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DUAL-DEDEKIND SUBGROUPS IN FINITE GROUPS

FEDERICO MENEGAZZO *)

If G is a group and H is a subgroup of G, H is dual-Dedekind

in G, or a £9-subgroup of G (written if the following conditions
are fulfilled:

for every pair X, Y of subgroups of G (for the dual notion, namely that
of Dedekind subgroups, there called « modular subgroups », see ~[4] ).
In this paper we are particularly concerned with the properties of

« minimum » D-subgroups (i.e. minimal in the set of non identity dual-
Dedekind subgroups of a given group G); we establish some necessary
conditions in order that a finite group G has non-trivial (i.e. different
from 1, G) D-subgroups. From these it will follow that a finite group

having non-trivial £9-subgroups cannot be simple (Theorem 3.3) - a
similar result for Dedekind subgroups is proved in [ 2 ] ; it is perhaps
worth noting that the converse is false: G non-simple is not a sufficient
condition for G to have a non-trivial ~-subgroup. The proposition « if

then Ni9G » for arbitrary G is false; in the second half of the
paper we determine all finite soluble groups where such a condition holds.
The main result in this section is (Theorem 4.6): G is soluble and every

*) Indirizzo dell’A.: Seminario Matematico dell’Universita di Padova.

Lavoro eseguito nell’ambito dei gruppi di ricerca matematici del C.N.R.
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normal subgroup of G is dual-Dedekind in G iff G = Hl X H2 X ... X Ht
with each Hi a Hall subgroup of G and either

i) Hi is a modular p-group; or

ii) X ... X with P=; , Qi Sylow subgroups of G
for different primes, Pii abelian of odd order ( j =1, ..., 

with b1 inducing a non-identity power automorphism on each Pii.

1. Let L be a lattice. An element is a dual-Dedekind element

of L (a ~-element of L, ai9L) if

hold for every pair (x, y) of elements in L. Notice that a£9L if and

only if a is a Dedekind element in L (the dual lattice of L); hence pro-
perties of £9-elements of L are properties of Dedekind elements of L.
We shall use mostly (see [4]):

1) ai9L iff for every b E L the maps

are inverse lattice-isomorphisms.
v .r

II) if ai9L and beL, then a n 

III} if and a2CSJL, then al n 

IV) if and then 

V) whenever cp is a surjective lattice isomorphism of L onto L’,
we have iff 

A subgroup H of a group G is dual-Dedekind in G (H is a ~-subgroup
of G, Hi9G) if H is a D-element of the lattice £(G) of all subgroups
of G. Normal subgroups are usually not ~-subgroups; the following are
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dual-Dedekind subgroups in any group G:

a) G and the identity subgroup 1 of G (they will be referred to
as the « trivial » 3)-subgroups);

b) the subgroups of the centre Z(G);

c) all normal cyclic subgroups;

d) the subgroups of the so-called « kernel »

All definitions and notations will be standard; throughout this paper
« group » means « finite group ».

2. The existence of non-trivial ~-elements in £( G) rather severely
restricts the structure of G. The following two lemmas provide examples
where, in very simple cases, the structure of G is completely determined.

LEMMA 2.1. Assume G = ( a, b), I a 1= I b = p, p a prime, G non
cyclic. Then either I G = Ii or G is a non-abelian group of
order pq (q a prime greater than p) .

Since in both cases £( G) is a modular lattice, the sufficiency of the
condition is obvious. The condition is also necessary: the intervals

[ ( a, b ~ / ( b ) ] and [ ( a ~ / ~ a ~ n ( b ) ] are isomorphic, hence ~ b ) is a

maximal subgroup of G and, if G is a p-group, then G Assume

that G is not a p-group; then ~ b ~ is a cyclic p-Sylow 
is its own normalizer in G and has a normal complement N. (a), as a
conjugate of (b), is maximal in G for a c E N of

prime order q one has N = ( ~ a ) u ~ c ) ) n N = ( c ) u ( ~ a ~ n N) _ ( c ) , and
the conclusion follows.

LEMMA 2.2. Assume _G = ~ a, b), lal==p, p, q different
prime numbers. Then ( a ~ ~ G iff either G ~ = pq, or G contains an

elementary abelian p-subgroup Na G such that G=N(b), and ( b ) oper-
ates irreducibly on N.

If ( a ) ~ G, then ~ b ) is a maximal subgroup of G and from ( b ) d G
follows 1 G If ( b ~ is not normal, then ~ b ) is a q-Sylow subgroup
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which is its own normalizer in G, hence ( b ) has a normal complement
N. Since any conjugate of ( b ) is maximal in G, no proper non-trivial

subgroup of N is normalized by b nor by a conjugate of b. Let S be

a p-Sylow subgroup of N containing ( a ) ; by the Frattini argument
hence DZG(S) contains a conjugate of ( b ), and S=N.

The Frattini subgroup ~~(N) d G, so that and the

« only if» part is proved. Conversely, neglecting the case 

where everything is obvious, we have to prove that if and
is arbitrary, implies that X is maximal in (a, X). But

X c N implies that ( a, X) is abelian, whereas if X ~ N a conjugate of
( b ), say (c), lies in X, hence X=(c) is a maximal subgroup of

G=(a, c).

3. DEFINITION. Let H be a subgroup of the group G. We shall

say that H is a minimum £9-subgroup of G if H is minimal in the set
of all non-identity £9-subgroups of G.

THEOREM 3.1. Let H be a minimum 0-subgroup of G. If I H I is

not a prime number, then

i) H is normal in G;

ii) for every prime number p dividing all the elements of
G of order p are in 1-1; and

First of all, notice that the minimality of H and III, V of section 1

imply that for every geG either g-IHg n H == 1 or g-IHg==H; further-

more, if loAcH, then thus, if then

whence Choose now an element of

prime order p. For any such that I b = p~, ( a ) _ ~ a, b ) b ) ;
by lemma 2.1 either, b) or ~ a, b ) is a non-abelian group of
order pq (q a prime greater than p). In the first case [a, b ] =1, hence

moreover, for every b ), i.e. b

is in the normalizer of every subgroup of H. Since the same conclusion
holds for ab, it would follow that a is in the kernel of H, so that

by IV of section 1 this would imply and H = ( a ),
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which contradicts our assumption on the order of H. In the second

case (b) and (a) are conjugate in (b) u H; b lies in a conjugate
HI of H and whence again

and H = ( a ), thus contradicting our hypothesis
on We can now prove that let ge G have order qn with

q a prime number; by a previous and

if for of prime order we have 

c ( a, g)nH=(a), and by the same remark Moreover, in
the latter case, for every x E H we get ~ x ) _ ~ x, g ) and,
assuming x I to be a prime number, from [x, 1 it would follow
that x too normalizes every subgroup of H, which clearly cannot happen;
i.e. g centralizes H. On the other hand in our hypothesis Z(H) =1=
== H n 8G(H), and if I H I) r!= 1 all this implies
that is exactly the set of all the elements of G whose order is

prime to I H I.

The above theorem does not cover the minimum D-subgroups of
prime order; they will be dealt with in the following

THEOREM 3.2. Let aEG have prime order p. then

either i) ( a )G is an elementary abelian p-group, or ii) G = S(N X K),
where is a Hall subgroup of G, N is an elementary
abelian q-group with q a prime greater than p, S is a p-Sylow subgroup
of G which is cyclic or generalized quaternion, and ~ a )G= (a)N is a

P-group.

Let us first show that if we can find in G an element b of order

p such that ( a ) n ~ b ) =1 but [ a, b ] =1, then a permutes with every
element of order p in G; hence it will follow that, if this is the case,
a&#x3E;G is elementary abelian. Thus, choose if possible cEG such that

[a, c ] ~ 1; by lemma 2.1 (a, c ) _ ~ a, d ) where ( d ) a ~ a, c)
and (notice that a and c are conjugate). If ~[ b, c] =1, then
(a, b, c ) = ( a, c ) X (b), whereas ( = p and lemma 2.1
imply that no elements of composite order are in (a, adb ), so that we
can assume [b, is then conjugate to (c), whence 
If we get (a, c ) 1 ( a, b, c ) _ ~ a, c ) X ~ b’ ), where b’ is
a suitable element of (a) X ( b ), and the above technique leads to a
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contradiction. Lemma 2.2 now implies ( b, d)=N(d) with N an ele-

mentary abelian normal p-subgroup of ( b, d) which in turn is normal

in ( a, b, c ) ; a 0 N, and for every we have ( x ) _ ( x, a ) a),,
i.e. aE(2G(N). Hence ( a ) _ ( a, d ), thus contradict-

ing an earlier statement. So far we proved that, if ( a )G is not an ele.

mentary abelian p-group, then [a, for every beG such that

I b 1== p, as a consequence, all p-Sylow subgroups of G
are either cyclic or generalized quaternion. We now proceed to show
that for any pair x, y of elements of G such that 

( x ) n ( y ) =1, the subgroup ( x, y ) is non abelian and ( x, 
q being independent from the choice of x, y; since there is in G just
one class of conjugate subgroups of order p, it is enough if we prove
that b ~_~ c ~=p, implies (a, b) 1=1 (a, c) ~.
Let uEG be such that (a, b)=(a, I - q, (u) (a, b); 
(were this not the case, by lemma 2.2 two independent conjugates of a
would permute), hence ( u ) d ( a, b, c ) _ ( u ) ( a, c ) . Looking at ( a, c),
which by lemma 2.1 is also non abelian of order, say, pr, we see that
(a, c)=(a, v) where I v ~=r, (~)](~, c) and (v)=(a, c) n 0(a,b,c)(U),
so that ( a, b ., c ) _ ( ( u ) X ( v ) ) ( a ) . The subgroups ( au ), ( av ), being
conjugate to (a), are dual-Dedekind in G; by lemma 2.1 no element
of composite order lies in (au, av), hence av) has prime
order: but then (notice that we have also proved that every element
of order p normalizes every subgroup of order q). By an easy induction
argument one can now prove that any set of elements of order p gen-
erates a P-group of order pqn for a suitable n, so that (a )G, which is

generated by all such elements of G, is a P-group: ( a )G = ( a )N, with
N an elementary abelian q-subgroup on which a induces a non identity
power automorphism. Our next step is to prove that for every pair
x, y of elements of G such that 1== qn1, I y = p, one has ( x ) o ( x, y );
by an earlier remark we can assume and use induction. ( xq ) is

then normal in ( y, ( y, if ( y, I == pq’
we are through. If this is not the case, then ( y, 

with an elementary abelian normal p-subgroup
of ( y, (lemma 2.2); ( xq ) is a q-Sylow subgroup of N, whence

for a suitable elementary abelian p-subgroup M containing
( y ) . But then M = ( y ) and again ( y, I=pq. For a conjugate
b of a such that has either ( x ) n ( a, which
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implies [a, ~]~1; or (x) n (a, b}=1, and (x, a, b)==«x) X (u))(a},
where ( u } is the q-Sylow subgroup of ( a, b ), and a induces a non identity
power automorphism on (x) X ( u }, whence again [a, x] ~ 1; but then
(x)=([a, i.e. N is the (unique) q-Sylow subgroup of G.
Now put K n ( a }G =1 and, since a p-Sylow subgroup is

either cyclic or generalized quatemion and its subgroup of order p lies
in (a )G , pq)=1 }. On the other hand, if (I g I, pq)=1,
for every with one has ( y ) _ ( y, g); there-
fore g is in the normalizer of every subgroup of order pq in ( a )G: but
this implies [g, (a)’] =1, which concludes the proof of the theorem.

The following result is a trivial corollary to theorems 3.1, 3.2:

THEOREM 3.3. Let G be a finite group. If G has non-trivial dual-
-Dedekind subgroups, then G is not simple.

REMARK. Finite non simple groups with no non-trivial 

groups do exist: e.g. the symmetric group Sn is such whenever n &#x3E; 3 (it
is a simple matter to verify that no normal subgroup of Sn satisfies the
theorems 3.1, 3.2); the case n = 4 provides an example of a soluble

group which has no non-trivial ~-subgroups.

4. We have already pointed out that, generally speaking, normal

subgroups need not be D-subgroups; in order to evaluate, in a sense,
the gap between these two classes we proceed to study the groups where

every normal subgroup is also a ~-subgroup (in the main result of this
section we restrict ourselves to soluble groups).

PROPOSITION 4.1. Assume that every normal subgroup of the group
G is a D-subgroup of G. If Nd G, then every normal subgroup of
GIN is a ~-subgroup o f G/N.

Thus, implies KTG, hence Ki9[G/N] and

obviously K/N£9G/N.

PROPOSITION 4.2. Let N be a minimum normal subgroup of G. If
every normal subgroup of G is also a then N is simple.

Assume first that N is abelian; then I N 1== prt with p a prime and
a, &#x3E; 1; the number k of its subgroups of order p is congruent to 1
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(mod p). The normal subgroup I con-

tains every element of G whose order is prime to p : thus, if 1, p)== 1,
then ~ x ) n N =1 and, for any such an H, 
So G acts as a p-group of permutations on the set of the k subgroups
of order p in N, hence it has at least a fixed point, i.e. 

Assume now that N is abelian; let N, be a simple direct factor of N.
If Ni ~ N and is such that then Nl X 

and x-IN IX would be isomorphic to a

subgroup of ( x ), which is clearly not the case.

COROLLARY 4.3. Let G be a soluble group. If every normal sub-

group of G is a D-subgroup of G, then G is supersoluble.
PROPOSITION 4.4. Let G be a nilpotent group. If then H

is quasi-normal in G.

This is a trivial consequence of a result of Napolitani, [ 1 ] .

PROPOSITION 4.5. Let G be a p-group (p a prime) . If every normal

subgroup of G is a 0-subgroup, then G is modular.

For ueZ(G), with G/ ~ u ~ is by induction a modular p-
group. Assume that G/~ u ) is either abelian or Hamiltonian: for arbi-

trary xeG, (x, u) is abelian, hence u); moreover (x, 

implies (x, and ( x ) i9 G ; by proposition 4.4 ( x ) is a quasi-normal
subgroup of G, i.e. G is modular. We may then assume that G/ ( u ) is

neither abelian nor Hamiltonian, so that G = ( t, A) with A/ ~ u )
abelian, for every aeA and suitable a(a), s &#x3E; 2 if p = 2
([3], p. 13). Just as before one sees that every subgroup of A is dual-

Dedekind, whence quasi-normal, in G; it follows that A is a modular

group. Moreover I is a subgroup of A, any of whose sub-
groups is normalized by t; tP normalizes every subgroup of A, inducing
on every cyclic subgroup a power automorphism which is congruent to
1 (mod. p), and congruent to 1 (mod. 4) if p = 2. A cannot be a Hamil-
tonian group: thus, if A = Q X B with Q a quaternion group of order
8 and B2 =1, from u E Q it would follow that G/ ( u ~ is abelian, whereas,
if u ~ Q, G/~ u ~ would be a modular 2-group containing a quaternion
groups, and G/ ~ u ~ would be a Hamiltonian group. There are two cases
left:
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i) A is abelian. By a previous remark, A) is modular and

all its subgroups are quasi-normal in G. Let y E G be such that A ),
so that G = A ( y ) . If since then by induction
G/ ( y ) n A is modular, hence (y) is quasi-normal in G. Assume now

for every aEA we get (a)=(a, y~ n A ~(a, y), i.e. y

induces a power automorphism on the abelian group A, which is con-

gruent to 1 (mod. p). If p ~ 2 there is nothing more to prove; if p = 2
we remark that, if we had A~ =1, would be abelian; hence

~1~’ ~ 1, is by induction a modular group, and the power induced
by y is congruent to 1 (mod. 4), which implies that G is modular.

ii) A is neither abelian nor Hamiltonian. We have A = ( v, B),
B abelian, with (mod. p) for every and n inde-

pendent from the choice of x (n ---1 (mod. 4) if p = 2; we remark here
that otherwise A would be abelian). hence every sub-

group of AP is normal in G; both of and A/B are abelian, so that
moreover, we can write B as where

~~(&#x26;), I and I b &#x3E; 8 if p = 2. We will show that ( gl , g2 ) _
._ ( gl ~ ( g2 ) for every pair gl , g2 of elements of G (without loss of

generality, we can assume gi ~ A, since every subgroup of A is quasi-
normal in G). Write (g2)=(a2tPk); assuming 
we get g2 E A ( gl ) , (già, g~ ~ _ ( gl , a) for suitable al , a2, Should

( gi ) contain a non-identity normal subgroup K of G, since G/K would be
a modular group by the induction hypothesis, then (gi) would be quasi-
normal in G; hence we can assume which implies 
Suppose then ( a ) _ ( a, and, if p ~ 2,
( a, is modular, whence ( gi , g2)=(gi)(g2). Under the same assump-
tions, but with p = 2, gl induces a power automorphism on the abelian
group B; GIB 4 being modular, this power is congruent to 1 (mod. 4),
so that if then ( a, is modular. Let now a ~ B; gi ) if and

only if U E ( a ), hence if either u ~ ( a ) or we again conclude
that ( a, gi ) is modular; we are left with one more possibility: u = cr= 
but [gl , b21-1 ~ =1 (for ( gl , b) is modular), [gi , ab21-1 ] =1 since

~ ab~ 1-1 ~ = 2, so that (g, , a) is abelian. Assume now 

with [ c [=p, uE(a, c); if then

gi)==(gi, g2)=(gi)(g2); if but we should

have X ( u ~, whence c E ( ap ) X contradicting an earlier
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hypothesis. We have then so and, if either

p#2 or p = 2, ( gl , a ) is modular. It follows that we are left

with one last case: p= 2, u = a~ = b21. Since ( b ) d G, and G/ ( u )
is modular, we see that (gi, b ) is also modular, whence [gl , b~l-1 ] =1;
if a E ( b ), ( gl , a ) is abelian, whereas, if a ~ ( b ), )~’~~’~j==2,

1 E J l.G( ( g°i ) ) and finally ( gl ) d (gl, g2 ) c (gl, bZ1-1, a_ 1 b2r 1 ) s
which disposes of the case and ends the proof.

THEOREM 4.6. The group G is soluble and every normal subgroup
of G is dual-Dedekind in G if and only G==H1 X H2 X ... X Ht with
Hi a Hall subgroup of G (i =1, ..., t) and either

1) Hi is a inodular p-group; or

2) Hi = (Pil X ... ~C PiSL)Qi with Pij, Qi Sylow subgroups of G for
different primes, Pij abelian of odd order ( j =1, ..., si), Q1= ( bt ), and bi
inducing a non identity power automorphism on each Pii.

PROOF OF NECESSITY. Assume S, a p-Sylow subgroup of G for

some prime p, is normal in G; then, unless S is a direct factor of G,
where r oo(G) denotes the intersection of all normal subgroups

of G whose factor group is nilpotent. Thus Si9G and for xeG

such that (~ x 1, p)=1 we have (a)=(a) u ((x) n S)= (a, x) n S4 (a, x);
if S is not a direct factor of G, we can choose a, x such that [a, x ] ~ 1,
but then ( [a, x] ) _ ( a ) and a also induces a power automorphism on S.
Let now b be arbitrary in S; if [b, x] ~ 1 the above argument shows
that b operates on S as a power automorphism, whereas if [b, x ] =1
we have [ab, x] ~ 1 and the same conclusion holds for ab, hence for b.
It follows that S is abelian of odd order, x-Iyx==yr with (mod. p),
r independent from the choice of yeS, [ G, S ] = S and S c r -,(G). Choos-
ing for p the maximum prime divisor of G I, by the supersolubility
of G the p-Sylow subgroup is certainly normal, so that an easy induc-
tion proves that r oo(G) is a Hall subgroup of G. Moreover G has a
normal 2-complement whose quotient group is clearly nilpotent, so that
I I is odd; again, by the supersolubility of G, is nilpotent,
hence it is a direct product of normal Sylow subgroups of G which are
all abelian by the preceding remark, and every element of G operates
by conjugation on 1’-(G) as a power automorphism. G/r~(G) is a direct
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product of modular p-groups for different primes; notice that every

Sylow subgroup of G which is a direct factor has trivial intersection

with r,(G), and is modular; therefore, we can factor out all such

subgroups, and write G=T X G1 with T a modular, nilpotent, Hall

subgroup of G and GI also satisfying all our assumptions; from now on
we shall assume G - G, . Let P be a normal Sylow subgroup of G; we
have already seen that and that every element of G operates
,on P as a power automorphism; we claim that G/8G(P) is a (cyclic)
group of prime power order. Deny: then there are a q-Sylow subgroup
Q and an r-Sylow subgroup R of G such that [ Q, R ] =1, 

[ Q, P] = [R, P] = P; choose a E Q, b E R, u E P such

that [a, P] ~ 1, [b, u ( = p P 1). The Hall subgroup Qr oo(G)
is normal, hence dual-Dedekind, in G, which is a contradiction to ( au ) _
= (at) u ((b) n u (b)) n (this owing to the fact
that the former group has q-power order, whereas the latter contains

~ u ) _ ~ [au, b]) which has order p). Therefore we get G==Q8G(P) for
a suitable q-Sylow subgroup Q of G; we shall now prove, by induction
on Q 1, that Q is cyclic. Without loss of generality we can assume
P=r~(G) (were this not the case, we would work on G/C with C the
complement of P in r.(G)). If since is cyclic,
then Q is also cyclic. Assume then 8G(P) n Z(Q) is a

non-trivial normal subgroup of G and by the inductive hypothesis
is cyclic; therefore Q is abelian and all subgroups of

3P containing P are normal, hence dual-Dedekind subgroups of G. If
now Q were not cyclic we could pick a and b in Q in such a way
that aQE8G(P), b I-q, [ b, P ] =1, for
.u E P with lul=p we would have ( au ) _ ~ au ~ u ( ( ab ~ n ~ a ~P) _

i.e. [u, a]=1
contrary to our choice of a. Now let QI be a non normal Sylow sub-
group of G, and let Pli , P12 , ..., Pls1 be those Sylow subgroups of

r oo(G) which are not centralized by Q1 ; H1= (Pll X ... X Pls1)Ql is a

direct factor of G, and if the theorem is proved. Assume 
let Q2 be a normal Sylow subgroup of G, not contained in H, , and let
P21, ..., P2s.., be those Sylow subgroups of which are not central-
ized by Q2 : H~ _ (P21 X ... X is also a direct factor of G, and
HI n H2 == 1; in this way we clearly get a decomposition of G as a direct
product of factors of the prescribed type.
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PROOF OF SUFFICIENCY. Since such a decomposition as is described
in the theorem is both group- and lattice-theoretical, it will be

enough if we prove the theorem for each one of the factors (nothing is
to be proved for the modular ones). Without loss of generality, we can
assume G =(Pi X ... X Ps)Q where the Pi’s and Q are Sylow subgroups
of G, Q is cyclic, Pi is abelian of odd order (i =1, ..., s) and Q operates
on PI X ... X P, as a group of power automorphisms, with 
Let we renumber the Pi’s so hat P;] =P; for i =1, ..., r

and [ H, P;] = I for i-r+ 1, ..., s. We shall prove that cpK : X --~ X u K
(cpK : [H/H n K] -~ [HK/K] ) and cpH : Y -+ Y n H 

-~[H/H n K] ) are inverse lattice isomorphisms, whenever K is a sub-

group of G; since H9G, we have only to prove that 
for every X E [H/H n K] . Assume first that

Assume now that K 9.; (PI X ... X Ps)H; there exists a q-Sylow subgroup
T of G with T n K q-Sylow in K; we have If we call

then H = M(T n H) = M(H n K); notice that,
since every subgroup of M is normal in G, Mi9G. Now for every

we get X = (X n M) u ~(H n K) and

thus ending our proof.
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