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RINGS OF CONTINUOUS FUNCTIONS WITH VALUES

IN AN ARCHIMEDEAN ORDERED FIELD

G. DE MARCO *) 2014 R. G. WILSON **)

Introduction.

The purpose of this paper is to study the ring C(X, F) of all con-
tinuous functions on a topological space X with values in a proper
subfield F of the real number field R. The ring C(X ) [ = C(X, R)] of

all real-valued continuous functions on X has been extensively studied;
a standard reference to this work is the book [ G J ] . Furthermore, Pierce,
in his paper [P], laid the foundations of a theory of rings of integer-
valued functions C(X, Z).

It seems natural to study the rings intermediate to C(X) and

C(X, Z); if the study of the ring C(X, Z) gives some information about
the special properties of C(X) which depend on R being a field, a study
of the rings C(X, F) should bring to light the properties of C(X) which
depend on R being an order-complete field.

Our results can be summarized as follows: With regard to the

relationship between C(X, F) and the underlying topological space X,
C(X, F) behaves much like ~C(X, Z). On the other hand, the residue
class fields of C(X, F) are similar to those of C(X).

Many of the results in this paper are not surprising, however, an-
swering as they do a natural question, we think that they are worthy
of some study.
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1. Preliminaries - Structure spaces.

1.1. Let X be a topological space and let C(X, F) be the set of

all continuous functions on X with values in an archimedean ordered

field F. It is well-known that F is (canonically isomorphic to) a subfield
of R. We assume that F ~ R. The set C(X, F) has the natural structure
of a lattice ordered ring under pointwise lattice and algebraic operations.
In this paper we shall be concerned with some subrings of C(X, F),
namely: The subring C’~~X, F) of all bounded continuous functions on X
with values in F; the subring C*"~(X, F) : clFf [X ] is com-

pact}, and the subring C°(X, F) of all functions in C(X, F) such that
f[X] is finite. For simplicity we write C, C*, C** and Co when no

specification of the space X is required.
If V is clopen (open and closed) in X we write xv for the charac-

teristic function of V. Clearly and is an idempotent. Also if

F) is an idempotent the is clopen in X and e = xv .
A subset E c C(X, F) of idempotents such that L e = 1 is called a par-

eel

tition of unity into idempotents. Throughout this paper the term partition
unity will mean such a set.

1.2. LEMMA. For each prime ideal P of C’°, CO/P=F. Hence every
prime ideal of CO is maximal.

PROOF. Let F), then J[X ] _ { ql , ... qn } (qi E F, 
unless i = j). Let Vi=f-[qi], ei=XVi . Then {e1 , ... en } is a finite par-

n

tition of unity into idempotents and For exactly one k
i=l

(1~~~~), we have ekop. Hence, P(f)=P(ekqk)=qkP(ek)=qk, since

P(ek) =1, being a non-zero idempotent of the integral ~domain C01P.
If P is a prime ideal of one of the rings C, C*, then proofs

similar to those in [ Cp J ] , chapters 2, 5 and 14 show that P is ab-

solutely convex, that the residue class ring is totally ordered under the
quotient ordering and that the prime ideals containing P form a chain.

1.3. Denote by #, 9ll, ~*,Ð1t *, the prime and maximal
ideal spaces of the rings C, C*, C respectively. Proofs similar to those
in [DMO] show that Ð1t, are compact Hausdorff spaces
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and that the mapping X : 9E - M* which sends every maximal ideal
M of C into the unique maximal ideal of C* containing MnC* is a

homeomorphism. Furthermore, a maximal ideal of C* is of the form

M n C* (where M is a maximal ideal of C) if and only if M* does not
contain a unit of C. (Again see [DMO]).

LEMMA (a). Let M1 , M2 be distinct maximal ideals of C, then

there exists an idempotent e E C such that e E M1BM2 .

PROOF. Choose such that Let 

and let V = f ~[ (oc, oo)], Then e is an idempotent of C and it

is easily shown that e is a multiple of f in C, 1- e is a multiple of
1- f in C.

LEMMA (b). The map given by fl Co is

a homeomorphism.

PROOF. Clearly &#x26; is continuous and by lemma 1.3 (a), Xo is one-

to-one. Let it is easily seen that M° generates a proper ideal
I in C. If M is any maximal ideal of C containing I, 
Hence, Since f4l and MO are compact Hausdorff spaces,

Xo is a homeomorphism.

REMARK. In a similar way it can be shown that ÐK* and M’
are homeomorphic.

1.4. LEMMA. The space ÐK has a base of clopen sets.

PROOF. A base for the closed sets of ffll is given by the family
of sets If e is an idempotent of C, then V(e)
is clopen since By lemma 1.3 (a), the sets of the

form V(e) (where e is an idempotent of C) separate the points of M.
The result follows from the compactness of 

For any p E X , put F) : f ( p) = o } . Clearly Mp is a

maximal ideal of C(X, F) and F), F)
are maximal ideals of C* and C° respectively. These ideals are called
fixed maximal ideals.

THEOREM. The map 6:X2013&#x3E;9~ which sends every point p E X
into the fixed maximal ideal Mp is continuous and maps clopen subsets
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of X into clopen subsets of 8[X]. The mapping 8’ : C(6[X], F) --~ C(X,
F) given by 8’(g)=g 08 where g C(6[X], F)) is an isomorphism of
C(0[X], F) onto C(X, F). Furthermore, 0[X] is dense in 8 is one-

to-one if and only if C(X, F) separates the points of X and is a homeo-
morphism onto e~[X ] if and only if X is a To-space with a base of
clopen sets.

PROOF. All of these statements are either obvious or are already
known in slightly different contexts (e.g. [ P ] or [GJ]).

1.5. By the preceding theorem, if X is a T°-space with a base of
clopen sets, the subspaces of ffll, M* and of fixed maximal ideals
are homeomorphic to X. We shall identify X with these subspaces;
hence X is dense in 9ll* and 9ll° and the mappings X : 9H*
a,o : 9ll -&#x3E; 9ll° and Xo*: - M0 already defined, are homeomor-

phisms which preserve X.

LEMMA. Let X be a To-space with a base of clopen sets and let
T : X - Y be a continuous map on X into a compact totally disconnected

space Y. Then there is a continuous M0 - Y such that

t|X=t.
PROOF. Let F) - C"(X, F) be defined by 

(where geCq(Y, F)). Then cp is a ring homomorphism which induces a
continuous map + on the prime ideal space of CO(X, F) into the prime
ideal space of C°(Y, F) (~(P) = cp~[P] ). Hence, + is a map on 

=~) into §ll°(Y) which can be identified with Y since Y is compact
and totally disconnected. It is clear that ~ is the desired extension of T.

If X is a To-space with a base of clopen sets, is a totally
disconnected compactification of X. The preceding lemma shows that

9H is the largest totally disconnected compactification of X. It is easily
seen that 9H coincides with the space SX of ~[P] (theorem 1.5.2), hence,
9~ is homeomorphic to the maximal ideal space of the Boolean algebra

of all clopen subsets of X ([P], theorem 1.6.1). We shall here-
after write SX in place of OE.

1.6. THEOREM. Let X be a To-space with a base of clopen sets.
Then C(8X, F) = C ’*(X, F). Hence, SX is homeomorphic to ~~** (under
a homeomorphism which preserves X).
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PROOF. Map C(SX, F) into C(X, F) via the restriction f - f X,
where F). It is easily seen that this homomorphism is one-to-one
and by lemma 1.5, its range is’ all of Ck*(X, F). (If F), then

~clFg[X ] is a compact totally disconnected space).

REMARK. It is not difficult to show that if X is a To-space with
a base of clopen sets, then 8X is the smallest compactification of X in
which X is C**-embedded.

1.7. We now establish the relationship between 5X and 8X. First
we need a lemma.

LEMMA. Let X be a topological space. A subset Z c X is of the
form Z(f) for some /eC(X, F) if and only if Z is a countable inter-

section of clopen sets.

PROOF. If Z=Z()) for some feC(X, F), then Z= n 
neN

I f(x) C a~/n }, where ~c is some positive element of RBF.
Conversely, if Z = n Vn , where Vn is clopen for each n eN,

nEN

then assuming that the Vn are nested and putting Wn=VnBVn+1 , we can
define u to be on Wn , 1 on XBVl and 0 on Z. Clearly F).

THEOREM. Let X be a To-space with a base of clopen sets. The

following are equivalent:

1) 8x.

2) 5X is totally disconnected.

3) Any two disjoint zero sets in X are contained in disjoint
clopen sets.

4) Any zero set in X is a countable intersection of clopen sets.

5) The F) maps 9ER homeomorphically
onto m (where is the maximal ideal space of C(X)).

PROOF. 1) implies 2). Obvious.

2) implies 3). See [ G J ] , theorem 16.17.

3) implies 4). Let Z be a zero set of X, Z= Z( f ) say. Define
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f (x) ~ &#x3E; 1 /n }. Each Zn is a zero set disjoint from Z and
hence there exists a clopen set Vn such that Z c Vn and 
Then ZCnVnC U (XBZn) = Z-

n n

4) implies 5). This is clear since from lemma 1.7, every zero set is
an an F-zero set. (That is to say, a zero set of a function in C(X, F)).

5) implies 1). Obvious.

2. Residue class fields.

2.1. In this paragraph we investigate some properties of the resi-
due class fields of the rings C(X, F) and C*(X, F).

Firstly, observe that if M* is a maximal ideal of C*(=C*(X, F))
then C*/M* is an archimedean ordered field hence canonically embed-
dable in R.

LEMMA. Let M" be a maximal ideal of C*, and suppose that

Then and if then M* contains a
countable partition of unity.

PROOF. Suppose that If q, qas, then f-
since 

Consider two sequences (mi), (Pf) (oci , for all ieN), the first

strictly increasing the second strictly decreasing, both converging to a,
and such that al C f (x) C (31 for all Put Yi = f E" [ (ai , ocI+1) U ( ~3i+1, Di)],
and Thus { ei : } is a countable partition of unity.

Let qi , be such that and put gi =
Then gi c M* and then max

Hence if we define h2(X) =1 /gi(x) for each xevi,
h;(x)=0 for xovi, and It is clear that aeclRf[X].

THEOREM. Let M* be a maximal ideal of C*. The following are
equivalent:

1) C*/M* is a proper extension of F.

2) M* contains a countable partition of unity.

3) M* contains a unit of C.

4) C*/M* = R.
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PROOF. 1) implies 2). Lemma 2.1.

2) implies 3). Let I be a partition contained in M*. De-
fine u=Yi-’ei. Then u is a unit of C and 0 -M*(u)=M*( ~ 

i 

 1 /n. Hence M*(u) = o, that is to say 

3) implies 2). If u E M* and u is a unit of C, but 

The result follows from lemma 2.1.

2) implies 4). Let a be any real number, (qi) a sequence of ele-

ments of F converging to a, I a countable partition of unity
contained in M*. Put /= E qiei . Then fEC* and for each M*( f ) _

i

= M*( E qiei); hence M*( f ) = oc, since nclR{qi : i &#x3E; n }.
i2:N n

4) implies 1). Obvious.

2.2 LEMMA. Let P (P*) be a prime, non-maximal, ideal of C (C*).
Then C/P(C*/P*) contains infinitely small elements.

PROOF. Let M be the maximal ideal of C containing P, and let

ueMBP, For each neN, and
since u V 1 /n is a unit, being bounded away from 0.

Hence so for each n E N.

THEOREM. Let M be a maximal ideal of C. The following are
equivalent:

1) C/M=F.

2) maximal in Ck.

3) M contains no countable partition of unity.

4) M contains no partition of unity of non-measurable cardinal.

PROOF. 1) is equivalent to 2). C/M contains a canonical copy of
the ordered ring C*/P* and is the field of fractions of this copy. It follows
from lemma 2.2 that if P* is not maximal, then C*/P* contains infinitely
small elements.

2) implies 3). P* contains no countable partition of unity since it
contains no unit of C.
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3) implies 2) . If P* is not maximal, the maximal ideal M* of C

containing P* contains a unit of C (see 1.3), hence it also contains a

countable partition of unity E. It is clear that E c P*, hence E c M.

3) implies 4). Suppose that E is a partition of unity of non-measu-
rable cardinal, contained in M. Consider E as a topological space with
the discrete topology. Define 5; =,I Z : Z c E, Y_ It is easy to show

eeZ

that # is a free ultrafilter on E, and since E is realcompact, F is hyper-
real. Choose a countable subfamily of # with empty intersection,
{ Zi : i E N } . Then and U (EBZZ) = E. Thus V i = (E BZi) B U

i ii

(EBZi) is a countable partition of E and for each Clearly
{ L e: i E N } is a countable partition of unity contained in M.
eevi

4) implies 3). Obvious.

2.3. THEOREM. Let M be a maximal ideal of C such that C/M=
= K( ~ F). Then K is an in which F is algebraically closed. (We
identify F with the image of the constant functions).

PROOF. Suppose that u E K is algebraic over F, and let p(t) be its
minimum polynomial over F. If f E C is such that u=M(f) then 0=
=p(u)=M(p(f)), that is to say, But this implies that

Z( p( f )) ~ Q~, i.e. p(t) must have a root in F. Since p(t) is irreducible,
it follows that p(t)=t-q (for some Hence 

The fact that K is an n1-field can be shown by using the same
argument as in [ GJ ] , 13.7. and 13.8. However, the presence of

partitions of unity allows a considerably simpler argument. The theorem
will be a consequence of [ GJ ] , 13.8 and the following lemma.

LEMMA. L,et P a prime ideal contained in a maximal ideal M such
that C/M ~ F. Then if A, B are countable subsets of CjP, with A C B,
there exists such that A - u  B.

PROOF. Suppose that A and B are non-empty. By [GJ], 13.5, we
can find an increasing sequence ... and a decreasing sequence

... of elements of C such that for each and

I is a cofinal subset of A, and { P(gi) : I is a coinitial
subset of B. Let feN} I be a countable partition of unity contained
in P and let It is easy to show that u = P( f ) satisfies

i
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the required condition. If either A or B is empty, a simple modification
of the preceding argument shows that either B is not coinitial or A is

not cofinal.

REMARK. If M is a maximal ideal of C such that C/M ~ F,
then C/M ~ &#x3E; c. Furthermore in the special case F = Q, C/M contains
no copy of R.

3. F-realcompactness.

3.1. Let X be a To-space with a base of clopen sets. Let m
( = SX) be the maximal ideal space of C (=C(X, F)). Denote by vX
the subspace of 9H consisting of all those ideals M for which C/M = F;
vX is obviously a To-space with a base of clopen sets in which X is

dense and C(X, F)-embedded. Hence (C(X, F) = C(vX,. F) and every
ideal M of C(vX, F) for which C/M=F is fixed. We call a space

F-realcompact if every ideal M of C(X, F) for which C/M = F is fixed.

THEOREM. Let X be a To-space with a base of clopen sets. If X
is F-realcompact, then it is realcompact.

PROOF. Suppose that M’ is a real maximal ideal of C(X);
M’ n C(X, F) is a maximal ideal of C(X, F) with the property that

C(X, F)/(M’ n C(X, F)) = F. (Observe that this field is embedded in

C(X )/M’ as an ordered subring). Hence M’ n C(X, F)=MpnC(X, F).
It follows that M’ = Mp .

REMARK. Dr. Peter Nyikos has communicated to one of the

authors that the space considered in [ R ] is not F-realcompact. Hence
a space can be realcompact and have a base of clopen sets without being
F-realcompact. However, if X is zero-dimensional and realcompact, then
it is F-realcompact (see 1.7).

3.2. EXAMPLE. The space ~1 of [Gjl, 16M is a To-space with
a base of clopen sets whose dimension is 1. Hence is not totally
disconnected. That is to say, It is known from [D] and

[GJ] that A1 is dense and C-embedded in a space A such that ABA1 is

a copy of [0, 1 ] . Also, the quotient space Ao of A obtained by identi-
fying the points of ABA1 is zero dimensional. It is easy to see that
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and In fact Ao is the space obtained from
A by the method of theorem 1.4. ,(Ao= 0[A]). We show that A is

realcompact.

Let x be the restriction to A of the canonical projection of W*
[0, 1 ] onto W*; for let A’t=1t ~[ W(-~ -I-1 ) ] ; A’t is a clopen
subspace of A (hence C-embedded in A) homeomorphic to a subspace
of R2. Hence At is realcompact. Consider a real z-ultrafilter F on A;
if for each is cofinal in W*, then (from [GJ], 16M.4),

for each Hence {Z n X [o, is a filter

on X .[ 0, 1]. Hence # is fixed. If for some has an

upper bound t in W, then Z E Y 1 is a real z-ultrafilter on At
and so is fixed.
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