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DIRECT PRODUCTS WITH ISOMORPHIC LATTICES

CHARLES S. HOLMES *)

1. Introduction.

In [ 1 ] it was shown that if G and H are groups with isomorphic
subgroup lattices, and G is the free product of subgroups A and B
with amalgamated subgroup N a proper normal subgroup of A and B and
if N does not have index 2 in both A and B, then G is isomorphic to H.
Here we show the condition on indices is necessary.

Rottl5nder [2] has given examples of groups G and H which are
non-isomorphic but have the same situation of subgroups. This means
that there is a subgroup lattice isomorphism between the lattices of

subgroups of G and H which preserves conjugacy and is strictly index
preserving. It is shown here that for certain groups K the direct pro-
ducts G X K and H X K have a similar but weaker property in that
the lattice isomorphism need not preserve conjugacy. In particular this
is true, if K is abelian or K is the infinite dihedral group. When K
is the infinite dihedral group, G X K is a free product with normal
amalgamated subgroup of index two in both factors. That is, a free

product with normal amalgamated subgroup of index two in both factors
is not necessarily determined by its lattice of subgroups.

For the record we define here some of the less familiar terms used
in this paper. Let G be a group. It is well known that the collection

L(G) of all subgroups of G is a lattice where for two subgroups A and
B of G the meet of A and B is the set intersection A n B and the join

*) Indirizzo dell’A.: Dept. of Mathematics, Miami University, Oxford, Ohio
45Q5~6, U.S.A.
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of A and B is the subgroup ~ A, B) generated by the union A u B. For
two groups G and H a lattice isomorphism from L(G) onto L(H) is

called a projectivity from G onto H. H is called a projective image of
G if there is a projectivity p from G onto H. In addition a group G
is said to be determined by its subgroup lattice L(G) if any projective
image of G is isomorphic to G. Now let p be a projectivity from G
onto H and let A, B, and C be subgroups of G. The projectivity p is
said to preserve coniugacy provided pA is conjugate to pB in pC if

and only if A is conjugate to B in C. Also p is strictly index preserving
if the indices [ pB : pA] and [B : A] are equal whenever A is a sub-

group of B; p is index preserving when the indices are equal for cyclic
B. A projectivity p from G onto H is situation preserving if p preserves
coniugacy and is strictly index preserving. In this case G and H are said
to have the same situation of subgroups. Throughout this paper we

write A  B if A is a subgroup of (the subgroup) B and A 0 B if A is

a normal subgroup of B. By an infinite dihedral group we mean a proper
free product of two groups of order two.

2. An Induction Principle.

It is easy to see that an isomorphism f from a group G onto a
group H induces a projectivity from G onto H. That is, the map p from
L(G) onto L(H) defined by pK= fK for every subgroup K of G is a

projectivity. Suppose now that f is a one to one map from a group G

onto a group H. Certainly f induces a lattice isomorphism cp from the
lattice of all subsets of G onto the lattice of all subsets of H. If p is the
restriction of (p to L(G), then p injects L(G) into the set of all subsets
of H. Thus p is a projectivity from G onto H if and only if p maps
L(G) onto L(H).

INDUCTION PRINCIPLE. Let G and H be groups and f a map from
G into H which is one to one and onto. The map f induces a projectivity
from G onto H, if

a) A  G implies and

b) B  H implies 



73

A projectivity p induced by such a one to one and onto function
f in this way is strictly index preserving if G is finite, and index pre-
serving if G has no elements of infinite order. If G does have elements
of infinite order, p is index preserving providing f restricted to any
infinite cyclic subgroup C of G is an isomorphism of C into H.

3. Rottländer’s Examples.

Here we study a construction (2) of classes of groups with the pro-
perty that all groups in a class have the same situation of subgroups.
The groups in a particular class are semi-direct products of an elemen-
tary abelian group of order p, where p is some prime, and a prime
cyclic group of order q. More specifically any group G in this class

has a representation of the form
G = { a, b, c : }

where s --- ru( p) and u*0,1(q). Since the multiplicative
group of residue classes modulo p has order p -1, p ---1 (q). Other

members of the class are determined by letting u range over the set

2, 3, ..., q -1. Thus the class of groups is specified by the numbers p,
q, and r while the number u specifies a group within the class. When
it is understood that we are considering the class of groups determined
by p, q, and r, it is convenient to let Gu designate the groups deter-

mined by u. We shall soon see that Gu is isomorphic to Gv if and only
if u --- v(q) or uv«(I)q.

In this paragraph we state the basic properties of the group G = Gts
from the previous paragraph in order to facilitate the reading of this

paper. These results can also be found in Rottldnder’s article (2). Any
element of g can be written uniquely as a product. g==akbl¿n for some
integers k, l, m, such that 0Zk, and Hence the
order of G is It is easy to see that the cyclic subgroups ( a ), and
( b ) generated by a and b respectively are normal subgroups of G. Hence
the subgroup ( a, b) generated by a and b is normal in G, and ( a, b)
is the only subgroup of G of order p2. In addition (a) and ( b ) are the
only normal subgroups of order p in G. The p -1 non-normal cyclic
subgroups of order p in ( a, b ) fall into coniugacy classes of
q groups each. In fact all groups conjugate to are of the form
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(abXY) where in the multiplicative group of integers
modulo p. This is seen most easily by considering the following example

A simple computation shows that any non-trivial element of G not in
~ a, b ) has order q. Since there are pzq - p2 = p2(q -1 ) elements of order
q in G, there are p~ subgroups of order q in G. These subgroups are
all cojugate by the appropriate Sylow theorem. If an element g in G
has order q, then the subgroups g ) and ( b, g ) have order pq. Furthe-
more these are the only subgroups of order pq in G. To be more specific
if g=akb1cm in the unique representation of g in G where then

g has order q and,

where l’ and k’ are appropriate integers. It is now easy to see that all

subgroups pq containing a (or b) are conjugate in G to ( a, c) ((b, c ) ) .
Since ( a, c) is not conjugate to (b, c ), there are two conjugate classes
of subgroups of order pq. In addition the subgroups of order q are
conjugate in any group of order pg.

Suppose now that G = Gu and H is a group isomorphic to Gv which
for the sake of convenience has the presentation

where t = r’’. If uv ---1 (q), then it is easy to see that

and

Hence the map determined by
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is an isomorphism from G to H. On the other hand if f is an isomor-

phism from G onto H, then f(a) is an element It turns

out that implies u = v(q) and that implies 
The proof is simple although it is not necessarily the case 

However, f (c) must conjugate a and fi as a power of y.
Throughout the remainder of this paper we assume that G = ~ a, b,

c ) and y ), as above, and in addition that G is not isomorphic
to H. The smallest possible order that G and H can possibly have then
is 605 when p =11 and q = 5 . We now provide a diagram of the sub-
group lattice of one of the groups of order 605. Please note that the

diagram is not a Hasse diagram of the subgroup lattice. The points
are non-trivial cyclic subgroups; the lines are proper groups of compo-
site order as in a projective plane over a prime field. So in a certain
sense the subgroup lattice of these groups is two-dimensional.

It is possible to literally see that G and H have the same situation
of subgroups by looking at the diagram in the example. Though a little
more involved it is possible to construct a function f from G to H which
induces a situation preserving projectivity from G to H. The results of
this paper are proved by extending this function to larger groups. The
important thing to note is that the subgroup (as blC) of G is isomorphic
to the subgroup a Bly&#x3E; of H under the correspondence a 2013&#x3E; a,
b1c - a1y. Thus we are led to define f by = and J(ak(b1c)m) =
=ak(a1y)m. In other words we take f so that its restriction to the sub-

groups b ) and (a, blC) for l = 0, 1, ..., p-1 is an isomorphism. The
map f is obviously one to one and onto from G to H. In order to show
that f induces a projectivity p it suffices to show that if(6, 
Let

This means and also Then

Hence f ( b, anc )  ( ~3, a"y). Since f ( b, contains pg elements, the
sets are equal. By our remarks following the statement of the induction
principle we have that p is strictly index preserving. The fact that p
preserves conjugacy follows from our classification of conjugate sub-
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groups in listing the properties of G. In particular ( abx ) is conjugate to
in G if and only if x and y are from the same coset ( srw } _ ( r } _

_ ( tr-1 ) in the multiplicative group of integers modulo p if and only
if is conjugate to in H. We have proved the following
lemma.
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LEMMA. The map f : G --~ H defined by 
and for appropriate k, 1, and m induces a situation pre-
serving projectivity from G onto H.

4. The Fundamental Theorem.

Let G and H be as in the previous section. Let K be some group.
Must G X K and H X K have the same situation of subgroups? No.
In fact if K is any proper free group, then G X K and H X K are free

products with normal amalgamated subgroups which by the results in

(1) are determined by their lattices of subgroups. Thus if H X K is a

projective image of G X K, then G X K and H X K are isomorphic
and by a simple argument on the order of elements G and H are iso-
morphic. However the following result shows how it is possible in

certain cases to extend the map f from G onto H given in the previous
section to all of G X K so that the extended map induces an index

preserving projectivity from G X K onto H X K. In the next section
we give several examples.

THEOREM. Suppose:
a) Any subgroup of G X K which is not contained in (a, b ) X K

or (a, X K (l = o, 1, ..., p -1 ) contains b.

b) Any subgroup of H X K which is not contained in

Then there is a projectivity from G X K onto H X K which is

strictly index preserving.
PROOF. Define a map f from G X K onto H X K by j(akb’h)=

and where he K. Then f maps G X K
one to one and onto H X K. In addition f maps the subgroups

isomorphically onto the subgroups

respectively.
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Suppose now that D is a subgroup of G X K which is not con.
tained in

By a.,

We shall show that f D’ ) . Let

Then

since A similar argument shows that

The desired equality follows from the fact that

This shows in particular that for any subgroup Ai of G X K,

In a similar way can be shown to map subgroups of H X K to
subgroups of G X K. By the induction principle f induces a projectivity
p from G X K onto H X K.

Finally p is strictly index preserving, because if

where

then

COROLLARY. Suppose any subgroup of G X K(H X K) is the direct
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product of its projections in G(H) and K. Then G X K and H X K
have the same situation of subgroups.

PROOF. It suffices to show that the projectivity p from the previous
theorem preserves conjugacy. This follows from the fact that the restric-
tions of f to G and K preserve conjugacy.

5. Examples.

In this section we study groups K such that G X K and H X K
satisfy conditions a and b of the theorem. Suppose K is an arbitrary
group. Let D be a subgroup of G X K which is not contained in

Then the projection of D onto the factor G in G X K must be G or
one of the subgroups

Hence there are two elements h, k in K such that bh and a1ck are elements
in D for some 1. If h has finite order m and m is not a multiple of p
then a generator of ~ b ~. If all elements in K have
order relatively prime to p, then conditions a and b of the theorem must
always hold. This observation gives our first example.

EXAMPLE 1. If all elements in K have finite order which is rela-

tively prime to p, then G X K and H X K have the same lattice
of subgroups. Consider again the elements bh and a’ck from above.
Note that

If khk-1= h, then and also blh where x-s2, S3, ..., sq-l. Since

q &#x3E; 5, is a generator of ~ b ~, for some x. Thus we have
our second example.

EXAMPLE 2. If K is abelian, then G X K and H X K have the
same lattice of subgroups.

Our third example where K is an infinite dihedral group is related
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to the other two examples through the fact that in the infinite dihedral
~group any non-trivial element either has order two or infinity and that
any two elements of infinite order commute. Returning to the situation
bh, a1ckeD, we have beD immediately if h has order two. Similarly
if k has order two, then and by conjugation However if

h and k both have infinite order, then b ED by conjugation.
EXAMPLE 3. If K is the infinite dihedral group, then G X K and

II X K have the same lattice of subgroups.
Furthermore we have that G X K and H X K are not isomorphic

in any of the three examples. For if G X K were isomorphic to H X K,
then G can be identified with some subgroup of H X K. Suppose in
fact that this is done. In all three examples G is not a subgroup of K.
Indeed in all three examples G has trivial intersection with K. This is

most obvious when K is the infinite dihedral group, because then K

has no elements of order p or q. When K is abelian, K is the center of
H X K. Since G has trivial center, G n K =1. When the order of the

elements of K are relatively prime to p, as in Example 1, then any non-
trivial element in G n K would have order q and would commute with
any element of order p in H X K. Again G n K =1. Therefore the pro-
jection of H X K onto H maps G isomorphically onto H. This is the

desired contradiction.

Finally it is easy to see that the idea in Example 1 could be extended
to give an example for the corollary. That is, if K is a group in which

every element has finite order relatively prime to p and q, then G X K
and H X K have the same situation of subgroups.
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