RENDICONTI

del
 SEMINARIO MATEMATICO della Università di Padova

L. Fuchs
 F. Loonstra
 On direct decompositions of torsion-free abelian groups of finite rank

Rendiconti del Seminario Matematico della Università di Padova, tome 44 (1970), p. 175-183
http://www.numdam.org/item?id=RSMUP_1970__44__175_0
© Rendiconti del Seminario Matematico della Università di Padova, 1970, tous droits réservés.

L'accès aux archives de la revue «Rendiconti del Seminario Matematico della Università di Padova » (http://rendiconti.math.unipd.it/) implique l'accord avec les conditions générales d'utilisation (http://www.numdam.org/conditions). Toute utilisation commerciale ou impression systématique est constitutive d'une infraction pénale. Toute copie ou impression de ce fichier doit contenir la présente mention de copyright.

Numdam

Article numérisé dans le cadre du programme Numérisation de documents anciens mathématiques http://www.numdam.org/

ON DIRECT DECOMPOSITIONS OF TORSION-FREE ABELIAN GROUPS OF FINITE RANK

L. Fuchs and F. Loonstra *)

1. In his book [5], I. Kaplansky asked: if $G \oplus G$ and $H \oplus H$ are isomorphic, are G and H isomorphic? B. Jónsson [4] has given an example of two torsion-free indecomposable abelian groups ${ }^{1}$) G and H of rank 2 which are not isomorphic, but their direct squares are isomorphic. Puzzled by this example, we have investigated the direct powers of torsion-free indecomposable groups, and have found that to every integer $m \geqq 2$, there exist two indecomposable groups, G and H, of rank 2 , such that the direct sum of n copies of G is isomorphic to the direct sum of n copies of H exactly if m divides n (Theorem 1). Moreover, we can choose G such that the direct sum of m copies of G decomposes into the direct sum of m pairwise non-isomorphic groups (Theorem 2) ${ }^{2}$).

Any two direct decompositions of a torsion-free group of rank $\leqq 2$ are isomorphic: in fact, the group is either indecomposable or completely decomposable ${ }^{3}$). However, it is an open problem whether or not a torsion-free group of rank $m \geqq 3$ can have infinitely many, pairwise non-isomorphic direct decompositions. We make a step towards the solution in our Theorem 3 which asserts that to every $m \geqq 3$ and every

[^0]large t there is a torsion-free group of rank m which has at least t non-isomorphic direct decompositions. This yields a negative solution to Problem 15 in Fuchs [3] ${ }^{4}$).
2. We start off with the construction of groups needed in the proofs.

Let $A_{i}(i=1, \ldots, m)$ be isomorphic groups of rank 1 , and $B_{i}(i=$ $=1, \ldots, m)$ isomorphic groups of rank 1 such that

$$
\begin{equation*}
\operatorname{Hom}\left(A_{i}, B_{i}\right)=0=\operatorname{Hom}\left(B_{i}, A_{i}\right) \tag{1}
\end{equation*}
$$

and for their endomorphism rings ${ }^{5}$)

$$
\begin{equation*}
\text { End } A_{i} \cong Z \cong \text { End } B_{i} \tag{2}
\end{equation*}
$$

holds. For instance, we can choose two disjoint, infinite sets of primes, say P_{1} and P_{2}, and define A_{i} as a subgroup of the rational vector space with basis a_{i}, generated by $p_{1}^{-1} a_{i}$ for all $p_{1} \in P_{1}$:

$$
A_{i}=\left\langle p_{1}^{-1} a_{i} \mid p_{1} \in P_{1}\right\rangle
$$

and similarly,

$$
B_{i}=\left\langle p_{2}^{-1} b_{i} \mid p_{2} \in P_{2}\right\rangle
$$

for $i=1, \ldots, m$. In view of (2), we can choose elements $a_{i} \in A_{i}$ and $b_{i} \in B_{i}$ such that a_{1}, \ldots, a_{m} and b_{1}, \ldots, b_{m} correspond to each other under isomorphisms of the A_{i} and the B_{i}, respectively, and $p \nmid a_{i}$, $p \nmid b_{i}$ for some prime p (which will be suitably chosen later on). Then the groups

$$
\begin{equation*}
X_{i}=\left\langle A_{i} \oplus B_{i}, p^{-1}\left(a_{i}+b_{i}\right)\right\rangle \quad \text { for } i=1, \ldots, m \tag{3}
\end{equation*}
$$

are isomorphic among themselves, and as standard arguments show, they are indecomposable.

[^1]Let $C_{i} \cong A_{i}(i=1, \ldots, m)$ and $D_{i} \cong B_{i}(i=1, \ldots, m)$ be other sets of groups, and let $c_{i} \in C_{i}, d_{i} \in D_{i}$ correspond to a_{i}, b_{i} under some isomorphisms. Then for any choice of $k_{i}=1, \ldots, p-1$, we can form the groups

$$
\begin{equation*}
Y_{i}=\left\langle C_{i} \oplus D_{i}, p^{-1}\left(c_{i}+k_{i} d_{i}\right)\right\rangle \quad \text { for } i=1, \ldots, m \tag{4}
\end{equation*}
$$

These are again indecomposable. All X_{i}, Y_{i} are of rank 2.
Assume there is an isomorphism

$$
\varphi: X^{*}=X_{1} \oplus \ldots \oplus X_{m} \rightarrow Y^{*}=Y_{1} \oplus \ldots \oplus Y_{m}
$$

From (1) we conclude that $A=A_{1} \oplus \ldots \oplus A_{m}$ and $B=B_{1} \oplus \ldots \oplus B_{m}$ are fully invariant subgroups of X^{*}, thus φ must map A onto $C=C_{1} \oplus \ldots$ $\oplus C_{m}$ and B onto $D=D_{1} \oplus \ldots \oplus D_{m}$:

$$
\begin{equation*}
\varphi: a_{i} \mapsto \sum_{j=1}^{m} \alpha_{i j} c_{j} \text { and } b_{i} \mapsto \sum_{j=1}^{m} \beta_{i j} d_{j} \tag{5}
\end{equation*}
$$

where owing to (2) the $\alpha_{i j}, \beta_{i j}$ are integers such that the matrices $\left\|\alpha_{i j}\right\|,\left\|\beta_{i j}\right\|$ are invertible, i.e. the determinants

$$
\begin{equation*}
\operatorname{det}\left(\alpha_{i j}\right)= \pm 1, \quad \operatorname{det}\left(\beta_{i j}\right)= \pm 1 \tag{6}
\end{equation*}
$$

Notice that, for every i,

$$
\begin{equation*}
\varphi: a_{i}+b_{i} \mapsto \sum_{j=1}^{m} \alpha_{i j}\left(c_{j}+k_{j} d_{j}\right)+\sum_{j=1}^{m}\left(\beta_{i j}-k_{j} \alpha_{i j}\right) d_{j} \tag{7}
\end{equation*}
$$

An isomorphism must map an element divisible by p upon an element of the same sort, thus from the independence of the d_{i} we obtain

$$
\begin{equation*}
\beta_{i j}-k_{j} \alpha_{i j} \equiv 0(\bmod p) \tag{8}
\end{equation*}
$$

for all i and j. From (6) and (8) it follows that

$$
\begin{equation*}
k_{1} \ldots k_{m} \equiv \pm 1(\bmod p) \tag{9}
\end{equation*}
$$

Let us observe that (6) and (8) together guarantee that (5) and (7) yield an isomorphism between X^{*} and Y^{*}, since (6) implies that (5) induces an isomorphism between $A \oplus B$ and $C \oplus D$, while (8) implies, because of (7) and (6), that all $a_{i}+b_{i}$ are divisible by p if and only
if all the $c_{j}+k_{j} d_{j}$ are divisible by p.
3. Now we are ready to prove:

Theorem 1. Given any integer $m \geqq 2$, there exist two torsion-free indecomposable groups X and Y, of rank 2 such that

$$
X \oplus \ldots \oplus X \cong Y \ldots \oplus \ldots \oplus Y(n \text { summands })
$$

if and only if

$$
n \equiv 0(\bmod m) .
$$

We choose X as in (3) and Y as in (4) with $k_{1}=\ldots=k_{m}=k$ in order to have isomorphic groups Y_{i}. Our goal is to assure that the direct sums of m copies of X and Y, respectively, are isomorphic, but the same fails to hold for a smaller number of copies. In view of (9), this means

$$
\begin{equation*}
k^{m} \equiv-1(\bmod p), \tag{10}
\end{equation*}
$$

but

$$
\begin{equation*}
k^{n} \equiv \pm 1(\bmod p) \text { for } n=1, \ldots, m-1 . \tag{11}
\end{equation*}
$$

(We dropped the possibility $k^{m} \equiv 1$, because this can occur in the presence of (11) only for odd m). In order to get a solution for (10) and (11), let us choose the prime p so as to satisfy

$$
p \equiv 1(\bmod 2 m) ;
$$

by Dirichlet's theorem on primes in arithmetic progressions, such a p does exist. If l is a primitive root $\bmod p$, then set $k=l^{\frac{p-1}{2 m}}$; it is easily seen that both (10) and (11) hold.

Next we show $\alpha_{i j}$ and $\beta_{i j}$ can be chosen so as to satisfy (6) and (8) with $k_{i}=k$ as chosen above. Let x satisfy $k x \equiv 1(\bmod p)$ and choose, for instance, the lower triangular $m \times m$-matrix

$$
\left\|\alpha_{i j}\right\|=\left\|\begin{array}{ccccccc}
1 & & & & & & \\
x & 1 & & & & & \\
0 & x & 1 & & & & \\
x & 1 & x & 1 & & & \\
0 & x & 1 & x & 1 & & \\
& & & & . & & \\
. & . & . & . & . & \\
& & & & & . & \\
. & . & . & . & . & 1 & \\
. & . & . & . & . & x & -1
\end{array}\right\|
$$

where in the main diagonal we have 1's except for the last entry and, below the diagonal, we have alternately x and 0 in the first column, and x and 1 in the other columns. Then $\operatorname{det}\left(\alpha_{i j}\right)=-1$. In accordance with (8), we multiply $\left\|\alpha_{i j}\right\|$ by k and from each entry we subtract a multiple of p to get a matrix $\left\|\beta_{i j}\right\|$ with determinant +1 :
which is obtained from $\left\|\alpha_{i j}\right\|$ by replacing 1 by k and x by 1 throughout and by putting $y=(-1)^{m+1}\left(k^{m}+1\right)$ in the upper right corner. Consequently, we can choose $\alpha_{i j}, \beta_{i j}$ and k such that $\operatorname{det}\left(\alpha_{i j}\right)=-1$, $\operatorname{det}\left(\beta_{i j}\right)=1$ and $\beta_{i j}-k \alpha_{i j} \equiv 0(\bmod p)$. We conclude that the direct sum of m copies of X is isomorphic to the direct sum of m copies of Y, while (11) ensures that the same fails to hold for n copies if n is smaller than m, and hence if it is not divisible by m. This completes the proof of the theorem.

It is worth while noticing that our method yields a somewhat
better result for odd integres m. Namely, to any odd m and any integer t, there exist t groups of rank 2 such that any two of them behave like X and Y in Theorem 1 (in this case we replace p by a product of primes). For even integers m we could construct t non-isomorphic groups such that the direct sums of m copies are isomorphic (but m is not necessarily the smallest number with this property).
4. Let us point out that for the direct sum of m copies of X in the last theorem we might have a completely different sort of decomposition:

Theorem 2. Given an integer $m \geqq 2$, there exist pairwise nonisomorphic torsion-free indecomposable groups X, Y_{1}, \ldots, Y_{m} of rank 2 such that

$$
X \oplus \ldots \oplus X \cong Y_{1} \oplus \ldots \oplus Y_{m}(m \text { summands })
$$

but $X \oplus \ldots \oplus X$ (n summands) is not isomorphic to the direct sum of n groups

$$
Y_{i_{1}}, \ldots, Y_{i_{n}} \text { with } 1 \leqq i_{1}<\ldots<i_{n} \leqq m \text { and } n<m
$$

Choose $X \cong X_{i}$ in (3) and the Y_{i} as in (4). In this case we choose incongruent k_{i} so as to satisfy

$$
\begin{equation*}
k_{1} \ldots k_{m} \equiv-1(\bmod p) \tag{12}
\end{equation*}
$$

but

$$
\begin{equation*}
k_{i_{1}} \ldots k_{i_{n}} \equiv \pm 1(\bmod p) \quad \text { for } 1 \leqq n<m \tag{13}
\end{equation*}
$$

For instance, if we let $k_{1}=k, k_{2}=k^{3}, \ldots, k_{m}=k^{3^{m-1}}$ for a k satisfying

$$
k^{\frac{1}{2}\left(3^{m}-1\right)} \equiv-1(\bmod p)
$$

such that no power of k with a smaller exponent is $\equiv \pm 1(\bmod p)$, then (12) and (13) will be fulfilled. As in the proof of Theorem 1, we can find a prime p and a k with this property. We choose $\left\|\alpha_{i j}\right\|$ as earlier, but the x 's in the j th column will be replaced by $x^{3^{i-1}}$, while
in the earlier form of $\left\|\beta_{i j}\right\|$, the k 's in the j th column ought to be replaced by $k^{3 i-1}$, and $y=(-1)^{m+1}\left(k^{\frac{1}{2}\left(3^{m}-1\right)}+1\right)$. This completes the proof of Theorem 2.

Remark 1. It is straightforward to show that our choice of k_{i} implies that

$$
Y_{i_{1}} \oplus \ldots \oplus Y_{i_{n}} \cong Y_{j_{1}} \oplus \ldots \oplus Y_{j_{n}}
$$

with

$$
1 \leqq i_{1}<\ldots<i_{n} \leqq m, 1 \leqq j_{1}<\ldots<j_{n} \leqq m
$$

can hold only if

$$
i_{1}=j_{1}, \ldots, i_{n}=j_{n} .
$$

Remark 2. The fact that the summands in Theorem 1 and 2 are of rank 2 is not essential. In fact, X_{i} in (3) can be replaced by

$$
\left\langle A_{i} \oplus B_{i} \oplus \ldots \oplus E_{i}, p^{-1}\left(a_{i}+b_{i}\right), \ldots, p^{-1}\left(a_{i}+e_{i}\right)\right\rangle,
$$

and Y_{i} in (4) by

$$
\left\langle C_{i} \oplus D_{i} \oplus \ldots \oplus F_{i}, p^{-1}\left(c_{i}+k_{i} d_{i}\right), \ldots, p^{-1}\left(c_{i}+k_{i} f_{i}\right)\right\rangle
$$

where every pair among $A_{i}, B_{i}, \ldots, E_{i}$ satisfies (1) and (2).
5. We proceed to the problem of constructing a group of rank $m \geqq 3$ which has many direct decompositions. It is obvious that it suffices to consider the rank 3 case only.

Theorem 3. To any given integer t, there exists a torsion-free group of rank 3 which has at least t non-isomorphic direct decompositions.

Let $A_{1} \cong B_{1}$ and C be rank 1 groups whose endomorphism rings are isomorphic to Z and $\operatorname{Hom}\left(A_{1}, C\right)=0=\operatorname{Hom}\left(C, A_{1}\right)$. We choose elements $a_{1} \in A, b_{1} \in B$ and $c \in C$ which are not divisible by a given prime p (to be specified later) such that $a_{1} \leftrightarrow b_{1}$ under some isomorphism.

Put

$$
G=A_{1} \oplus H_{1} \text { with } H_{1}=\left\langle B_{1} \oplus C, p^{-1}\left(b_{1}+c\right)\right\rangle
$$

where H_{1} is indecomposable of rank 2.
If $\alpha_{i}, \beta_{i}, \gamma_{i}, \delta_{i}$ are integers such that $\alpha_{i} \delta_{i}-\beta_{i} \gamma_{i}=1$, and if we put

$$
a_{i}=\alpha_{i} a_{1}+\beta_{i} b_{1}, \quad b_{i}=\gamma_{i} a_{1}+\delta_{i} b_{1} \quad(i=2, \ldots, t),
$$

then $A_{1} \oplus B_{1}=A_{i} \oplus B_{i}$ where A_{i}, B_{i} are the pure subgroups generated by a_{i}, b_{i}, and $a_{1} \leftrightarrow a_{i}, b_{1} \leftrightarrow b_{i}$ under suitable isomorphisms $A_{1} \cong A_{i}$, $B_{1} \cong B_{i}$. We wish to choose the A_{i}, B_{i} so that, for some integer $1<k_{i}<p$, we have

$$
\begin{equation*}
G=A_{i} \oplus H_{i} \text { with } H_{i}=\left\langle B_{i} \oplus C, p^{-1}\left(k_{i} b_{i}+c\right)\right\rangle \tag{14}
\end{equation*}
$$

with indecomposable H_{i}. Then

$$
k_{i} b_{i}+c=k_{i} \gamma_{i} a_{1}+\left(k_{i} \delta_{i}-1\right) b_{1}+\left(b_{1}+c\right)
$$

must be divisible by p, thus

$$
\begin{equation*}
k_{i} \gamma_{i} \equiv 0 \text { and } k_{i} \delta_{i} \equiv 1(\bmod p) . \tag{15}
\end{equation*}
$$

It is easily seen that conversely, (15) implies that (14) holds. If to any $1<k_{i}<p$ we choose $\gamma_{i}=p, \alpha_{i}=k_{i}$ and β_{i}, δ_{i} so as to satisfy $\mathrm{k}_{i} \delta_{i}-p \beta_{i}=$ $=1$, then (15) will be satisfied. Notice that an isomorphism $\varphi_{i j}: H_{i} \rightarrow H_{i}$ must map B_{i} upon B_{j} and C upon itself such that $b_{i} \mapsto \pm b_{j}$ and $c \mapsto \pm c$. Consequently, $\varphi_{i j}$ maps $k_{i} b_{i}+c$ upon $\pm\left(k_{i} b_{j} \pm c\right)$. Since divisibility by p is preserved under isomorphism and $p \nmid b_{j}$, we conclude that $\varphi_{i j}$ can exist only if $k_{i} \equiv \pm k_{j}(\bmod p)$.

Therefore, if we choose

$$
\left(k_{1}=1\right), k_{2}=2, \ldots, k_{t}=t \text { and } p>2 t+1
$$

then $k_{i} \neq \pm k_{i}(\bmod p)$ for $i \neq j$, and thus the groups H_{1}, \ldots, H_{t} are pairwise non-isomorphic and indecomposable, establishing the existence of at least t non-isomorphic decompositions for G.

REFERENCES

[1] Corner, A. L. S.: A note on rank and direct decompositions of torsion-free abelian groups, Proc. Cambr. Phil. Soc. 57 (1961), 230-233.
[2] Fuchs, L.: Abelian Groups, Budapest, 1958.
[3] Fuichs, L.: Recent results and problems on abelian groups, Topics in Abelian Groups, Chicago, 1963, 9-40.
[4] Jónsson, B.: On direct decompositions of torsion-free abelian groups, Math. Scand. 5 (1957), 230-235.
[5] Kaplansky, I.: Infinite Abelian Groups, Ann Arbor, 1954.

Manoscritto pervenuto in redazione il 13 maggio 1970.

[^0]: *) Indirizzo degli AA.: L. Fuchs: Tulane University, Dept. of Mathematics, New Orleans, Louisiana 70118, U.S.A.
 F. Loonstra: Technical University, Delft, The Netherlands.
 ${ }^{1}$) All the groups in this note are additively written abelian groups. For the definition of rank and related concepts see e.g. Fuchs [2].
 ${ }^{2}$) For another type of pathological direct decomposition of torsion-free groups of finite rank, see Corner [1].
 ${ }^{3}$) See e.g. Fuchs [2].

[^1]: 4) This problem asks for the existence of an integer $k(n)$ such that every torsion-free group of rank n has at most $k(n)$ non-isomorphic direct decompositions into indecomposable summands.
 ${ }^{5}$) Z denotes the ring of integers.
