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DISTRIBUTIONAL BOUNDARY VALUES IN D’Lp . III

RICHARD D. CARMICHAEL *)

1. Introduction.

In Carmichael [5, 6] we have obtained results in which distribu-
tions in are related to and represented as boundary values of

analytic functions. In the present paper we shall continue our investi-
gation of this topic.

All terminology concerning cones and compact subcones in
this paper will be the same as that in Carmichael [4, ~p. 845] or

[6, p. 252]. In particular we call the readers attention to the function
uc(t), the indicatrix of the cone C, the number pc , which characterizes
the nonconvexity of C, and the tubular cone the
definition of which can be found in the above references.

Let C be an open cone; and let f(z), satisfy

for all real numbers a&#x3E;0, where C’ is an arbitrary compact subcone
of C, A is a nonegative real number, N is any real number, and K(C’)
is a constant depending on C’. The functions which we have studied
in [5, 6] in relation to the distributions have been analytic func-
tions in the octants

*) Indirizzo dell’A.: Dept. of Mathematics, Wake Forest University, Winston
Salem, North Carolina 27109, U.S.A.
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or in the general tubular cone which satisfy boundedness
conditions similar to (1). In [4, 7, 8, 9] we have related analytic func-
tions having a growth condition as in (1) to other spaces of distribu-
tions. Letting 8’ denote the Schwartz space of tempered distributions,
we have obtained the following result which has importance in quantum
field theory and which will be useful in this paper.

THEOREM 1. Let C be an open connected cone. Let f(z) be ana-
lytic in TC=Rn+iC and satisfy ( 1 ). Let f (z) ---~ U in the S’ topology
as y E C’ c C. Then there exists an element VE 8’ such
that uc(t)  A } and U = V; and f (z) _ ~ V, 
C’cC.

PROOF. See [4, Theorem 2]. Here supp (V) is the support of V,
V denotes the Fourier transform of V, and C’ is an arbitrary compact
subcone of C.

Koranyi [ 14] and Stein, Weiss, and Weiss ,[ 16] have defined the
classical Hardy HP(TC) spaoes, for functions analytic in

tube Tc. We note that c S’, 1 :5p:5 00.
In this paper we shall obtain distributional boundary value results

concerning the space of functions and the boundary values
will be seen to be elements As in Carmichael ;[5, 6], the topo-
logy which we shall use will be that of S’. In section 2 we shall obtain
results similar to Theorem 1 for functions f(z)eHoo(TC) and for func-
tions f(z)eHP(TC), 1  p  ~ , which satisfy ( 1 ). Under these assump-
tions more can be said about the function f(z) than in Theorem 1; we
shall see that the convergence of f(z) to an element in e S’ can
be proved and that f (z) can be represented by the Poisson integral of
its boundary value as well as the Fourier-Laplace transform ~ V, 
of Ve8’. Further, for suitable choices of p, can also be

represented by the Cauchy integral of its boundary value. If 
it is known that f (z) has each of the above representations. In the
results of this paper we extend the values of p for which HP(TC) func-
tions have each of these representations. Further, we prove a version
of Fatou’s theorem in which more is concluded about the 
function and its boundary value than in the classical setting for tube
domains. In section 3 we shall obtain converse results to those of
section 2 in which an function is manufactured from a distri-
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bution. In particular we are interested in obtaining a converse to the
classical Fatou theorem. Section 4 will be devoted to obtaining gener-
alizations to disconnected tubular cones.

In the remainder of this introductory section we shall introduce
the n dimensional notation and definitions to be used throughout this
paper. The n dimensional notation and the definition of the derivative

Da, a being an n-tuple of nonnegative integers, will be the same as in
Carmichael [4]. T’ will always represent the subset of Cn defined by
Tc= Rn+iC, where C is a cone. If C is connected, Tc will be called
a tubular radial domain; while if C is not connected, we shall refer

to Tc as a tubular cone. The function spaces {9 and S and the distri-
bution spaces S’ and are defined in Schwartz [15]; and all de-

finitions of terms concerning distributions, such as support and con-

volution, are those of Schwartz. The Fourier and inverse Fourier trans-
forms of L’ functions and S’ distributions are defined in Carmichael

[4]. The Fourier transform of a function p(t) will be denoted by
x] or similarly we denote the inverse Fourier transform

as as ~~[p(~); x] . The Fourier and inverse Fourier transforms of

V E S’ are denoted V respectively.
A sequence converges to pe§ in S as if

where a and 0 are arbitrary n-tuples of nonnegative integers. Let 
C being an open connected cone. By f (z) --~ V in the topology of S’
as y = Im (z) --~ 0, yeC, we mean that ( f (z), ~p(x) } --~ ( V, 9(x)) as

y2013~0, y E C, where p is any element of S . We note that the boundary
value V is obtained on the distinguished boundary of Tc, { z = x-~-
+ iy : xe R", y=0), which is not necessarily the topological boundary
unless n =1.

On several occasions in this paper we shall make use of Theorem
4 in [4]. We note that this result holds for as well as for 

the proof for A =0 is exactly the same. With this is mind, we shall
assume henceforth that Theorem 4 in [4] holds for all real numbers
A &#x3E; o. Unless otherwise specified, g(x)eLP(f(z)eHP(TC», 
means throughout this paper for some p,
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The definition of the spaces, which we
shall use in this paper is given in [ 16 ] .

2. Distributional boundary values of HP functions.

Let C be an open connected cone, and let 0(C) denote the convex
envelope (hull) of C. If f(z) is analytic in T~’, then by Bochner’s theorem
on analytic extension [3, Chapter V], f (z) has an analytic extension to
7~. Further, if f(z)eHP(TC), then its extension is in and

(See [ 16, p. 1036]). Thus it suffices to assume that C is convex.
For zETc, we define the Cauchy kernel K(z - t) by

where C* == {’r} : uc(~ )  a } is the dual cone of C. If C contains an entire

straight line, then by a result of Vladimirov [18, Lemma 1, p. 222]
the cone C* lies in some (n-1 ) dimensional plane; and K(z - t) = o. To
avoid this triviality we assume throughout this section that the cone C
is open, convex, and has the property that contains no entire straight
line.

From the Cauchy kernel we define the Poisson kernel correspond-
ing to Tc by

If T’ is the upper half plane in Cl, then K(z - t) and Q(z; t) are

respectively, which are the classical

Cauchy and Poisson kernels.

z
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Let Then

are the Cauchy and Poisson integrals, respectively, of g. We can now

prove

THEOREM 2. Let f(z)EHP(TC), 1  p  ~ ; and let f(z) satisfy t 1 ).
There exists a function g(x) e LP, 1  p  00, such that f(z) - g(x) in

the topology of S’ (as well as in the LP norm topology) as y= Im (z) - 0,
yeC; and there exists an element V E S’ with supp(V)CSA=
_ { t : uc( t) _ A } such that g(x) = V and 

-

PROOF. Combining Propositions 4 and 3 (c) in Koranyi [ 14 ] , we
obtain the existence of a function g(x) E Lp, such that

in LP as y --~ 0, yeC. Let pe6. By Hblder’s inequality,

where 1:!5 K. Since cp E S c Lq for all q, 1 _ q  00, then by (3), (4),
and the fact that f(z) -+ g(x) in LP, as y - 0, y E C, we have
that f(z) - g(x) in S’ as y ~ 0, y E C. Having obtained this S’ boundery
value, we now apply Theorem 1 and obtain an element with

supp ( V) c SA such that g(x) = V and f(z)=(V, C’cC.
But under these conditions on V, we have by [4, Theorem 4] that

( V, e~"It’~ t&#x3E; } is analytic in Tc. Thus by the identity theorem for analytic
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functions, f(z)=(V, e~"t~ Z~ t &#x3E; ), Again applying Propositions 4 and
3 (c) of Koranyi [ 14 ] , we have

and (2) is obtained.
We now restrict p to 1  p  2 in Theorem 2 and obtain an inter-

esting corollary. First, however, we prove the following lemma.
4

that exists classically and belongs to

, Then

in 5’.

PROOF. Since feLP, 1  p  2, then ~-1 [~(t); x] exists classically

and is an element of Lq, 1 -~- 1 =1. By hypothesis Y-x [ (t); x] eLP,
p q 

~ g

1 p  2. Thus ~-1[ f (t); x] ~-1,[g~(t); Further, it is known
that f * g exists as a classical convolution, is continuous, and is an

......

element of Thus f * geS’, and g),E8’.
Since both sides of ( 5 ) are well defined as elements of S’, ( 5 ) follows

by a result of Schwartz [ 15, Chapter VII] which states that the inverse
Fourier transform converts convolution into multiplication in S’ when
the algebraic operations are well defined in S’.

COROLLARY 1. Let f(z)eHP(TC), 1  p  2; and let f(z) satisfy ( 1 )
for A = O. There exists a function g(x) c LP, 1  p  2, such that

f(z) --~ g(x) in the S’ topology (as well as the LP norm topology) as

y e C; and there exists a function -[- 1 =1, with
p q -

supp (h) c C’ _ { t : 1 almost everywhere such that g = h in S’
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and

zeTC, where the equality (6) is in S’.

PROOF. From Theorem 2 we obtain the function g(x) e LP,
1:5p:52, and an element V E S’ with supp (V) c C* and g = V. Thus

classically and is an element of L~2013+2013==l. Thus in 8’,
p q

and almost everywhere. Let pelil. Performing a change
of order of integration we obtain

where Ic*(t) is the characteristic function of C’~. Now
for all p, In particular if 1  p  2, then

We now apply Lemma 1 to obtain

in 8’. Thus

in S’. Returning to (7) we have
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Combining (8) with (2) we thus obtain (6), and the proof is complete.
The results obtained in Theorem 2 and Corollary 1 are reminiscent

of classical results for HP spaces of functions analytic in a half plane
in ~1. Hille and Tamarkin [11, Theorem 2] have shown that if f (z)
is analytic in the half plane Im (z) &#x3E; 0 and has a limit function

F(x)eLP, and if f(z) is represented by the Cauchy integral of F(x), then
it is also represented by the Poisson integral of F(x) and vice versa.

Hille and Tamarkin ([11, Theorem 3] and [12, Theorem]) have also
obtained results relating analytic functions which have boundary values
and which are represented by the Cauchy (Poisson) integral of their

boundary values with a Fourier transform which vanishes on a half
line. (For related results we also refer to [13]). Of course the Hille
and Tamarkin theorems hold for the HP spaces of functions analytic
in a half plane. Stein and Weiss have shown that if then

equality (6) holds [17; Theorem 3.1, p. 101; Theorem 3.6, p. 103;
Theorem 3.9, p. 106]. In Theorem 2 and Corollary 1 we have obtained
conditions under which these classical results of Hille and Tamarkin
are extended to the HP(TC) spaces for other values of p.

We shall now obtain a result similar to Theorem 2 for 
In this version of Fatou’s theorem we are able to say more about the
element of H°° and its boundary value than in the classical setting for
tubular radial domains.

THEOREM 3. Let There exists a function g(x)eL°°
such that f (z) -~ g(x) in the S’ topology (as well as in the weak-star

topology o f L°° ) as y ~ 0, y E C; and there exists an element VeT’L2
-with g(x) = V and } such that

PROOF. Combining Propositions 4 and 3 (d) in Koranyi [ 14], we
obtain the existence of a function g(x)eLoo such that f (z) ~ g(x) in
the weak-star topology of L°° as y -* 0, yeC. This convergence and the
Lebesgue dominated convergence theorem imply immediately that

j(z) -+ g(x) in S’ as y ~ 0, y E C. These same results of Koranyi also
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imply

We now put

Since then F(z)eH2(TC); and by a result of Bochner [2,
section 3]. (See also Vladimirov [18, pp. 224-227]), there exists a func-
tion with such that

We now put V = ( 1-f-D~~~ w~ ~~)~(t). Then and

by the Schwartz characterization theorem [ 15, Theoreme XXV, p. 201 ],
Ve£9[~ . A straightforward calculation now gives

Let the space of infinitely differentiable functions, 1}E Rl,
such that ~(~) =1 ~~~~= 0 for -E, £&#x3E;0; and O=:::;;(T))~ 1.
Put y(t)=~((t, y)), y E C. Let Using (9) we obtain

It is straightforward to show that

y- 0, yec. Since ( i.e. is continuous), then

as y2013&#x3E;0, y E C. ( 11 ) combined with (10) shows that f(z) - V in S’ as
y - 0, y E C. Since the limit in S’ of f(z) is unique, we thus have

~(x) = V; and the proof is complete.
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If then by definition f(z) is bounded for and

hence satisfies (1) for A=0. Thus once we obtained the boundary
value g(x) in Theorem 3, we could have immediately applied Theorem 1
to obtain an element such that g{x~ = V and supp (V) c C*. We
see, however, from the proof of Theorem 3 that we can actually make
the stronger statement that 

3. Converse results.

Throughout this section C will denote an open convex cone which
has the property that contains no entire straight line.

The following theorem and corollary can be viewed as connverses
to the combination of Propositions 4 and 3 (c) of Koranyi [ 14] and to
Theorem 2 of the present paper for the corresponding values of p.

8’ topology (as well as in the Lq norm topology, . -.
i

or in the weak-star topology of

PROOF. Let Ic.(t) denote the characteristic function of C*, and
let y(t) be defined as in the proof of Theorem 3. Put

Since g(t)eLP c 8’, 1 _ p  2, and supp (g) c C*, then by [4, Theorem 4]
f(z) is analytic in T’. For the present we let y= Im (z)eC be fixed. We
have for t e Rn that

By H61ders inequality
and (12), we have for g(t)eLP, l~p~2, that 
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c Ll n LV. Now

and the Fourier transform can be interpreted in the appropriate limit
in the mean sense for 1  p ~ 2. Thus by the Fourier transform theory,

jf(z)~L-+-=l, 1  p  2, as a function of x for any fixed y E C.
p q

If p =1, q= oo ; and using (12) we have

For 1  p  2, we have again by the Fourier transform theory and ~( 12~
that

-+-==1. But the right hand sides of (13) and (14) are independent
p q
of yeC. Thus the estimates in (13) and (14) hold for all yeC; and it

follows that , Further, since g(t)eLP,

; and using a proof similar to

that in equations (10) and (11), we have in S’ as

Let 1  p _ 2. As in the proof of Theorem 2, we obtain the exist-

ence of a function =1, such that converges
P q

in the Lq norm topology, and hence in the 5’ topology, to (x) as

y -+ 0, yeC. Since the 8’ limit of f(z) is unique, then h(x)=W(x) almost
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everywhere. Thus f(z) ~ h(x) in the Lq norm topology as y - 0, y CC.
If p =1 and q= 00, it similarly follows using the proof of Theorem 3
that f(z)eHeo(Tc) converges in the weak-star topology of Leo to h(x)
as y ~ 0, yeC; and the proof is complete.

COROLLARY 2. Let g(x)eL2, and let YES’ such that supp ( V) c
} and g(x)=V in S’. There exists an element

such that f (z) -~ g(x) in the S’ topology (as well as in
the L2 norm topology) as y --~ 0, y c C.

PROOF. Since there exists an element h(t)el 2 such that
For we have

so that V = h(t) in S’ and supp (h) c C* almost everywhere. We now
put

where Ic*(t) and y(t) are as in the proof of Theorem 4; and the conclu-
sions follow from Theorem 4 for this f (z).

We note that the functions constructed in Theorem 4

and Corollary 2 satisfy the following boundedness condition:

where C’ is an arbitrary compact subcone of C, K(C’) is a constant

depending on C’, and M and N are nonnegative integers which do not
depend on C’. This result follows from Theorem 4 of Carmichael [4].

In Theorem 4 and Corollary 2 the manufactured function f (z) has
belonged to certain specified Hq (Tc) spaces, namely those values of q

1 _  2. In the following theorem we obtain condi-
P q 

1 _ g

tions under which the function f(z) is in Hq (Tc) for all q, 
This result generalizes a theorem of Carmichael [10, Theorem 11.4].
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THEOREM 5. Let and let

A &#x3E; o. There exists a function f(z) c H"(Tc) for all p, 1  p  oo, such
that the topology of S’ (as vvell as pointwise) as

y -+ 0, y e C.

PROOF. Let IsA(t) denote the characteristic function of SA .
Let l1e Rl, such that ~("t))= 1 for ~&#x3E; -A, ~(r))=0 for

T)~-~-E, E&#x3E;0; and O~~(1)5:.1. Put ~(t) _ ~( ~ t, y)), y E C. Since
and supp (cp) c SA , then by [4, Theorem 4],

is analytic in ’. we have

Since we may apply the Lebesgue dominated convergence theorem
to obtain

and Further, using (15) we have for all zETc that

K being a constant. Thus l(z)eHoo(TC); and from another application
of the Lebesgue dominated convergence theorem, we obtain that

f (z) --~ c~(x) in the S’ topology as y --~ 0, y E C.
Now let a. = (aI, ..., an) be an arbitrary n-tuple of nonnegative

integers. Using the facts that D7-q,)(t) c oS and supp for any a,
we integrate by parts in the integral defining f(z)
and obtain
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so that

From (16) and {17) we obtain

and this inequality holds for all n-tuples a of nonnegative integers. We
now choose ~ac= (2, ..., 2). For any p, we thus have

The right hand side of (18) is finite for any p, and for

each fixed p, the value of the right hand side of (18) is independent
of y E C. Thus for all p, 1  p C ~ ; and we have already
seen that The proof is c~omplete.

Koranyi [ 14, Propositions 4 and 3 ( d) ] has proved the classical
Fatou theorem for functions The following theorem is a

converse to this result and to Theorem 3 of the present paper.

THEOREM 6. Let the cone C be contained in ~{ y : y; &#x3E; o,
i=l, ...,n }. Let g(x)eL°° such that g(x)=V in S’ where YES’ and

supp {V) e C* _ { t : There exists a such
that f(z) - g(x) in the S’ topology (as well as in the weak-star topology
of L°° ) as y - 0, where C’ is an arbitrary compact subcone
of C.

PROOF. Put

Since g(x)eL-, h(x)eL2. By hypothesis g(x) = V ; so that
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We thus have for cp E S that

Since h(x) e L2, there exists a function k(t) c L2 such that h(x)=
x]; and

Thus v= ~( 1-E- Dv2, ..., 2)~k(t~, and it follows that supp (k) c C* almost

everywhere. We now put

where flt) is defined as in the proof of Theorem 3. By 1[4, Theorem 4],

We now prove that f(z) is bounded for zeT’". By a straightforward
calculation we have

We put

It is easily seen that P(z) is bounded for and again applying
[4, Theorem 4], we have that P(z) is analytic in Tc. To show that
z12 ... is bounded for z E T we consider the function

where and e &#x3E; 0 is fixed for the present. Since P(z) is analytic
in T~, then F(E, z) is also. By our assumption on the cone C, we have
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that T’ is contained in the octant {z : Im (zj)&#x3E;0, i = 1, ..., n, 1. Thus for

and

where M is the bound on P(z). Now 09;~ /=1, ..., n, and 0o-l

imply sinu-9/&#x3E;0, ;=1, ..., n; and it follows from (20) that F(E, z) is

bounded for each fixed &#x3E; o and for Further, as y· - 0, yeC,

in the weak-star topology of L°°. Since 0 C ~  1, then sin ~ &#x3E; 0; and
we have from the definition of h,(x) that

where B is the bound on g(x) e L 00, and this bound in {21 )~ is indepen-
dent of E. Thus for each F(E, and z) con-

verges in the weak-star topology of L°° to a bounded measurable func-
tion. It follows from Propositions 4 and 3 (d) of Koranyi ~[ 14] that

Thus by (22), (21) and Proposition 2 (b) of Kor6nyi ’[ 14], we have
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and this bound is independent Returning to the definition of
F(E, z) and using (23), we obtain

E&#x3E;0. Since z12 ... Zn2p(Z) and B are independent of E, we let F- - 0 in

(24) and obtain that z12 ... zn’P(z) is bounded by B, the bound on

g(x)eLOO, for all zeT’. We now conclude from (19) that f(z)EHOO(TC).
Using this fact and exactly the same method used in the last paragraph
of the proof of Theorem 4, we obtain that f(z) - g(x) in the weak-star
topology of L°° as y --~ 0, y E C’ e C; and the proof is complete.

Results similar to Theorem 6 can be proved using the same methods
for the cone C being contained in any of the 2n domains { y : S;y; &#x3E; o,
S;=±l, /=1, ..., n } ; the choice of {y:y/&#x3E;0, /==1, ..., 1 n I was purely
a matter of convenience. A special case of Theorem 6 has been obtained
by Beltrami and Wohlers [ 1, Theorem 3] for one dimension and func-
tions analytic in a half plane. We now obtain a corollary to Theorem 6.

COROL,LARY 3. Let the cone C be contained in { y : y; &#x3E; o, j =
=1, ..., n }. Let f(z) be analytic in T’ and satisfy ( 1 ) for A = o. Let

the topology of S’ as y - 0, y E C. Then 

PROOF. By Theorem 1, there exists an element with

supp (V)cC* and V = g(x) such that f (x) _ ( V , e~"It Z. t &#x3E; ), zeTc’ C’ C C.
By hypothesis f(z) is analytic in T~; and by [4, Theorem 4],
(V, is analytic in Thus by the identity theorem for analytic
functions, f(z)=(V, ex"t~ Z~ t ~ ), and the conclusion is immediate
from Theorem 6.

4. Functions analytic in disconnected tubular cones.

Let C be an open cone which is the finite union of open cones

C; , j =1, ..., 1 m, each of which is convex and has the property that ~;
contains no entire straight line. Throughout this section Tc will denote
the tubular cone associated with the open (possibly disconnected) cone
C which satisfies the above property; and we recall that 0(C) denotes
the convex envelope (hull) of C.
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Let be analytic in , and satisfy (1). For

each j .-1, ..., m, suppose that f(z)eHP(TC;), By Theorem
2, there exist functions 1  p  ~ , such that f(z) --~ gj(x) in

S’ as y - 0, y E C; , j =1, ..., m. We now prove the following general-
ization of Theorem 2.

THEOREM 7. Let f(z) be analytic in Tc and satisfy ( 1 ). For each
i = 1, ..., m, let f(z)eHP(TCj), Let the .S’ boundary values
g;(x) E Lp of f(z), be equal in S’. Then f(z) has an analytic
extension (denoted F(z)) to ra(C); for any arbitrary compact subcone
C’ of O(C), D"F(z) satisfies

where out is an arbitrary n-tuple of nonnegative integers, K(C’) is a

constant depending on C’, and M and N are nonnegative integers which
do not depend on C’; there exists a function g(x) e LP, oo, such
that F(z) -~ g~(x) in the topology of S’ as y-+O, y E C’ c o(C); and if
p = 2, F(z)eH2(T’(C».

PROOF. By Theorem 2, there exist elements with ’8Upp(Vj)ç;
c SA, ; _ { t : } such that g;(x) = V; and

By assumption, gi(x)~ _ ... = g4x) almost everywhere; and we call this
common value g(x). Since V; = Y-1~(g;~, j =1, ..., m, it follows imme-

diately that Vi= ... = Vm ; and we call this common value V. Thus

and from the definition of pc. (See [4, section II]) we have uo(c)(t):5
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_ pcuc(t). Thus

and by a lemma of Vladimirov [18, Lemma 3, p. 220], ~ 1

vanishes. Thus V vanishes if which implies that

By ~[4, Theorem 4], F(z) is analytic in satisfies (25), and

in 8’ as y --~ 0, yeC’c:0(C). Further since V=V¡,
j =1, ..., m, then from (26) we have f (z) = F(z), zeTc; and F(z) is the
analytic extension of f(z) to T°~~~.

If p = 2, then g(x)eL2; and there exists a function such
...,.

that 9(x)=g[h(t); x] . But then V=h in S’. Thus V = h in S’, and
supp (h) c { t : I almost everywhere. Letting I(t) denote the
characteristic function of this support set, we have as in (14) that

The estimate (28) holds for all ye0(C). Thus and the

proof is complete.
Since f(z)=F(z), then the conclusion of Theorem 7 states

that f(z) satisfies (25) for Further, for p=2, we proved in Theo-
rem 7 that and it follows as before that F(z) - g(x) in
the L~ norm topology as y --~ 0, ye C’ c 0(C), as well as in the S’ topology.
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Theorem 7 generalizes Theorem 2. In the same manner a generaliza-
tion of Theorem 3 can be obtained for disconnected tubular cones, and
we leave the formulation of such a result to the inteerested reader.

We now obtained a generalization of Theorem 6, the converse Fatou
theorem

THEOREM 8. Let the tubular cone , have

the property that I
be L 00 functions such that for each gi(x) there exists an element V; E S’
with supp uc , (t)  0 and g;(x) = V; . Let gi(x) = ... 

in S’. Then there exists a function such that

in the topolagy o f S’ (as well as in the weak-star topology o f L°° ) where
C’j is an arbitrary compact subcone o f Cj, j = 1, ..., m.

PROOF. As in the proof of Theorem 7, ... 

implies V = Vl = ... = Vm ; and g(x) = V where 
Here gMeL". We put

where ~y(t) is defined as in the proof of Theorem 7 for A= 0. From the
assumption on and the proof of Theorem 6, we have 
Since V=V;, /==1, ..., m, then

By [4, Theorem 4], F(z)-+V¡=gj(x)eLOO in the topology of S’ as

y-0, ..., m. But since then
..., m; and arguing as in the last paragraph of

the proof of Theorem 4, we have F(z) -+ gj(x)eLoo in the weak-star

topology of L °° as y -+ 0, y E C’; c C; , j =1, ..., m.

We note that the function constructed in Theorem
8 has the additional property that F(z) -~ g(x) in both the 8’ and weak-



157

star L°° topologies as y -~ 0, yeC’c:0(C). This result follows imme-

diately from Theoren 6. Generalizations of Theorem 4 and Corollary
2 can also be obtained for disconnected tubular cones. Their formula-

tion and proof are similar in form to Theorem 8, and again we leave
the details to the interested reader.
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