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KRIPKE MODELS AND MANIVALUED LOGICS, II

FERNANDO BERTOLINI *)

0. Introduction.

In November 1969, the author had the opportunity of giving a

talk on the semantics of manivalued logics, at the International Sympo-
sium on Model Theory in Rome, Istituto Nazionale di Alta Matematica.
The material underlying the first part of this talk (The semantics of
the propositional calculus) was later published in [ 1 ] ; the present paper
covers the material underlying the second part of the same talk, namely
the semantics of the predicate calculus of the first order, and of course
makes free use of [ l l’s results.

By and large, arguments in this paper will be patterned (as far as
possible) after their counterparts in [ 1 ] , with minor changes in notation.
In particular, the symbol N will always denote the set of all positive
integers, the symbol c% will denote the elementary boolean lattice (0, 1 }
with 0  1, and the symbols-, n, U, &#x3E; will denote, respectively,
complementation, meet operation, join operation and implication in ~3,
according to the tables:

Let us recall that, given a partially ordered set !~C=(X, :-5o),

*) Indirizzo dell’A.: Istituto Matematico Universith di Parma.
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the symbol 9 denotes the set of all isotonic mappings of OC into
~, endowed with a « point~wise » partial ordering;

the partially ordered set turns out to be a complete implicative
lattice, hence a completely distributive and pseudocomplemented one;

the least element, the greatest element, the meet operation, the join
operation of lattice have, all of them, a strictly « pointwise » char-
acter ;

implication and pseudocomplementation of lattice in ge-
neral, to have a « character, and are to be described, respec-
tively, as follows

for teX, f or f , and

for tex, for 

they do have a « pointwise » character, however, if ~ is partially or-
dered by equality: in this case we write X rather than DC, and ~X
rather than 

Let us recall, too, that: if 6).j is a distributive lattice of finite length,
then there is some partially ordered set DC such that N=g3oc.

For details, see [1], ~ 1, Th. 6, Th. 7, and [ 2 ] , p. 59, Th. 3.
In this paper, we shall have occasion to consider certain sequences

of sequences of terms of different nature; in general, given any such
« sequence of sequences »

we shall use the symbol -xii(s) to denote the element sij [ i = -1, 0, 1, 2, ...;
j=1, 2, 3, ...].
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1. The predicate calculus of the first order: syntax.

We are going to consider the predicate calculus of the first order,
defined by the following stipulations.

THE BASIC ALPHABET.

Al. Propositional variables: ak [k=1, 2, 3, ...].

A2. Free object variables: bk [ k =1, 2, 3, ... ] .

A3. Bound object variables: [ k =1, 2, 3, ... ] .

A4. Place marker: *.

A5. Predicate variables: prk [r, k=1, 2, 3, ...].
A6. C2tianti f iers: A, V.

A7. Propositional connectives: -, , n , v , r-. ,

A8. Punctuation signs: (,).

A9. Predicator: ~.

We shall use the symbol yk to denote either bk or xk , indifferently;
r will be called the degree of the predicate variable prk [ r, k =1, 2,
3, ...].

Any nonempty word in the basic alphabet will be called a form. A
simple inductive argument shows that, if c is any letter of the basic alpha-
bet, other than *, and A is a form, the normal algorithm with the scheme

c concludingly transforms the form A into a form where let-{* - c - o
ter zi does not occur: the latter form will be called A [ c] .

Let us define, now, the set afof all formulae of the predicate
calculus of the first order.

FORMULAE: AN INDUCTIVE DEFINITION.

Fl . Every propositional variable is a formula.

F2. Prkbk1bk2... bk, is a formula [r, k, , , ..., 1, 2, , ...].

F3. If A and B are fomulae, so are --, (A), (A) A (B), (A) v (B),
(A)+(B).
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F4. If A is a form where neither bh nor Xk occur, and is

a formula, then both and are formulae
[h, k=1, 2, 3, ...] .

ENTAILMENTS.

E 1. If A and B are formulae, then A ~ B is an entailment.

In the sequel, and if no ambiguity arises, some [occurences of]
punctuation signs may be omitted in the displaying or the mentioning
of a formula, for short.

2. The predicate calculus of the f irst order: truth-f unctional reading.

In order to introduce the notion of truth-functional reading for

formulae of the predicate calculus, we use a truth-lattice, a universe,
an acquaintance function.

The truth-lattice is a given complete implicative [hence completely
distributive and pseudocomplemented] lattice 6)), whose elements are

called truth-values, whose least and greatest element, whose order re-

lation, pseudocomplementation, meet operation, join operation and im-
plication are denoted by the symbols Ol , ~, l i , Z i , z 1 , A i , v 1 , r-~ , 5

respectively; the set of all truth-values is denoted by V, so that

6l’=(V, ~1).
The universe is a given nonempty set U; its elements are called

objects. The acquaintance function is a given mapping U --~ V, of
the universe into the truth-lattice 6)).

Let us consider, now, the following sets, defined in terms of truth-
lattice, universe and acquaintance function:
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The typical member of T, denoted by t, is a sequence (t_1, to ,

tl , ...) with toEVN and trEPrN ~[r=1, 2, 3, ...1, i.e. a se-

quence such that, in turn

(5-1) t-I is a sequence (t-l, 1, t-1, 2, t-1, 3, ...) of objects,

(5o) to is a sequence (toi , to2 to3 , ...) of truth-values,

(5r) tr is a sequence (trl , trz , tr3 , ...) of members of Pr , hence a

sequence of mappings of Ur into V [ r =1, 2, 3, ... ] . 11

Let us notice here ~[ see § 0] that the partially ordered set 6W is a
complete implicative lattice, hence a completely distributive and pseudo-
complemented one; that its least element, its greatest element, order
relation, pseudocomplementation, meet operation, join operation, impli-
cation, all have a strctly « pointwise » character: they will be denoted
respectively by the symbols 02, 9 h, ~ 2 , -’2, 9 A2, v,~ , r- 2 ; of course,
6W==(W, ~2).

Last, let us introduce the mapping y2: U ~ W, defined as follows.
Since Y1 is a mapping of U into V, for each u E U we have yi(M)~V;
well, for each let us call ~yz(u) that mapping of T into V, which
maps all members of T into the single truth-value of course

y2(u) c W; this way, y2 actually maps the universe U into the lattice
in other words,

for all uEU, tET.

2 .1. To each formula A of the predicate calculus, we are now
going to associate a member I A I of the lattice 6)J), the truth-functional
reading of the formula A, relative to the truth-lattice 6)), the universe
U, the acquaintance function yi. To this effect, we consider a sequence
(Mi u2 , u3 , ...) of parameters, and adopt the following stipulations.

TRUTH-FUNCTIONAL READING: AN INDUCTIVE DEFINITION.
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We want to prove that

TH. 1. Clauses V 1 through V7 define inductively a truth-func-
tional reading I A I for each formula A of the predicate calculus; such
truth-functional readings are members of the complete implicative lat-
tice W.

2.2. In order to prove Th. 1, we need the auxiliary notion of

open formula, as well as a definition of the property « in the open
f ormula C there is an unquantified occurrence of the bound object va-
riable Xh »; we stipulate the following.

OPEN FORMULAE: AN INDUCTIVE DEFINITION.

OF 1. Every propositional variable is an open formula; in it there

is no unquantified occurrence of any bound object variable whatsoever.

OF2. prkYk1Yk2... Ykr is an open formula; in it there is an unquan-

ti f ied occurrence of the bound object variable xh , iff some of the sym-
bols yki , ..., Ykr stand actually for Xh [r, k, ki , k2 , ..., kr , h =1,
2. 3, ... ] .

OF3. If A and B are open formulae, so are --, (A), (A) 1B (B),
(A) v (B), (A) r-(B); in -~ (A) there is an unquantified occurrence of
the bound object variable xh , iff in A itself there is an unquantified
occurrence of the bound object variable xh ; in (A) -~ (B) where the
symbol + stands for any one of the symbols A, v, r- there is an
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unquantified occurence of the bound object variable Xh iff there is

an unquantified occurrence of the bound object variable Xh in A and/or
in B [h=1, 2, 3, ...].

OF4. If A is an open formula, then both and ( V xk)(A)
are open formulae; in as well as in there is no

unquanti f ied occurrence of the bound object variable xk ; for h ~ k,
there is in as well as in an unquantified occur-
rence of the bound object variable Xh iff in A itself there is an unquan-

tified occurrence of the bound object variable Xh [h, k-1, 2, 3, ...].

Since an open formula is anyway a (finite) word in the basic al-

phabet, a straightforward induction argument shows that

LEMMA 1. Given an open formula C, and the bound obiect vari-
ables Xh , Xh1, Xh2, ..., the following two properties are decidable:
« There is in C some unquantified occurrence of Xh », and « There is

in C no unquantified occurrence of any bound object variable, other

than Xh1, Xh2 I ..., xhs » [ h, hi , h~ , ..., hs , s = 1 , 2, 3, ... ] .

Another straightforward induction argument shows that

LEMMA 2. I f C is a formula of the predicate calculus, then C
is an open formula, and in C there is no unquantified occurrence of
any bound object variables.

Let us prove, now, the following

LEMMA 3. Given an open formula C, and s bound object varia-
bles Xh1, xk2 , I -Xh,, if there is in C no unquantified occurrence of any
bound object variable other than Xh1, Xh2, ..., then clauses V 1

through V7 define for C a truth-functional reading C I, which turns

out to be a member of the complete implicative lattice 6lV, possibily
dependent on s parameters Uh1, uh2 , ..., UhsE U, but independent of any
other parameter.

We shall give the proof of this lemma in the next section 2.3, but
notice right away that the conjunction of Lemmas 2 and 3 yields just
Th. 1.

2.3. (a) Under Vl and (50), whatever 1 ak (t) is a member
of V, hence the truth-functional reading ak I, of the propositional va-
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riable ak , is, under V 1, a mapping of T into V, i.e. is a member of

W [ k =1, 2, 3, ... ] . In other words, if the open formula C is given by
clause OFI, then clause V 1 defines its truth-functional reading ] C I as

a member of the complete implicative lattice 61V, independent of any
parameter whatsoever.

’ 

(b) Whatever teT, under V4 and (5r), (t) is a certain

mapping of Ur into V; moreover, whatever teT, under V2 and (5-1),
1 bk1 1 (t), I bk21 (t), ..., I (t) are certain members of U, while, what-
ever Uk1, uk2 , ..., 5 Uk r 6 U and whatever teT, under V3, ~ (t), ~ (t), I
..., ~ (t) are certain r members of U as well; consequently, whatever
Uk1, Ukz, ..., and whatever teT, I Yk2 (t),
..., (t) ] is a certain member of V, which will depend on the para-
meters Uh1, uh2 , I ..., Uhs eU and teT - but on no other ones - if and

only if the bound object variables Xh1, xh2 , ..., Xhs do occur in the open
formula prkYk1Yk2 ... Yk , but no other ones do; of course, if no bound

object variable occurs in prkYk;Jk2 ... YJcr’ then, whatever teT, [ ~ prk (t)]
C ~ Yk1 (t), ..., ~ 1 Ykr (t)] = [ ~ prk bk1 (t), ..., 1 bkr (t)], which is a
member of V, dependent on the only parameter teT. Anyway, under
clauses V2 through V5, I prkYk;J’k2 ... I is a certain mapping of T
into V i.e. a certain member of which will be independent of
any parameter in case no bound object variable occurs in prkyk,ykz ... Ykr J

while it will depend on no other parameter than Uh1, uh2 , 1 ..., Uhs e U

in case no bound object variable occurs in prkyk1yk2 ... Ykr other than

Xh1, xh2 , .1 ..., Xh.. In other words, if the open formula C is given by
clause OF2 and in C there is no unquantified occurrence of bound object
variables other than Xh1 , Xh2, ..., Xhs ’ then clauses V2 through V5 define
the truth-functional reading 1 C as a member of the complete implicative
lattice 61V, dependent on no parameter other than Uh1, Uh2, ..., Uh s e U;
in case the open f ormula C is still given by OF2 but in C there is no

unquantified occurrence of any bound object variable whatsoever, then
clauses V2 through V5 define the truth-functional reading 1 C I as a

member of the complete implicative lattice 61V, independent of any
parameter whatsoever.

(c) Suppose C to be given by clause OF3, and consider first the
case that C = -, (A ) where A is some open f ormula. If in C there is no

unquantified occurrence of any bound object variable, then, by OF3,
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in A there is no unquantified occurrence of any bound object variable
either and, by the inductive assumption, clauses VI through V7 define
the truth-functional reading I A I as a member of the lattice 6W, inde-

pendent of any parameter whatsoever; but then clause V6 will define
I C 1== -, 2 ~ A ~ I also as a member of lattice 6W, independent of any pa-
rameter whatsoever. If in C there is no unquantified occurrence of

any bound object variable other than xh1 , ..., 9 xhs , then, by OF3,
in A there is no unquantified occurrence of any bound object variable
other than xh1, xh2 , ..., and, by the inductive assumption, clauses
V I through V7 define the truth-functional reading A I as a member

of the lattice 6lV, independent of all parameters other than uhl , uh2 , ...,

UhsEU; but then clause V6 will define 1 C 1== -2 ( A I also as a member
of lattice independent of all parameters other than uhl , uh2 , ..., uhs ·

A similar argument takes care of the case that C equals either

(A) A (B), or (A) v (B) or (A)-(B).

(d) Suppose C to be given by clause OF4, and consider first the
case that where A is some open formula. If in C there

is no unquantified occurrence of any bound object variable, then, by
OF4, in A there is no unquantified occurrence of any bound object
variable except possibly xk , and, by the inductive assumption, clauses
VI through V7 define the truth-functional reading I A I as a member
of the complete implicative lattice 6lV, possibly dependent upon the

parameter but, whatever is also a member of the

implicative lattice 6lV (see end of sec. 2), and so is Y2(Uk) r--z ~ A 1, and
it does make sense to consider the set : uk E U } of ele-

ments of the complete lattice 6lV, and the infimum of this set in the

lattice itself; but then clause V7 defines I as a mem-

ber of the lattice 0,V, independent of all parameters. If, instead, there
is in C no unquantified occurrence of any bound variable except possibly
Xh1 , Xh2 , ..., Xhs ’ then, by OF 4, there is in A no unquantified occurrence
of any bound object variable except possibly xk , ..., again,
by the inductive assumption and by clause V7, also the truth-functional
reading I C _ ~ I (/B xk)(A) I will be defined as a member of the complete
implicative lattice 6lV, dependent on no parameter except possibly Uh1,
uh2 , ..., Uhs E U.

A similar argument takes care of the case that 
This concludes the proof of lemma 3.
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2.4. After the proof of Theorem 1, and because of clause V6.

TH. 2. Clauses V 1 through V7 define a [homomorphic] mapping
A - I A o f the set ~~ of all formulae of the predicate calculus [under
« operations » - , A , v , r-- J into the set W [under operations -, 2 , A2

V2 , r°-2 J .

With a reasonable extension of the customary terminology, the

image of under the mapping A - I A can be called the Lindenbaum
algebra of the predicate calculus, and is itself an implicative sublattice
Y- I of 61V.

Two formulae A and B will be said truth-functionally equivalent,
when they have the same truth-functional reading, i.e. when I A I = B 1;
if I A ’~ ~ ~ B ~ I only, we will say that A truth-functionally entails B, or
that the entailment A ~ B is truth-functionally valid.

Only at this stage it would be sensible to describe an inferential
structure of the predicate calculus, with this target in mind, e.g., that
an entailment be inferentially valid if and only if it is truth-functionally
so; but this is not relevant to my subject.

I wish to stress again, however, that the notions introduced above
are relative to the truth-lattice 6)), to the universe U, to the acquaint-
ance function yi.

3. A manivalued theory.

The classical two-valued semantics for the predicate calculus of
the first order is obtained from the one described above, by specializing
the truth-lattice to be the elementary boolean lattice ~, and the ac-

quaintance function to be the constant 1. Intuitively, this means to

acknowledge a univocal [arbsoluteJ notion of truth and existence; con-

cretely, this means to restrict the applicability of the calculus to those
concrete theories only, where exactly one criterion of truth and one
criterion of existence are admitted, respectively able, at least in principle,
to tell of each proposition of the theory whether it is true, to tell of
each object of the theory whether it exists.

But suppose we adopt a pluralistic [relative] notion of truth and
of existence. Specifically, suppose we have a theory (J for which several
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riteria of truth and several criteria of existence are recognized, perhaps
mbodied in some formal metatheory; let us call M’ the set of all reco-

ized truth-criteria, M" the set of all recognized existence-criteria, and
or the sake of peace let’s admit each one of these criteria to be two-

alued : a very familiar instance of this state of affairs can be found in

ny theory where exactly two truth-criteria are recognized, one of them
erely necessary and the other one merely sufficient, and/or exactly
wo existence-criteria are recognized, one of them nonconstructive and
he other one constructive.

Anyway, beside the sets M’ and M", we will consider also their

cartesian product, the set M = M’ X M" of all pairs consisting of one
recognized truth-criterion and one recognized existence-criterion; such

pairs will be called witnesses, because, so to speak, each one of them is
asked to testify about the truth of each proposition and the existence
of each object pertaining to the theory C.

Now, if we ask all the witnesses about the truth of a given pro-
position, or about the existence of a given object, we shall get a [pos-
sibly different] answer out of each one of them, viz. a yes or a no as
the case may be, in symbols respectively a 1 or a 0; it is only natural
to consider the aggregate result of this questioning as the truth-value

of the proposition, or as the existence-value of the object, under scru-
tiny, in the opinion of the given panel of witnesses: such aggregate
result is just a member of the boolean lattice ~M.

To avoid possible misunderstandings, let us stipulate once and for
all, that a witness’s yes is to be construed as an assertion [ = « Yes, I

know that this proposition is true » or « that this object exists » ] , while
a witness’s no is to be construed as a refusal to assert [ _ « No, I do
not know whether this proposition is true » or « whether this object
exists » ] , not as a denial. For short, we will say that a given witness
asserts or fails to assert [alternatively knows as true or does not know as
true] a given proposition, that a given witness knows or does not know
a given object, as the case may be.

In general, given any two witnesses m’ and m", we will say that
m’ is less knowledgeable than m" [in symbols, m’Zo m"], or that m"
is more knowledgeable than m’ [in symbols, m" ? o m’ ] , when, on meta-
theoretical grounds, all objects known to witness m’ are also known to
witness m", and all propositions known as true to witness m’ are known
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as true to witness m" as well; we will also identify any two witnesses
to whom, on metatheoretical grounds, exactly the same objects are

known, and exactly the same proposition are known as true, i.e. any
two equally knowledgeable witnesses.

This way, the panel M of witnesses is turned into a partially or-
dered set and only those members of the boolean lat-

tice can possibly be truth-values of propositions or existence-values
of objects, which map Ðtt isotonically into lB, i.e. which are actually
members of the complete implicative lattice Of course, the case

that all witnesses are independent ~[i.e. that no witness is more, or less,
knowledgeable than any other one] is subsumed under the general case,
the panel of witnesses being partially ordered by the relation of equality.

Under these stipulations,
the least element of the lattice truth-value of a propo-

sition, whose truth is not known to any witness, and the existence-value
of an object, whose existence is unknown to all witnesses;

the greatest element of the lattice is the truth-value of a
proposition, whose truth is known to all witnesses, and the existence-
value of an object, whose existence is also known to all witnesses;

all other elements of the lattice are possible truth-values o f
propositions whose truth is known to some, but not to all, of the wit-
nesses, and/or possible existence-values of objects, which are known
to some, but not to all, of the witnesses.

3.1. After these preliminaries, let us see more in detail what our
theory is supposed to be. Theory 1:: must comprise a set 1~ of 
oretical) propositions, a nonempty set U of (1::-theoretical) objects, and,
for each r=1, 2, 3, ..., a set Or of (C-theoretical) r-adic predicates; the
set U is called the (C-theoretical) universe. Metatheoretically, a panels

of witnesses must be available, partially ordered by
knowledgeability; the complete implicative lattice ~ = S3~ is taken
as truth-lattice, with the same notations as in sec. 2.

Given any proposition vED, the symbol v will denote the truth-
value of n, so that, for each iff proposition V is
known as true by witness ni, n (m) = 0 otherwise; of course, Simi-

larly,given any object ue U, the symbol u will denote the existence-value
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of u_, so that, for each me M, u(m)= 1 iff object u is known to witness

m, u(m) = 0 otherwise; of course, ue6)). The mapping 11 : u - u, of

the universe U into the truth-lattice 6)), is taken as the (C-theoretical)
acquaintance function.

About the set V of all propositions, we stipulate the following.

~ 1. For each v E V, there is some proposition such that n = v.

C2. Given P EPr, whatever ui , u2 , ..., ur E U, pu1u2 ... tir is a

proposition fulfilling the following condition

this condition simply means that the typical witness will refrain from

asserting proposition PUlU2 ... ur unless he knows all objects tcl , u~ ,

..., ur.

23. Given two propositions V, there is in W:

- a proposition ..r ln, which is asserted by the typical witness m, i f f
each witness more knowledgeable than m (including m) fails to know
whether proposition v is true;

- a proposition vn1v’, which is asserted by the typical witness m,
iff m himself knows both V and V’ to be true;

- a proposition V Ul ,,’, which is asserted by the typical witness m,
iff m himself knol.vs b and/or 1D’ to be true;

- a proposition which is asserted by the typical witness m,
iff each witness more knowledgeable than m (including m) knows
V’ to be true and/or fails to know whether v is true.

~4. Given a mapping U --~1~, there is in 0:
- a proposition which is asserted by the typical witness

m, i f f each witness m’ more knowledgeable than m (including m),
for each object u’ known to himself, m’, knows proposition p(u’)
to be true;

- a proposition which is asserted by the typical witness
m, iff there is some object u’ such that proposition is known
as true by m.
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We introduce also the following notion:

rc 5. Given two proposition *0, 1D’ E 1b, n is said to entail n’ [in
symbols, when V’ is asserted by every witness who knovvs 1D as
true.

Condition C3 can be restated, more succinctly, as follows:

using notations introduced in sec. 0. Under (1), (2), and because of the
« pointwise » character of the meet and the join operations in the lat-

tice 61) = ~~, and of clause C5, we have the following
’I’H. 2. Given any two propositions V, ,,’ E B1),

This theorem is just a replica of [ 1 ] , Th. 8; because of it, the

mapping 1D --.~ 1D is a « homomorphism » of the set ’0 of all propositions
(under « operations» ~1, ni , ul , &#x3E;1, and relation D1) into the set B1)
of all truth-values (under operations -1, and relation £ 1).

A result without counterpart in [ 1 ] is the following.

TH. 3. Given a mapping ? : U -~ ~, we have
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PROOF. (a) Given an object u’ and a witness m, consider the fol-
lowing inequality between members of the lattice ~ :

In case u’(m) = o, as well as in case [ e~(u’) ] ~(rn) =_1, inequality
(11) is trivial. Consider then the case that, concurrently, and

[~p(u’) ] ~(m) = o; in this case, witness m knows object u’, but he fails to
know whether proposition is true, hence he cannot assert proposi-
tion (Viu)(p(u)), and consequently [ (~r’lu)(cp(u)) ] ~(m) = o, which again
proves inequality (11).

As (11) holds for all whatever u’ E U, also inequality

holds whatever hence inequality

holds whatever therefore

(b) Given such that

given any witness m, consider the following inequality between members
of B:

In case v(m) == 0, inequality ( 14) is trivial. Consider the case v(m) =1,
and let m’ be any witness more knowledgeable than m; since v is an

isotonic mapping of M into cffi, we have
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from (13) we get 1 [cp(u) ~ ~ whathever and in particular

from (15) and (16) we get

whatever u E U, hence

Inequality (17) means that witness m’ asserts proposition «u’) for
every object u’ known to him; since this holds for every witness m’ more
knowledgeable than m, witness m must assert proposition 
therefore we have which again proves inequality
(14).

As inequality (14) holds for all m E M, we 
and in particular, for v= u E U } in 61), we have

(c) From (12) and (18), we get (101).

(d) Given an object u’e U and a witness consider the fol-

lowing inequality between members of the lattice lll :

In case [ c~(u’) ] "(m) = o, inequality (19) is trivial. In case [9(u’)]’
(m) =1, witness m knows proposition cp(u’) as true, therefore he must
assert proposition we have then, and
this proves again inequality (18). As inequality (19) holds identically,
we have also for all u’eU, hence

(e) Given such that
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given any mem, consider the following inequality between members
of 0%:

In case v(m) =1, inequality (22) is trivial. In case v(m) = o, on
account of (21) we have also for all u’eU: then witness
m does not assert proposition cp( u’) for any object u’ E U, therefore he
cannot assert proposition we have 

then, which again proves (22). Thus, inequality (22) holds whatever
consequently in particular, for

we get

( f ) From (20) and (23), we get (102).

The proof is complete.

4. The predicate calculus of the first order: 1:’-theoretical reading.

We will now make use of theory ~, introduced in sec.s 3 and 3.1,
in order to define the notion of 1:-theoretical reading for formulae of
the predicate calculus of the first order. To this effect, consider first
the following sets, defined in terms of the (C-theoretical) universe U,
the set ~ of all (1:’-theoretical) propositions, and the sets or of all

(C-theoretical) r-adic predicates, with r =1, 2, 3, ...:

The typical member of tt, denoted by t, is a sequence (t-i , to,
tl , t2 , ...) with r -1 E UN, I and [r~ 1, 2, 3, ...], i.e. a

sequence such that in turn
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(25o) to is a sequence (to, , to2 , to3 , ...) of propositions,

(25r) tr is a sequence (rrl , tr2 , rr3 , ...) of r-adic predicates [r=1,
2, 3, ...].

In the set ill, we define now a unary operation ~-~ 2 , three binary
operations n2 , u2 , &#x3E; z , and a binary relation &#x3E; , through the follow-
ing stipulations:

this way, given any two members of the set I say W and W’, they
are mappings of E into 0, so that, whatever teol, W(t) and W’(t)
are propositions, and with them also

are propositions; consequentely, clauses (261) through (264) define

as mappings of J into V, i.e. as members of the set W; trivially,
clause (265) defines &#x3E;2 as a binary relation in the set ’W1.

We have to introduce, now, two more operations in the set ’W1,
of a more general nature. Let ~ be a mapping of U into M, so that
4Ku) is a member of the set W. dependent on the parameter ueU;
in other words, for each Me!7, ~(u) is a mapping into 1~, so that,
in turn, for each given teE, (~(u))(t ) is a member of ~ . For each

given tE E, now, consider the mapping u -+ (4J(u))(t ) of the universe
U into the set ~ : because of stipulation ~4, there are in ID two propo-
sitions, dependent of course on the given t elll, to be denoted respec-
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tively by and by (~lu)[(~r(u)~(f )], fulfilling certain

conditions, specified under the same ~4. It makes sense, then given
this mapping ~ : to define

For each given felll, [(V2u)(+(u))](f) and [(M2u)(+(u))](f) are

defined by (271) and (272) as certain members of the set 0, hence (271)
and (272) define [(V2U)(~(U))] and [(~~u)~(~(u))] as certain mappings
of ~1 into ID, i.e. as certain members of the set 

4.1. To each formula A of the predicate calculus, we are now
going to associate a member ][ I of the set ’W1, to be called the
rc-theoretical reading of the formula A; such C-theoretical reading will
depend on the chosen theory 2u, of course. To this effect, let us con-
sider a sequence ul , u2 , u3 , ..., of parameters and stipulate the fol-

lowing.

1:-THEORETICAL READING: AN INDUCTIVE DEFINITION.

In close analogy to Th. 1, we have the following
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TH. 4. Clauses V1 through V7 define inductively arc-theoretical
reading 11 A 11 f or each formula A of the predicate calculus; such rc-theo-
retical readings are members of the set ’UU1.

This Th. 4 is a trivial consequence of the conjunction of lemma 2
with the following

LEMMA 4. Given an open formula C [and s bound object vari-

ables Xh1, xh2 , ..., xhs], if in C there is no unquantified occurrence of
any bound object variable [other than Xh1, xh2 , ..., Xh ], then clauses

through V7 define for Care-theoretical reading 11 C ~ II, which turns
out to be a member of the set [independent of any parameter other
than I uh2 , ..., uhs E Ul-

The proof of this lemma is analogous to the proof of lemma 3.

Here it is.

4.2. (a) Under 0 1 and (250), ( ~ ak ~ ~ (r ) is a member of V for all

hence the ’C-theoretical reading ak II, of the propositional va-
riable ak , is a mapping of Q into B1), i.e. a member of ’UU1. In other

words, if the open formula C is given by clause OF 1, then 
defines its rc-theoretical reading 11 C 11 as a member of the set ‘~1 [inde-
pendent of any parameter whatsoever] .

(b) Given and Uk1, uk2 , -’ ..., prk II ( f ) is a certain

r-adic predicate under V4 and (25), while 11 bk1 II (f ), ~ ~ bk, 11 (f ), ...,

I bkrll (f) are certain r objects under V2 and (25 _1), and 11 xk1 ll (f),
I xk2 ~ ~ (f ), ..., 1 II (f ) are certain r objects under V3; consequently,
if in the open formula ... Ykr there is no occurrence of any
bound object variable [other than Xh1, xh2 , I Xhs]’ then under V5,

is a certain member of U, which depends on no parameter other than
[and Uh1, uh2 ; ..., uhs E U] . Thus, under clauses V2 through ~5,

if no bound object variable [other than Xh1, Xh2, ..., occurs in the

open formula ykr, then the C-theoretical reading ] 
Ykr I I is a certain mapping of E into V - i.e. a certain member ot
BlU1 - which depends on no parameter [other than UhL, uh2 , ..., uhs] .
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In other words, if the open formula C is given by clause OF2 and in
C there is no unquantified occurrence of any bound object variable

[other than Xh2, ..., then clauses ~2 through W5 define the
C-theoretical reading II C II as a member of the set ’UU1, dependent on
no parameter [other than Uh1, Uh2, ..., uhs] .

(c) Suppose C is given by clause OF3, and consider first the

case that C==2013t(A), where A is some open formula. If in C there is

no unquantified occurrence of any bound object variable [other than
xh1, Xh2 , then, by OF3, in A there is no unquantified occur-

rence of any bound object variable [other than xh1, and, by
the inductive assumption, clauses 191 through V7 define the C-theoret-
ical reading II A II I as a member of the set ’UU1, independent of any
parameter [other than uh2 , I ..., then clause V6 defines

I also as a member of the set ’UU1, independent of any
parameter [other than uhz , ..., 

A similar argument takes care of the case that C be equal to either
(A) A (B) or (A) v (B) or (A)~ (B).

(d) Suppose C is given by clause OF4, and consider first the
case that C= ( /B xk)(A), where A is some open formula. If in C there
is no unquantified occurrence of any bound object variable [other than

..., then, by OF4, there is in A no unquantified occur-
rence of any bound object variable other than Xh1, Xhz, ..., 

and by the inductive assumption clauses V1 through V7 define the

C-theoretical reading [[ A II as a member of the set dependent on
no parameter other than Uk[, uhl , ..., uhs] E U. Then clause ~7 de-
fines as a member of the set TKH, dependent on
no parameter [other than Uh2, ..., 

A similar argument takes care of the case that 
This concludes the proof of lemma 4.

4.3. After the proof of Th. 4, and because of clause ~6,

TH. 5. Clauses 1111 through ~7 define a [homomorphic] mapping
A 11 A 11 of the set c--T of all formulae of the predicate calculus [ under
« operations » -, , n, v, r-~ ] into the set ’UU1 [under operations ~ 2 , n2 s
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U2, &#x3E; 2] . The image of under such mapping is itself a substructure

11 It of the structure ( ‘~, ~ 2 , n2 , u2 , &#x3E; 2 ) .

Two formulae A and B are said to be 1:-theoretically equivalent,
when they have the same C-theoretical reading- i.e. when ll A II == II B I;
if simply I A II ~ ~ ~ ~ B 11, then one says that the entailment is

1:-theoretically valid, or that A C-theoretically entails B.
The content of sec.s 2 and 4 up to this point can be summarized

in the diagram shown in f igure 1.

Fig. 1.

4.4. In order to state the main theorem of this section, we need a

mapping * of the set U u U 1Pr into the set U u V u U Pr , and a mapp-
r=1 r=l

ing # of the set ~ into the set T, which we are going to define, under
the common sense assumption that sets U, V , Pr 1~, flsr [ r =1, 2, 3, ...]
be mutually disjoint. We stipulate the following:

moreover, f or all 
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Under (281), the restriction of mapping to the set U is simply the
identical mapping; under (282), the restriction of mapping : to the set

D of all proposition is simply the « truth-value o f » mapping, which of
course maps AP into ~.~.

Under Z2, given pEPr and ul , u2 , ..., ... ur is a

member of ~, and (283) will be equivalent, because of (281) and (282), to

this (28’3) shows that p* is a mapping into V, while condition (7)
proves that ~* actually belongs to the set Pr r [see (3)]. Thus, .. actually
maps the set Dr into the set Pr .

As for (29), for each given it defines f# to be a sequence of

sequences, with

But, under (281) and (25-,), is an object; under (282)
and (250), [~~,~( f ) ] ~~ is a truth-value; under (283) and (25r), [ ~,.,t(f ) ] ~ is

a member of Pr ; then, for each under (29) f # must be a mem-
ber of T.

Let us consider, now, an open formula C of the predicate calculus,
a member f of the set 31 [and s bound object variables xh2 , ...,Xh,11
under the assumption that in C there is no unquantified occurence of
any bound object variable [other than Xh1, I Xh2, ..., Xl1s]. By lemma 4,
the ’L-theoretical readings C ~) I of C is a member of ’UU1 - i.e. a

mapping of 31 into 0 - independent of any parameter [other than
Uh2, ..., therefore 11 C 11 (f) is a member of 1~, inde-

pendent of any parameter [except i Uh2 I ..., I and 

is, under (282), a truth-value independent of any parameter [other than
Uh1, ..., Uh E U] . Similarly, by lemma 3, the truth-functional read-
ing I C I of C is a member of W - i.e. a mapping of T into V - inde-
pendent of any parameter [other than Uh1, uh1 , ..., while f # is

a member of T, therefore C ( ( f # ) is a member of V - i.e. a truth-
value - independent of any parameter [other than M~ 
Let us prove the following
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LEMMA 5. Given an open formula C of the predicate calculus, giv-
en a member f of the set E [and s bound object variables Xh1 , Xh2, ...,

if in C there is no unquantified occurrence of any bound object
variables [other than Xh1, xh2 , ..., then we have

[identically. with respect to the s parameters Uh1, uh2 , ..., 

PROOF. (a) If C is given by OF 1, we have C = ak for some k
=1, 2, ..., hence, under V1, (29’), Vl, we have also

(b) Under ~2, (29’), V2, we have 
bk ~ I (f#), for k=1, 2, 3, ...; similarly, under W3, V3, we

have ( f # ), for k =1, 2, 3, ...; this can be sum

med up in the equality valid for all k =1,
2, 3, ....

Moreover, under ~4, (29’), V4, we have

Hence, under (283), V5, we have

whatever r, k, kl , k2 , ..., kr =1, 2, 3, ..., and identically with respect
to all parameters ul , u2 , 9 ....

We reach the conclusion that, if C is given by OF2, the lemma’s
thesis holds.

(c) Suppose C is given by clause OF3, and consider first the

case C= -~A, where A is some open formula fulfilling the inductive
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assumption that be identically equal to I A I (f #). Then,
under ~6, (261), (282), (8’,), (282), the inductive assumption, the « point-
wise » definition of -’2, V6, we have

A similar argument takes care of the case that C be equal to either
(A) A (B) or (A) v (B) or (A) - (B).

(d) Suppose C is given by clause OF4, and consider first the
case that where A is some open formula fulfilling the
inductive assumption that (f)]* be identically equal to A I(f #).
Then, under ~7, (271), (282), (101), the inductive assumption, the « point-
wise » character of operations in 6lV, and V7, we have

A similar argument takes care of the case that C be equal to

(VXk)(A).
By structural induction, the lemma is proved.
By lemmas 2 and 5, by (282), we draw the corollary

LEMMA 6. For each formula C of the predicate calculus, for all

We are now in position to prove the main result of this section:

TH. 6. For any two formulae A and B of the predicate calculus,



380

PROOF. Assuming I A I ~21 B I, by the « pointwise » character of

the order relation in 6lV we have A ~ B ~ ( t) for all t E T, hence

~ A ~ (f# )  1 ~ B ~ I (f #) for all f by lemma 6, then, [’ ~ A ~ ~ (f )]" ~ ~ i
~1 B II (f)]1B for all hence, by ~(9), II B ~) (f) for
all i.e., by (265), II A 11::)211 B ~ II, Q.E.D.

5. The predicate calculus of the first order: semantics.

We are now in position to state the following theorem.

TH. 7. Given a nonempty set U, a partially ordered set and

a mapping 

if A ~B is a trutlz-f unctionally valid entailment, relative to the Uni-
verse U, to the truth-lattice ~?J = ~~~, to the acquaintance function 

then is also a 1::-theoretically valid entailment, for every

theory Z whose universe of objects equals (up to bijections) the set U,
vvlzose panel of witnesses equals (up to order isomorphisms) the par-
tially ordered set Ð1è, and whose acquaintance function equals "(1 .

This theorem is actually a restatement of theorem 6. But further-
more

TH. 8. Given a nonempty set U, a partially ordered set and
a mapping "(1 : there is a theory C fulfilling the following
conditions:

tlze universe of objects for equals U (up to bijections);
the panel of witnesses associated to theory 1:, equals the partially

ordered set (up to order isomorphisms);
the acquaintance function for theory 1:: equals 

given two f ormulae A and B, the entailment is truth-func-
tionally valid, relative to the Universe U, the truth-lattice 
the acquaintance function y , if and only if it is rc-theoretically. valid.

The proof of this theorem is just a variant of the proof of Th. 12
in [ 1 ] ; loosely speaking, theory 2: mentioned in the statement of this
theorem is just a formal version of the description of the « truth-func-
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tional reading » of a formula for the predicate calculus: there is no

point in carrying it out explicitly.
These two theorems again substantiate my contention, that a mani-

valued semantics can be interpreted in a quite reasonable and common-
sensical way, and, whatever that semantics might be, it will have its

own field of application, however restricted; a recognition that the ar-

guments used in this paper can be formalized in two-valued logics sub-
stantiates my contention that, whatever can be accomplished by using
manivalued logic, it can also be accomplished (albeit perhaps in a clum-
sierw way) by using tvvo-valued logic.

It is true that this paper takes only those manivalued logics into

consideration, whose truth-lattices are of type where m is an

arbitrary partially ordered set; it is also true, however, that (as recalled
in sec. 0) among such manivalued logics, all those logics are to be found,
whose truth-lattices are distributive lattices of finite length. Of course,
it would be interesting a study of the semantics of manivalued logics
of a more general type.
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