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COHERENT CONFIGURATIONS I

D. G. HIGMAN *)

In the theory of G-spaces (G a finite group) there arise certain
combinatorial configurations which we call coherent [ 6 ] . It is the

purpose of the present paper to lay the ground work for a systematic
study of this class of configurations in their own right. The first two
sections, containing generalities about graphs, incidence structures and
matrices, are included to establish our notation and to make the paper
self-contained. Coherent (and semi coherent) configurations are defined
in § 3 and the way which they arise in the theory of G-spaces is

indicated. Our main line of attack in studying these configurations is

through their semigroups of relations and centralizer rings, discussed
in §§ 4-6 together with the decomposition into orbits. The methods of
intersection matrices (cf. [5]) and coherent partitions are available for
coherent configurations as is shown in §§ 7 and 8. In § 9 we consider
the question of coarsening and refining given configurations and in

§ 10 we introduce a concept of primitivity and consider its relation to
conne~cte~dnes~s. Further work concerning extensions, automorphism
groups, and some classification theorems will be discussed in a second

paper.
Coherent configurations generalize the notion of association scheme

(cf. [2]) and so encompass, for example, the strongly regular graphs
of Bose [1]. Additional types of configurations, for example the sym-
metric block designs, are included as indicated at the end of § 6.

*) Indirizzo dell’A.: Dept. of Mathematics University of Michigan, Ann Arbor,
Michigan 48104, U.S.A.

Research supported in part by the National Science Foundation.
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1. Relations, graphs and incidence structures.

The sets X, Y, ... considered in this paper will all be assumed to

be finite. A relation from a set X to a set Y ,is ~a sub,set of X X Y;
we denote the totality of these by Rel (X, Y), simplifying the notation
to Rel X in case X = Y. The converse of fe Rel (X, Y) is the relation

x)l(x, } in Rel (Y, X). For xeX we put

and

Relations f e Rel (X, Y) and g E Rel (Y, Z) are composed according to
f g = { (x, to give f g E Rel (X, Z). The identity relation

is an identity for this composition ~sa we have a category, the category
of relations (between finite sets), which we denote by Rel.

We denote by Map (X, Y) the set of maps from X to Y, writing
Map X for Map (X, X), and regard the category Map of maps (between
finite sets) as a sub~category of Rel.

With f E Rel (X, Y) there is associated a graph Xf having the

disjoint union X + Y of X and Y as vertex set and f as edge set.

The left equivalence kernel Lt= U (ffU)n and right equivalence
n*o

kernel U of f E Rel ~(X, Y), f ~ ~, are equivalence relations
n&#x3E;0

in Rel X and Rel Y respectively, and We see that any two

of the conditions (i) X X, (ii) L f f = X X Y, and (iii) Rf= Y X Y,
imply the third; Xf is said to be connected if these three conditions
hold.

An incidence structure elf having Xf as its Levi graph (cf. [3]) is
obtained by taking X, Y and f respectively as the points, blocks and
flags.

Assume that X=Y. With fe REIX there is associ,ated a second

graph §/ having vertex set X and edge set f . The graph lsf is connected
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if the kernel Ef= U fn of f is equal to X X X. It is, of course, quite pos-
m&#x3E;0

sible that either one of the graphs Rt is connected while the other

is not, but we note that

( 1.1 ) If E f is an equivalence relation for some f in Rel X, then

connected if 3C/ is. 
,

2. Matrices.

The category MatK of matrices in K, where K is a coefficient

ring which we will choose to be commutative with identity element,
has as objects the finite sets X, Y, ... and as morphism the maps
X X Y ~ K. We write MatK (X, Y) for the totality of these and

compose MatK (X, Y) and +e MatK ( Y, Z) according to matrix

multiplication

to obtain MatK (X, Z). We write MatK X for MatK (X, X).
char

The maps Rel (X, Y) ~ MatK ’(X, Y), where char f, f e Rel (X, Y),
spt

is the characteristic function and ,spt cp, 9 c MatK (X, Y), is the

support of cp, are such that spt o ~char=1. Of course these maps are

not functorial, but, e.g., if use Map~(X, Y), IE Rel (X, Z) then

Given orderings of X and Y we represent 9 c MatK (X, Y) by the

matrix

We write B f for Bo if p= char f , IE Rel(X, Y), so that Jff f has adja-

cency matrix (0 0 ) and Yj has incidence matrix B f . In case X = Y,
j ft 0

B f is the adjacency matrix 
We see that for IE Rel,(X, Y), blocking B f according to L f and
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R f corresponds to full decompositions of B f under permutation equiva-
lence. In particular

(2.1 ) For f E Rel (X, Y), Xt is connected if and if B f is indecom-

posable under permutation equivalence.
If a E X and f E Rel (X, Y), we put

and

(2.2) Assume that XI is connected. Blocking the rows of B f
according to the and the columns according to the 

i=O, 1, ..., corresponds to transformation under permutation equiva-
lence of Bf to the form

where b,i is a l-rowed matrix, and for all i, each row of the block
bii and each column of the block bi+li contains an 

We now consider fe Rel X such that E f is an equivalence relation.
We see that a reduction of B f under permutation similarity is automati-
cally ’a -decomposition and that blocking B f according to E f corresponds
to full reduction of B f under permutation similarity. In particular

(2.3) If f E Rel X is such that Ef is an equivalence relation, then
the following statements are equivalent.

a) gt is connected.

b) B f is irreducible under permutation similarity, and

c) B f is indecomposable under permutation similarity.
Given f c Rel X land x, yeX we define: pf(x, y) = the least integer
such that (x, y) E f L, or 00 if no such i exists.
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For i &#x3E;_ 0, the f-circle with center x and radius i is

The diameter of the graph gf f is defined to be

(2.4) Assume is connected. Then blocking Bf according
to the circles i =1, 2, ..., for given xeX corresponds to trans-

formations under permutation similarity of Bt to the form

in which C12 is a l-rowed matrix, each block cii is square, and each
column of the block cii+l contains an entry ~ 0. The number m of
blocks on the main disgonal is one greater than the diameter 

3. Coherent and semi coherent configurations.

We think of configurations consisting of finite collections of disjoint
sets together with finite collections of relations between them, and
visualize the relations in terms of the associated graphs and incidence
structures as described in § 2. By an obvious device we can reduce the
number of sets to one, so a sufficiently general definition of combina-
torial conf iguration is a pair ~(X, 0) consisting of a set X and a set

Q of relations on X. A configuration go= (Xo , Oo) will be called a

subconfiguration of g =,(X, 8), written go  g, if Xo c X and 80ç 8 1 Xo ,
where O n (Xo X Xo) 1. The full subconfiguration on

xocx is (Xo, 8 Xo).
We now single out the class of configurations of particlar interest

to us here. Given a configuration (X, O) and f, g, we define
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an ( f , g, h)-triangle to be an ordered triple (x, y, z) such that (x, y) E f ,
(y, z) E g and (x, z)eh. We call (X, O) coherent if

1) O is a partition of X X X,

2) the identity relation Ix is a union of members of O,

3) f E D implies and

4) for given f , g, and (x, the number of ( f , g, h)-
triangles (x y, z) is independent of the choice of (x, z); we denote
thins number by a fgh .

Our motivation for this definition comes from almost obvious
fact that

(3.1 ) If X is a G-space for some group G, and if OG(X ) is

the set of G-orbits in X X X (under componentwise action), then

(X, OG(X)) is coherent.

On the one hand this provides us with a rich source of coherent
configurations, and on the other with a bridge between group theory
and combinatorics. A coherent configuration obtained from the action
of a group G on a set X as in (2.1 ) will be said to be realized by G,
or by the action of G on X, or by the G-space X.

We carry over much of the terminology of the theory of G-spaces
(cf. [6]) to general combinatorial configurations t3=(X, 8) The number

I will be called the degree of t3. The relations in 0 will be
referred to as the orbital relations of g and their number r= ~ I 81 I as

the rank of g. The mapping is called the pairing on
g. The numbers afgh of 4) will be called the intersection numbers of
g. Association schemes (cf. [2]) are just those coherent configurations
with Ix E O and trivial pairing.

Assume that g is coherent. For xeX, the set { f (x) ~ f E O, f (x) ~ ~ }
is a partition of X. Moreover

(3.2) For f , g, and (x, 

Hence
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For some purposes it i,s convenient to replace condition 4) of the
definition of coherent configuration by

4’) Given f , g, and (xi , i =1, 2, there exists an

( f , g, h)-triangle (xl , yi , zi) if and only if there exists an ( f , g, h)-

triangle (X2, Y2, Z2); we write or 0 according as such triangles
exist or not.

Of course 4) implies 4’), with or according as

or We call g semi coherent if 1), 2), 3), and 4’) are
satisfied.

~4. The semigroup of relations and the centralizer ring.

Let g=(X, D) be a semicoherent configuration. Then the set

R = R( g) consisting of 0 and all unions of members of O is a sub-
semigroup of Rel X under composition. In fact, given 1), a necessary
and sufficient condition for 4’) is that R is closed under composition.
We refer to R as the semigroup of relations of g . The elements of R
we refer as g-relations; in case g is realized by a group, these are

the G-relations [ 7 ] .
Regarding Rel X as a vector space over F2 with respect to symme~

tric difference, so that R is the subspace spanned by D, the product
off and g in D is

If the pairing f H fU on g is trivial, then R is commutative.

From now on in this section we assume that g is coherent, and
choose a cofficient ring K, commutative with 1. The set C = CK{ g ) of
all qE MatK X which are constant on f for every lEe is a free K-sub-
module of MatK X with the set I as basis. We have

f or f , that

so that C is a K-subalgebra of MatK X. We refer to C as the centralizer
ring of g over K; if g is realized by the action of a group G on the
set X, then C is the centralizer ring of the G-space X. If the pairing
on g is trivial, then every is symmetric, hence
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(4.1 ) If the pairing g is trivial, then C is commutative. Since C
is closed under the transpose map.

(4.2) If K is a field of characteristic 0, then CK(g ) is semisimple.

Taking K to be the complex number field C, we have that
m

(4.3) r = E e12 where el , ..., em are the structure constants of
;=i

Cc(g), i.e., the degrees of the inequivalent irreducible representations
of Cc(0).

We refer to the ei as the structure constants of g.
Now suppose that X is a set #0 and em is a subset of MatzX

such that

a) cp(x, y)e(0, 1’} 1 for all cpecm and all x, 

b) £ y)=1 for all x, yeX,
c) char Ix is a sum members of c%,
d) qEB implies and

e) the Z-submodule B of Matz X spanned by B is a subalgebra.
Then it is not difficult to see that g = (X, .9), where 
is a coherent configuration with C2(g)=B.

5. Orbits.

Let g=~(X, 8) be a semicoherent configuration. Then

where the Ei are uniquely determined elements of O. We have

dom Ei=range Ei , and denoting thi,s set by Xi , E; induces the identity
relation on Xi . The Xi , which we refer to as orbits of g, or the g-orbits,
constitute a partition of X; in case g is realized by a group, the Xi
are the G-orbits in X. We call g transitive if ~ ~- ~ , i.e., if Ix E O. The
degree of X = is defined to be X I, and

We now observe that
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(5.2) For fee, dam Xi and range f = X; for some i, j.

PROOF. We have for some i, and then 
If xe dom f , there exists an element zeX such that (x, z)ef. There
must exist an f , f)-triangle (x, y, z) and hence xe dom E1= Xi ,
That is 

Again, if xe dom f and (x, z)Ef, then (x, z, x) is an ( f , fU, Ei)-

triangle, so affUEi =1. Hence if yEXi, there must exist an (f, fu, Ei)-
triangle (y, w, y), and hence ye ,dom f. Thus dom f = X i , and range f =

for some j.
We put and range f = X; }, so that { Oi’ ~ I is

a partition of O by (5.2). Note that if f , g, then implies
that geeik and heÐik for some i, j, k. The number Ðii I
will be called the rank of the pair Xi , X; ; in case g is realized

by a group G, ri;=rankG (Xi , Xi) (cf. [6]). We have

It is clear that full subconfiguration on the union of any nonempty
set of orbits of a (semi) coherent configuration g is (semi) coherent.
In particular, the full subconfiguration gi on Xi is (semi) coherent of
degree ni and rank rii , and is transitive.

For the rest of this section we assume that g is coherent.
For 

and if we put I f(x) 1, then

In particular, n f is independent of the choice of so
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Moreover

The numbers n f , fEO are called the subdegrees of g.
If f , g, and there exi.sts xe dom f n dom h, then .

afghnh = the number of ( f , g, h)-triangles (x, y, z)
= the number of ~(h, gu, f )-triangles (x, z, y)
=ahgUfnf.

In particular

Two further relations for the intersection numbers are

and

and
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6. Decomposition of the relation semigroup and centralizer ring.

Assume that g is semi coherent. The semigroup R of relations

decomposes into a disjoint union

where Rii is the Frsubs.pace of R spanned by We have

Furthemore Rzi is isomorphic with the semigroup of relations of 0~.
Now assume that C is coherent. Taking a commutative coefficient

ring K with identity element, we obtain a similar decomposition of the
centralizer ring by putting I spt X X; } . Then
Cij is a K-submodule of C with K-basis and

as a K-module. We have Cij Ch k = 0 and Ctt is

isomorphic with the centralizer ring of gi.
Taking an ordering of X consistent with the partition } and

associating with each tpec the matrix we see that

for cp E Ci’, Bo has the form

From (5.12) and (5.13) it f ollows that if f , then

Bcp has row sum n f and column sum ntu . In particular,

(6.1 ) Each Cii has a linear representation.

From (4.3) and (6.1 ) we see that

(6.2) I f rii  4, then Cii is commutative.
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(If g is realized by a group, then Czi is commutative for rii=5 too.)
We now consider the case in which g has two orbits, i.e., t = 2,

so that, in terms of matrices, the centralize ring C=Cc(g) is a semi-

simple subalgebra of Can and

and C~ are semisimple, and we regard C12 as a module over the semi-
simple ring Then we see without difficulty that the decom-
position .

of Ci‘ into simple two-sided ideals, and the decomposition

of el2 into simple submodules over can be so arranged that
C«2 is faithful for 1  a  s. Hence we see that the simple
components of C are

where together with Cii, i =1, 2.
This means that

( 6.3 ) If t=2, then the structure constants eia., 1 for
gi, i =1, 2, can be so numbered that the structure constants for g are
eta. + e2a., s 1  a  s, together with eix, s -i-1  a  mi , i =1, 2, and then

Thus, for example, if rli = 2 and r22 = 3, then by (6.2) and (6.3),
r12  2.

We have remarked in § 3 that the transitive configuration with
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trivial pairing are just the association schemes. In general, if the pairing
on g is trivial, g coherent then g’ is an association scheme, and if

we put then I i,s a concordant

family of graphs in the sense of Bose and Mesner [2], and Of 
is a partially balanced incomplete block design.

At this point we look briefly at the types of configurations arising
for some special values of r.

Let g = (X, 8) be a coherent configuration of degree n and rank
r, with t orbits Xl , X2 , ..., Xt .

1) The extreme possibilities for r are r =1 and If r =1
then n =1 so this case is included in the case r = n2. If r = n2, then O
is the totality of one-element subsets of X X X, the orbits are the one-
element subsets of X, so that t = n. R is the full semigroup Rel X of
relations on X and C is the full matrix ring Matx X. In this case we
refer to g as a trivial configuration. It is realized by any group G
acting trivially on X.

2) There is just one coherent configuration of rank 2 on a

given set 1 X I, )Xj~2. It is realized by any group G acting doubly
transitively on X. Here and C , K (D K.

3) If r=3, then s~a I x E O, and 0 = { I x , f , g } . If the

pairing is trivial, so that and g= gU, then the graphs §/ and ~g
are a complementary pair of strongly regular graphs. Conversely, given
a strongly regular graph with vertex set X and edge set f , the confi-
guration (X, O),

is coherent of rank 3. Any rank 3 permutation group of even order
realizes a configuration of this type, while the rank 3 groups of odd
order realize rank 3 configurations with non trivial pairing.

4) If r:58, then t  2. If r7 and t = 2 then r12=1 so that

the two orbits are joined together in a trivial way. The first interesting
case in which t = 2 is r=8 with m=r22=n2==2. If we write 0~2 = { f , g} }
and and g = g n (X i X X2) then and elf are a

complementary pair of (possibly degenerate) blanced incomplete block
designs which are symmetric if and only if ni = n2 .
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7. Intersection matrices.

We consider once more a coherent configuration 0 =(X, O),
maintaining the notation of the preceding two sections. For purposes
of computation we take an ordering of X consistent with the decom-
potision into orbits, and a numbering of the elements of each 

such that

where, of course, the pairing ~(i) : a - a’ depends on i. We write

ni=1 Xi I and so that

and

By (7.1) and (5.6),

(This accounts for all the non zero intersection numbers. The arrange-
ment of subscripts is because of our ultimate interest in the regular
representation of C.)

The matrix B~ has the form
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and

The following properties of the Mf are i-mmediate.

Mf has row sum na and column sum na .

where J has all entries 1.
a

Conversely, it is not difficult to see that a set

of (0, 1 )-matrices satisfying (7.6) through (7.9), with the coefficients
in (7.6) nonnegative rational integers, is associated with a coherent

configuration.
Let X;) and, using the notation of § 1, put

0 mii
Then giia has adjacency matrix m or Maii according as or

i=i. 
- ( m a 11 0

The regular representation of C is the isomorphism of C onto a
subalgebra C of MatK Q such that for 
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In terms of matrices, Bij maps onto Bx of the form

where the blank entries are all zero,

and

We refer to the matrices as the intersection matrices for g.
If we put

then the restriction of the regular representation of C to Ci’ gives a

homomorphism

which is the regular representation of Cii in case and is bijec-
tive in case k = i or k = j.

Now we summarize the properties of intersection numbers in terms
of our present notation.

According to (5.10) and (5.11)
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that is

By (5.4) and (5.5)

By (3.3)

By (2.8)

From ( 7 .12 ) and ( 7 .15 ) we get

and in particular nik is a le f t eigenvector o f with eigenvalue 
For convenience of reference we note explicitly certain of the sim-

plifications in notation which can be made in case g is transitive. Here

we drop the superscripts, writing
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we drop the superscripts, writing O = { f 1 , f 2 , ..., fr) } with f i = Ix and
f ~~ = f a- , and so that

We write Ba for Bfa and Ma for the corresponding intersection matrix,
so that

and

where We have

and

i.e.,
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In particular, since mp = mo, ,

Under the regular representation, B(1. maps onto Ma so

(7.27) If F(t)eC[t] is such that F(M(1.)=O, and if 0 is a root of
F(t) of multiplicity m, then

is a rational integer.
In fact, 11e is the multiplicity of 0 as an eigenvalue of B~ .

8. Coherent partitions.

In this section g = (X, O) denotes a coherent configuration. We
refer to a pair (x, y) E f as an f-edge. A partition 9 of X is coherent if,
for f E Q, S, and the number of ledges (x, y) with yeT is
independent of the choice of This number is

In particular, 9 is coherent if and only if each block of each matrix
Bp , cpEC, when blocked according to 9, has constant row (and column)
sum.

Let 9 be a coherent partition of X and let See. 
for some i, and if and y E S, then the number of Ei-edges from
x to S, namely 1, is equal to the number from y to S. Hence yEXi Z and

In particular I is a partition of Xi and is clearly
coherent for g i.

The following simple fact is useful.

(8.1 ) Let 9 be a coherent partition of X, and, for 9 e C, S, 
and XES, put



20

Then - qpgp is a K-algebra homomorphism of C onto a subalgebra
C~ o f 

PROOF. is well-defined because of the coherence of ~, and 
is clearly K-linear. Take cp, S, and then

Hence proving (7.1 ).
The matrix of is obtained from Bcp by blocking according to #

and replacing each block by its row sum.
Certain coherent partitions are always available, namely, choose

t

and We know is a partition
7=1

of X. For /e9 and g, the number of f -edges from xEg(Xk) to
h(xk) is 

’

which is independent of the choice of x E g(xk). Hence gk is coherent, and
we see that in terms of matrices in the notation of § 7, maps

onto
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that is, if Pi is the permutation matrix of the pairing ~(i) : a ~ oc’, then

From (8.2) we see that the statements (2.1 ) through (2.4) con-

cerning connectedness, etc., as applied to the graph hold with the
intersection matrix M’j’ i in place of Mii. (Here Ma plays the role of the
matrix B f of § 2.) More precisely,

(8.3) If j, then is connected if and only if Ma is indecom-

posable under permutation equivalence.

(8.4) Assuming that is connected for some then (2.2) holds
with M’j’ i in place of 

(8.5) The following are equivalent:
a) is connected,
b) is irreducible under permutation similarity, and

c) is indecomposable under permutation similarity.

(8.6) Assume that ~x is connected. Then (2.4) holds with in

place of 

9. Automorphisms, refinements and coarsenings.

An automorphism of a configuration g = (X, c9) is a permutation of
the elments of X which permutes the elements of D under component-
wise action on X X X . An automorphism is strict if the permutation in-
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duced on D is trivial. The strict automorphisms of g constitute a nor-

mal subgroup Aut * g of the group Aut g of all automorphisms of g .
We say that a group G is represented in the (strict) automorphism

group of g if G acts on X in such a way that the permutations of X
associated with the elements of G are (strict) automorphisms of g, or,
what is the same thing, if there is a homomorphism of G into (Aut * g )
Aut g. The configuration g is realized by the action of a group G on X,
i.e., O = OG(X), if and only if G is represented in the strict automorphism
group of g and rank G X=r (where r is the rank of g ).

Suppose given configurations O1) and g 2 = (X, 02) such that
81 and (92 are partitions of X X X. We call gi a refinement of g2 if

81 is a refinement of 82; if in addition, gi is (,semi) coherent, we say
that gl is a (semi) coherent refinement of g2 . It is clear that

(9.1 ) If g 1 is a coherent refinement of a coherent configuration
g, the the orbits of g constitute a coherent partition of g (in the sense
o f § 8).

An immediate but useful remark is studying automorphism groups
of configurations is

(9.2) It a group G is represented in the strict automorphism group
of a configuration g= (X, 8), then the configuration (X, OG(X)) is a

coherent refinement of g. In particular, if g is coherent, then the G-orbits
in X constitute a coherent partition of X.

If gi is a refinement of g2 , then 92 will be called a coarsening of
B]1 ; if, in addition, 02 is (semi) coherent it will be called a (semi) cohe-
rent coarsening of g 1.

(9.3) If g is a transitive coherent configuration such that its cen-

tralizer ring Cz (g ) is commutative, then gl = (X, 81), where O1=
coherent coarsening of t3.

The proof of (9.3) is a straightforward application of the conditions
a) through e) given at the end of § 4, together with the fact that the
assumed commutativity and (3.3) imply that afuguhu=afgh for f, g, h E O.
We can replace coherent by semi coherent in (9.3) if we assume commu-
tativity of R(g) instead of Cz(g).

As a sort of dual to (9.2) we have
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(9.4) Let G be represented in the automorphism group of a tran-
sitive coherent configuration g=(X, 0). Then O1), where
(9i={ I U I coherent coarsening of g .

,7eG

The proof is similar to that of (9.3), using the fact that for
C1E Aut g, and f , g, Coherent can be replaced by
semi coherent in (9.4).

10. Prbmitivity and connectedness.

In this section g = (X, O) denotes a semi coherent configuration.
We call g primitive if the only equivalence relations in R are Ix and
X X X; this implies that g is transitive. We call g imprimitive if it is

transitive and not primitive. These definitions are consistent with the

meaning of these terms in the theory of G-spaces in case g is realized

by a group.

( 10.1 ) If g is coherent and transitive, then for f E O, the kernel

El of f is an equivalence relation.

PROOF. Since R is closed under union and composition, E f is in
R. Hence ... -~- f n , so I is independent of
xeX. If yeEf(x), then Ef(y)g;Et(x) and hence E f(y) = E f(x). So E f is

symmetric and hence an equivalence relation.

( 10.2) If g is coherent, then g is primitive if and only if the

graphs ~ f , are all connected.

PROOF. Assume that g is primitive and take Then

E f ~ Ix so Ef=X X X which means that Ot f is connected. On the other

hand, suppose that E is an equivalence relation in R and assume that
E ~ Ix . Then ... +fm with /ïEÐ and, say, Then

so that is connected, X X 

Let E be an equivalence relation on X and let x : X - X/E be
the natural map. For IE Rel X put I/E=’1tutrc, so that f /E E Rel X/E.

(10.3) I f g = (X, O) is semicoherent and transitive, and if E is an
equivalence relation in R(g ), then g /E = (X /E, D/E), where O/E =

semicoherent and transitive.



24

PROOF. To show that g/E is semi coherent we verify the condi-
tions 1), 2), 3) and 4’) of § 4.

1) If (S, T)eX/E X X/E, take and yeT. Then (x, y)ef
for some fe(9, so (S, r)~//B. Suppose that f, g~9.
Then so f c EgE (since Hence EfEçE2gE2==.EgE,
and similarly so that E f E = EgE and hence flE = glE. Hence
O/E is a partition of X/E X X/E and 1) holds.

2) Since g is transitive, Ix E O and hence 

3) so 3) holds.

4’) Let then R/E is the F2-subspace of
Rel (X/E) spanned by O/E. To verify 4’) it suffices to show that R/E
is closed under composition. If f, geR, then

which is in R/E as required.

Since g/E is transitive.
In case g is realized by a G-space X, so that then a

necessary and sufficient condition for the imprimitivity of g in the sense
defined here is that X be an imprimitive G-space. In this case g/E
(as well as g ) is coherent since O/E= OG(X/E).

( 10.4) Let (9t), 2, be semi coherent and let

f E Rel (Xl , X2), such that fURlfçR2 and fR2fuçRI, where
Then f induces an isomorphism of g 1/L f onto (j2IRf.

PROOF. Let 1CL: Xi and TCR : X2 --~ X21Rt be the natural
maps. By the Fundamental Theorem on Relations,

is a bijection. If g E 81, then
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Hence and the reverse inequality holds similarly.

(10.4) Applies, for example, if gi and g2 are the full subconfigu-
rations on orbits Xi and X2 of a semi coherent configuration g and

feR12- .

As a corollary to (10.4) we remark

( 10.5) Let t3l and g x and f be as in (10.4) and assume that g ~ is

primitive and 92 is transitive. Then either Xf f is connected or f induces
an isomorphism of gi onto g2/Rf .

PROOF. Since t3i 1 is primitive, ether Lf=X X X or L f = I x . In the
first case, ~f is connected since 02 is transitive. In the second case f
induces an isomorphism of gi onto g2/R f by (10.4).
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