us observe, first, that by
requiring that ~’ and 9 should have the property .F’n, Fnc, or AFn
we consider three notions of a 1-1 mapping. Second, we take care
of classes ,X and Y that are iso-extensionalizable: Xe = Ye. Now
let us define (intensional ) equipotence, ~, total equipotence and
extensional equipotence,

The replacement of with A.Fn in D14.3 would not alter the
notion ,. ~e~ which is perhaps the most natural among the three exten-
sional equivalence relations that were proposed above as modal expli-
cata of 1-1 mappings. However any non-empty set x is extensio-
nally equipotent with a proper class, X(6), via x X x. Instead neither
~~t~ nor ~ hold between a set and a proper class. Let us add that
to ,~ ~~~ are related by the theorems
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Furthermore, after defining the intensionalization of ,9f by

we can assert that

where the first occurrence of ~ cannot be replaced by or 

The fact that If-- ( ) x ~ ~l. ~ x~e~ ~ El and more generally

appears troublesome especially within the theory of cardinals. There-
fore it is natural to try and schematize into the intuitive (self-
explanatory) notion of the n-ary intrinsic extensionalization of 9; how-
ever the second of the theorems

is not very satisfactory. Therefore we shall also consider the n-ary
attributes and n [n. 26]. The latter seems to me

satisfactory to the above end.

***

We spoke of equipotence with a view to the applications of the
theory of (transfinite) cardinal numbers, to be developed syntactically
later. Our definition of cardinal shall not involve equipotence in ac-
cordance with [IST]. In order to hint briefly at the theory of ordinal
and cardinal numbers based on .lVl C°°) to be presented in
Part 3, we accept definition D5.4 of e-transitivity (e-transitivity
(e-Trns) and we say that  is an ordinal (class) (Ord) iff and its

arbitrary element (if any) are classes and are both e-transitive and
modally constant:

By Conv. 3.1 Ord means ordinal number. One can prove
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