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ABSTRACT BOUNDARY-VALUE OPERATORS

AND THEIR ADJOINTS

JEAN-PIERRE AUBIN *)

Introduction.

Let U be a Hilbert space, Uo be a closed subspace of U such that
there exists a Hilbert space K satisfying

(*) U c K with a stronger topology; Uo is dense in K.

An abstract boundary value = A X f30 will be in this paper
the product of two operators A and ~3o defined on the space U such that

The maps A and % play respectively the roles of a differential

operator and of a differential boundary operator when U is a space
of functions or distributions.

On the other hand, if D is a closed subspace of U containing Uo ,
we shall consider the pair (D, A) like an unbounded operator of domain
D dense in K (by ( ~ )).

Then, with each boundary operator P we may associate an unboun-
ded operator (D, A) with domain D == ker f30 and consersely, with
each (D, A) we may associate a monempty class of equivalent boundary
value operators.

*) Indirizzo dell’A.: 121 Residence des Eaux-Vives 91 - Palaiseau, Francia.
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The main aim of this paper is to construct an « ad joint boundary
value operators » #*= A* X al* of S , product of two operators defined
on a suitable space U* (depending on Uo , K and A), which is associated
with the adjoint (D*, A*) of the unbounded operator (D, A) by

The main tool used for the construction of the adjoint 9* is the

Green’s formula. This is why the first section of this paper is devoted
to the construction of an abstract Green’s formula associated with U,
Uo , K and A (Theorem 1.1 ). In Section 2, we assiate with each (D, A)
a Green’s formula: Namely, we will construct operatos ~*o
and such that

(where (., .) and ( ~ , ~ ~ denote duality pairings on suitable pairs of

spaces (Theorem 2.1 )) and point out some consequences (results of

density and connections between closed operators and a priori estimates).
We define and study the boundary value operators and their

adjoint in the third section (Green’s formula associated with a boundary
operator, relations between the transpose and the adjoint, characterization
of the ranges and characterization of the well posed boundary value
operators). Naturally, these abstract results are already known for con-
crete differential boundary value operators (see for instance Chapeter
2 and the appendix of the book by J. L. Lions and E. Magenes [2]).
We give a brief example in Section 4.

The bibliography related to these problems is so abundant that

we will refer only to the book of J. L. Lions and E. Magenes, where
further information can be found.

Let us only mention that another study of « abstract boundary
values » related to unbonuded operators lies in Chapter XII, § 4, Sec-
tions 20 to 31 of Part 2 of the book Linear Operators by N. Dunford
and J. T. Schwartz [ 1 ] .
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National Conventions.

All the operators used in this paper are assumed (once and for

all) linear and continuous. In particular, a right inverse will mean a
continuous linear right inverse and a projector will mean a continuous
projector.

We will denote by E X F the product of two spaces E and F, by
u X v (u E E, v E F) an element of E X F and by A X B (where A maps
a space G into E, B maps G into F) the operator mapping u E G onto

F.

The topological dual of a space E will always be denoted by E’,
the transpose of an operator by A’.

The duality pairings between a space and its dual will be denoted
by (., ~ ) if the spaces are denoted by Latin letters and by (’, - )
if the spaces are denoted Greek letters.

Contents.

1. Green’s formula

1.1. Framework

1.2. Adjoint framework

1.3. Two lemmas about projectors

2. K-unbounded operators and their adjoints
2.1. Definitions

2.2. Green’s formula associated with an unbounded operator

2.3. Closed K-unbounded operators.

3. Boundary value operators and their adjoints
dary value operator.

3.1. Definitions

3.2. Relations between the transpose and the adjoint of a bound-
ary value operator.
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3.3. Characterization of the ranges of # and #*

3.4. Well-posed boundary value operators.

4. Example: Elliptic differential boundary value operators.

1. Green’ Formula.

1-1. The Framework.

We denote by U and E two Hilbert spaces and by A an operator
mapping U into E. We also introduce a surjective operator 5 from U
onto a Hilbert space O and set

DIAGRAM 1.

Finally, let us suppose that there exists a Hilbert space K satisfying:

i) U is contained in K with a stronger topology
~ 1.2) 

ii) Uo (and thus U) is dense in K.

We will assume throughout this paper that the choice of ~ ~3, K
is done once for all.

By analogy with applications, we will term:

~ the « boundary space »

fi the « boundary operator »
Uo the « minimal domain »

K a « normal space ».
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NOTE 1.1. We always may consider a closed space Uo as the

kernel of an operator ~3. We may choose for instance W, a topological
complement of Uo and the projector onto (D with kernel Uo .

NOTE 1.2. In the applications, the above items will respectively be:

U and E spaces o f distributions on a manifold
A a differential operator
Uo the closure of the space of indefinitely diffrentiable functions

with compact support
K a normal space of distributions on the manifold which conta,

ins U

V a convenient space of distributions on the boundary of the
manifold and 5 a convenient boundary differential operator.

NOTE 1.3 .

LEMMA 1.1. The assumption (1.2) is equivalent to:

( 1.3) 
i) K’ is a dense subspace of U’

~~ °~~ ~ ii) K is a dense subspace of U’o .

Indeed, if i denotes the injection from U into K, its transpose i’ is

injective since i(U) is dense in K and i’(K’) is dense in U’ since i is

injective. In the same way, if j the injection from Uo into K, j’ is the

injection from K’ into U’o and j’(K’) is dense in U’o .

1.2. The Adjoint Framework.

Let us introduce the

DEFINITION 1.1. The adjoint A*, mapping E’ into U’o is the operator
defined by:

(1.4) (n* u, v)=(u, A v) for all uEE’, for all v in Uo .

Let us recall that the transpose A’ of A, mapping E’ into U’ is

defined by:

(1.5) (~1.’u, v) _ (u, A v) for all u EE’, for all v in U



6

(Thus A* is the transpose of the restriction of A to Uo).
In order to compare these two operators, it is natural, by Lemma

1.1, to introduce

DEFINITION 1.2. The domain U* of A* will be the subspace of the
elements u of E’ such that n* u belongs to K’ equipped the following
norm:

The domain U* is a Hilbert space (see note 1.7).

NOTE 1.4. We will see that we may consider the pair (Uo , A) as
an unbounded operator (depending on the choice of the normal space K).

We now will prove .

THEOREM 1.1 (Green’s Formula). There exists a continuous linear

operator ~3* from U* into 4&#x3E;/ related to ~3, A and K by the following
Green’s formula:

for all u in U* and for all v in U.

In order to keep the analogy, we may call ~3* the « adjoint boundary
operator ». We then have associated with Diagram 1 the adjoint

DIAGRAM 2.

PROOF. Let us choose u in U*, v in U. Then A’u belongs to U’
(since U* c E’) and A* u belongs to K’ and thus, to U’.

(We identify A* to i’ A* where i is the injection from U into K).



7

Then:

(1.8) A* u belongs to the orthogonal Uol of Uo

since, by definition of these operators

On the other hand, let be a right inverse of 0. Since Uo is the
kernel of ~3, J) is a projector whose kernel is Uo and, by transposition,

(1.9) is a projector from U’ onto Uo .

Then (1.8) and (1.9) implies that

where

We finally notice that (1.7) is equivalent to (1.10).

NOTE 1.5. The does not depend on the choice of the
right inverse a of ~3.

Indeed, if Green’s formula holds, we have A’ - n* _ ~3’~3*. 
is any right inverse of ~3, we have and thus, ( 1.11 ) holds.

NOTE 1.6. The operator ~3* depends on the choice of the operator
B for which Uo= ker B. Nevertheless, we may state the

PROPOSITION 1.1. Let us assume that Uo is also the kernel of a

surjective operator y from U onto Then there exists an isomorphism
0 from T onto C such that

and Green’s formula may be written
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NOTE 1.7. The domain U* is a Hilbert space. If Un is a Cauchy
sequence in U*, then, by (1.6), we have

( 1.14) un converges to u in E’; converges to f in K’.

If v belongs to Uo , we have (A* v) _ (un , A v) and, taking the
limit, we obtain

Then f = A* u and since f belongs to K’, u belongs to U*. The

Cauchy sequence converges to u in U*.

NOTE 1.8. The operator P* depends on the choice of K in the
following way. Let KicK2 be two normal spaces satisfying (1.2). Let
t7i*, U2* , 01* and Ø2* be the associated domains and adjoint boundary
operators. Then:

(« Smaller » is the space Ki , « larger » is the space Ul*).
Indeed, if ii and i2 denote the inijection from U into K1 and K2 respec-

tively, we will have

Since Kl is dense in K2 (by ( 1.2)), i’2 is the restriction of i’1 to K’2.

1.3 Two Lemmas About Projectors.

We will need below the two following lemmas. Let E be a topological
vector space, 1-1 and v two continuous projectors. Let us recall that:

LEMMA 1.2. Let (.1 and v two projectors satisfying (1.16). Then
is a projector satisfying
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The geometrical form of this lemma is the following: If two closed

subspaces M and N possess topological complements, if M c N and if P
is a topological complement of N, then there exists a topological comple-
ment Q of M containing P. 

PROOF. Using (1.16), we may check that and that vpi=
= piv = v. Since 11(.t1 == (.t, we obtained ker c ker {1. If = 0, then

v(x)=0 by ( 1.16), then and ker p c ker 1-11.
LEMMA 1.3. Let po be a projector onto a closed subspace P. The

following operators

where p is an operator mapping E into P are projectors onto P and all
the projectors onto P can be written in the form (1.19).

Indeed, the range of a projector [t is P iff, by (1.17):

Then, if (.1 is a projector onto P, we have (taking 

Conversely, let p map E into Then:

If l-1 is defined by (1.19), (1.22) implies that and that:

Then p is a projector onto P.

NOTE 1.9. The results of this section hold when the spaces are

locally convex if we assume that Uo possesses a topological complement
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(or that ) possesses a continuos right inverse). We only have to modify
(1.6): We equip U* with the weakest topology for which A* and the
injection from U* into K’ are continuous.

2. K-Unbounded Operators and Their Adjoints.

2.1. Definitions.

Let us consider a space D such that

(2.1) D is a closed subspace of U containing Uo .

Let us associate with D the subspace D* of U* defined by

D* is the subspace of such that:

We first notice that

LEMMA 2.1. The subspace D* of U* is the space of elements u of
E’ such that there eixsts a (unique) solution f in K’ of

PROOF. Since Uo is dense in K, then D is dense in K and there
exists at most a solution of (2.3). Let us denote by D the space defined
in Lemma 2.1. Is is clear that D* is contained in D. On the other hand, let
u E D be a solution of (2.3). Since this equation holds for all v in Uo c D,
we deduce that f = A* u and since f E K, that u belongs to U*. Then
l5c D* and the lemma is proved. This lemma suggests to slightly extend
the usual definition of the unbounded operators .

DEFINITION 2.1. Let D be a closed subspace of U which contains
Uo . We will call the pair (D, A) the K-unbounded operator associated
with A of domain D (dense in K).

If D* is defined by (2.2) (or (2.3)), we will say that (D*, A*) is

the adjoint of (D, A).
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NOTE 2.1. In the case where K = E, this is the usual definition of

unbounded operators (with dense domain containing Uo) and their

adjoints (see Lemma 2.1 ).
The choice of D*, like the coice of fi*, depends on the choice of

the space K’.

By Definition 1.1, we see that (U*, A*) is the adjoint of (Uo, A)
and we will denote by ( Uo*, A*) the adjoint off7, A).

2.2 Green’s Formula Associated with an Unbounded Operator.
Let x be a continuous projector of 1&#x3E;. Let us associate with ~:

Indeed, we may identify with the dual of ~~o and with the
dual of O1 in the following: If Y, p) denotes the duality pairing on
1&#x3E;’ X 1&#x3E;, the duality pairings on W’o X (Do and X ~1 will be respect-
ively :

We also associate with  and B the following boundary operators:

Finally, with the projector ’1t we may associate the following unboun-
ded operator (D, A) where D = ker 7co = ker (3o :) Uo . Conversely, we will
prove the:

THEOREM 2.1 Let (D, A) be an unbounded operator, ~(D*, A*) be
its adjoint. Then there exists a projector n of C such that

and we may write Green’s formula in the following form:
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for all for all 

PROOF. By Lemma 1.2, there exests projectors ~, and v such that

On the other hand, there exists a right inverse « of (3 such that

Let us associate with D (and thus, with v) the following operator

Then we can check that 1t is a projector and that D= ker 1tø.
Indeed, and 
Since c is one to one, we obtain:

We now have to prove that D*==(l-1t’)~*. We first notice that
Green’s formula (2.7) associated with  is a direct consequence of

Green’s formula of Theorem 1.1 and of (2.5). Then if UE ker(l-1t’)Ø*
and ker1CØ, we will have (A* u, v) _ ~( u, A v). Then 
c D*. On the other hand, let u belong to D*, v belong to D. Then, by
Green’s formula, we deduce that

But:

is surjective.
Indeed, if cp belongs to 4&#x3E;1 (i.e., if 1Cq&#x3E; == 0) and if (f is a right inversc

of 0, then u = o-9 belongs to D since
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Then (2.8) and (2.9) imply that Øt==(l-1t’)Ø*u==O and we have
proved that D* = ker pi*== ker ( 1- ~’) ~3* when D = ker Po= 

NOTE 2.2. Since (Uo*, A*) is, by definition, the adjoint of (U, A),
we deduce from Theorem 2.1 that

2.3. Closed K-unbounded Operators.

Let (D, A) be a K-unbounded operator, (D*, A*) be its adjoint. We
associate with them their graphs r(D) and r*(D*) defined by: ,

F i) r(D) is the subspace of K X E of the v X A v when v

(2.11) ranges D(2 . I 1 ) 
ii) r*(D*) is the subspace of K’ X E’ of the - A* U X uL when u ranges D*.

We thus introduce

DEFINITION 2.2. We will say that (D, A) is a closed K-unbounded
operator iff its graph r(D) is closed in K X E. This amounts to saying
that if a sequence satisfies:

Un converges to u in K and n un converges to f in E

then u belongs to D and f= A u.
The classical properties of the closed operators remain. Namely:

PROPOSITION 2.1. The graph r*(D*) is the orthogonal in K’ X E’
of the graph r(D) and thus, is closed.

If (D, A) is closed, then:

i) D* is dense in E*

ii) D is the space of v of K such that:

ao*(D*) is dense in fl)’o.
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In particular, if (Uo , A) is closed, then U’"‘ is dense in E’ and

fi*(U*) is dense in 4&#x3E;".
We have only to prove the last statement, the proof of the others

being analogous to the classical one.
By the Hahn-Banach Theorem, we have to prove that 

satisfies

then ~=0.
Let Then since + belongs to ~Yo

and Pi~=(l2013TT:)~=(l2013~)~=0. Then

This implies, by (2.12) ii) that u belongs to D and thus, that

~==~=~==0.
If we choose D = Uo , then D* = U* is dense in E’. The projector

associated with Uo is the identity and Then P*(C7*)
is dense in 4S’.

The next proposition gives an analytic definition of the closed
K-unbounded operators, where appears the « apriori estimates ».

PROPOSITION 2.2. The following statements are equivalent:

(2.13) (D, A) is a closed K-unbounded operator

First of all, we always have this inequality:

since A is continuous from U into E and since U is contained in K with
a stronger topology. The two first statements are equivalent. Indeed,
to say that r(D) is closed amounts to saying that D equipped with the
graph norm (11 A u is complete. Since D is also complete



15

for the norm II u Ilu by assumption, these two norms are equivalent when
r(D) is closed and conversely, if these two norms are equivalent, D is
complete for the graph norm and r(D) is closed in K X E. The statement
(2.15) implies obviously (2.14). The converse is true. If 0"0 is a right
inverse of then and belongs
to D. Then:

Let Z be the kernel of A.

THEOREM 2.2. Let us assume that D is not contained in Z. If

the injection from D into K is compact, then the injection from D* into
E’ is comparct.

Let B* be a bounded set of U*. Then B* is bounded in E’ and
A* B* is bounded in K’. We may extract from a sequence of B* a subse-

quence un such that:

(2.17) un converges weakly to 0 in E’;

A* un converges weakly to 0 in K’

and we have to prove that un converges strongly in E’. Let B be a

bounded set of D. Then B is compact in K by assumption and thus, by
the Banach-Steinhauss Theorem:

(2.18) (A* un, v) converges to 0 uniformly on the compact B of K.

Then (un , A v) =~(n* un , v) converges uniformly to 0 on the bounded
set A (B) of E, i.e., Un converges strongly to 0 in E’. (Since D is not

contained in Z, A (B) is not empty if B is not contained in Z).

COROLLARY 2.1. Let us assume that (D, A) is closed and that the

injection from D into K is compact.
Let Z = ker A and Z* = ker A* be the kernels of A and A*, 

and N*=D* fl Z* the kernels of (D, A) and (D*, A). Then N and N* are
finite dimensional spaces and the ranges A (D) and A* (D*) are closed in
E and K’ respectively.
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By theorem 2.2, it is sufficient to prove the theorem only for (D, A).
But this result for (D, A) is classical. Let us nevertheless sketch the

proof. In u belongs to N = Z f 1 D, then the and II u ilK
are equivalent and since the injection is compact, the unit ball of N is

compact and thus, N is a finite dimensional space. If M is a topological
complement of N in D, A is a one-to-one map from M onto A (D).
Then A (D) will be closed iff

But (2.19) holds. If not, there would be a sequence un of M such
and such that converges to 0 in K. Since the

injection from D into K is compact, (a subsequence of) un converges to
an element u of K. Since (D, A) is closed, we deduce that u = o. Since
the norm 11 is equivalent to the graph norm, we deduce that

u u converges to 0. We have obtained a contradiction.

NOTE 2.3. If we assume that the domains D posses a topological
complement (and not only that they are closed), then Lemma 2.1,
Theorem 2.1 and Proposition 2.1 hold again when the spaces are locally
convex and Proposition 2.2, Theorem 2.2, and Corollary 2.1 hold again
when the spaces are Banach spaces.

3. Boundary Value Operators and their Adjoints.

3.1. Definitions.
DEFINITION 3.1. Let yo be a surjective operator from U onto a

Hilbert space 4lo such that:

We will say Xyo , mapping U into E X 
is a boundary value operator associated with the K-unbounded operator
(D, A). Two boundary value operators associated with the same unboun-
ded operator (D, A) will be said to be equivalent.

First of all, Theorem 2.1 implies that there exists always at least

one boundary value operator associated with (D, A) namely, the operator
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&#x26; == &#x26;( Pb , where n is a projector from V onto constructed in the

proof of Theorem 2.1.
Another way to define the equivalence between two boundary value

operators is given by

PROPOSITION 3.1. Two boundary value operators 9((Db, oo) and
Yo) are equivalent iff there exists an isomorphism 8 from To onto

(Do such that 

We then may identify an unbounded operator (D, A) with an equi-
valence class of boundary value operators and say that (D, A) is asso-
ciated with &#x26;(’1’0, yo) i f D = ker yo . In particular, each boundary value
operator is equivalent to a boundary value operator 9((Do, where n
is a projector from V onto 

We now will define the adjoint of a boundary value operator.

DEFINITION 3.2. Let yi* map U* into a Hilbert space ’1"1. Let
us denote by &#x26;* == &#x26;*(’1"1, the operator A* X yi* mapping U* into
K’ X T’l.

We will say that 9* is an adjoint of an operator 9 = 9,(To , yi) iff there
exists

i) a projector n from o onto a closed subspace 4y

(3.2) { ii) an isomorphism 80 from Y0 onto G0

~ iii) an isomorphism 81 from onto 

such that

By this definitions, if 9* is an adjoint of a boundary value operator
S, then 9* is an adjoint of all the operators equivalent to #.

Then Theorem 2.1 implies that there exists always en adjoint
operator of 9. Namely, if P is equivalent to 9(4Do, "7tØ) the operator
~*(cI&#x3E;"1, (l-1t’)Ø*) is an adjoint of 9.

If (D, A) is associated with yo) (D= ker yo), then (D*, n*)
(where D* = ker yi*), the unbounded operator associated with an adjoint
$*(’1"1, Yi"), is the adjoint of (D, A).
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PROPOSITION 3.2. Let ~*(’I"1 , yi*) xbe an adjoint of 9(BPo, yo). Let
us set

(where x is defined by (3.2) and (3.3)). Then

(3.5) yo maps keryi onto Y1 maps ker yo onto ’1’1

and the following Green’s formula holds:

for all u in U~, for all v in U.
These results are direct consequences of the definition and Theorem

2.1. If we set

then

are the kernels of 9 (or (D, A)) and 9* (or ~(D*, A*)) respectively.

3.2. Relations Between the Transpose and the Adjoint of a Boundary
Value Operator.

Since the boundary yo) maps U into E X Wo ,
its transpose S’ maps E’ into U’. Let 9* = S*~(~’1, yl*) be an adjoint
of 9. Then the spaces K’ and are contained in U’. Let us consider

Problem P’ (transposed boundary value operator).
Let be given in Find in such

that
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Problem P* (adjoint boundary value problem).
Let f X be given in K’ &#x3E;C tY’1 . Find u in U* such that

We then will prove

THEOREM 3.1. When ranges the problems P"
and P* are equivalent: If uX ~o is a solution of the problem P’, then
u belongs to U*, and u is the solution of the problem P*. Con-
versely, if u is a solution of the problem P*, then is a solution
of the problem P’.

PROOF. Let be a solution of the problem P’. Then

and this equations may be written explicitly in the following form:

Since Uo is contained in U, we obtain in particular by (3.6):

and this implies that:

(3.14) n’~ u = f and that u belongs to U* since f belongs to K’.

We then can use the Green’s formula (3.7) and (3.13) together:

We deduce that:

Using (3.5), we finally get
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Conversely, let u be a solution of the problem P* and let us set

Using Green’s formula ~(3 .7 ), we have

Therefore is a solution of the problem P’.

COROLLARY 3.1. The kernel of the transpose S’ is the subspace
lV* X yo*N* of the elements u X ~o of E’ X satisfying.

Thus the kernel N* of 5 * does not depend on the choice of the
normal space K. If we denote by D*~(K) the domain of A* associated
with K, then N* c n D*(K) for all the spaces K satisfying (1.2).

K

3 .3 . Characterization of the Ranges of 9 and S *.

THEOREM 3.2. Let us assume that the range of S is closed. Then
the range of the adjoint S* is also closed. Moreover, the range 9U is

the space { E X N*, yo* I of the f X qJo belonging to E X To such
that

and the range S *U* is the space { K’ X ~’1 , N, I of the f X ~1 belong-
ing to K’ X such that:

The conditions (3.18) and (3.19) are usually called the « compati-
bility conditions ». Let us notice that the assumption that 5 U is closed

does not depend on the choice of K satisfying ( 1.2).

PROOF. The range of 9 is the orthogonal of the kernel of S’ (when
S U is closed). But ker 9’= N* X yo*N* by the Corollary 3.1. To say

that f X X is orthogonal to N* X yo*N* amounts to saying that
,f X ~o satisfies (3.18).
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If the range of 9 is closed, the range of 3’ is also closed, and
is equal to the orthogonal of N in U’.

Let f X ~1 belong to K’ X ~Y’1 . Then is orthogonal to N
iff (3.19) is fulfilled. Therefore { K’ X ~’1 , N, Y1} I is contained in

S *U*. On the other hand, S *U* is contained in { K’ X ’1"1, N, yl I by
Green’s formula:

whenever v belongs to N=Dn z.
The Banach Theorem implies the:

COROLLARY 3.2. If the range of 9 is closed, 9 defines an iso-

morphism mapping U/N onto N*, YO* I and S * defines an

isomorphism mapping U*IN* onto { K’ X N, 

We notice

LEMMA 3.1. The range of 9 is closed iff the range A (D) of the
associated unbounded operator A (D) is closed.

This is the consequence of the following fact. Let co be a right
inverese of yo . Then, if u is a solution of

then v==u-crotJ;o is a solution of

COROLLARY 3.3. Let us assume that the following inequality holds:

and that the injection from ~I into K is compact.
Then the kernels N = D n Z and N* = D* f 1 Z* of 9 and 9* are finite

dimeinsional spaces and the ranges of 9 and S * are closed.

By Proposition 2.2, the assumption (3.22) implies that (D, A) is

closed. Corollary results from Corollary 2.2, Lemma 3 and the equalities
ker (D, n) = ker 9 and ker (D*, A*)= ker 9".
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NOTE 3.1. If the assumption holds for at least one normal space
K, then the conclusions hold for all the normal spaces K.
3.4. Well-posed Boundary Value Operators.

Let (D, A) be a K-unbounded operator, ~(D*, A*) its adjoint,
9 = 9(,Po , yo) a boundary value operator, ~*=~*(’I"1, yt) an adjoint of
~’. We set:

By Theorem 3.2, we notice that:

PROPOSITION 3.3. The following statements are equivalent

i) U = Z + D has a direct sum decomposition into Z and D

(3 23) ~ ii) N = N* = 0 and the range of 9 (or A(D) is closed)
~~°~~~ is an isomorphism from U onto E X To~ iv) A is an isomorphism from D onto E.

This suggests

DEFINITION 3.3. We will say that the boundary value operator 9
is well posed (or that (D, A) is well posed) if one of the equivalent
statements of (3.23) holds.

Theorem 3.1 implies that if 9 is well posed, then their adjoints 9*
are also well posed.

We shall give a characterization of the well posed boundary value
operators.

THEOREM 3.3. If there exists one well posed boundary value

operator ~, then ø defines an isomorphism from Z onto PZ and all

the well posed boundary value operators are equivalent to 4)
where 7t is a projector onto Conversely, if 0 defines an isomorphism
from Z onto the operators 7to) where n is a projector onto
~3Z are well posed. Finally, the adjoint of a well boundary value operator

0-n) is 

PROOF. If there exists a well posed boundary value operator, then
there exists a topological complement D of Z containing Uo and, by
Lemma 1.2, a topological complement Y of Uo containing Z. If ko is a
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projector onto Y with kernel Uo and k the projector onto Z with kernel
D, we have:

On the other hand, there exists a right inverse (T of fi such that

Then fi is an isomorphism from Y onto (D and, in particular, between
Z c Y and its closed range Moreover, we may associate with k the

following operator:

which is, by (3.24) and (3.25), a projector onto fiZ such that

Then

and 9 is equivalent to Conversely, let us assume that the
restriction ~3z of 0 to Z is an isomorphism from Z onto Let be

its inverse. Let now x be any projector onto Then

is a proejctor from Z onto K and ker k = ker 1t~ since ku = 0
if u belongs to Uo= ker ~3. Then 1CØ) is well posed. We know
that S *((~3Z)1 , ( 1- ~c’)~3*) is ’an adjoint of The end of the

proof of the Theorem will be the consequence of

PROPOSITION 3.4. If # is well posed, then is the orthogonal
of ~3Z.

We always have by Green’s formula:
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Let now cp belong to and n a projector onto Then

where and and CP1 belongs to 
Since 9* is well posed, there exists a unique solution u satisfying

n* u = 0 and Then, if and 

This implies that

Since Oo=-no maps Z onto we get

Then is contained in (3*Z* and fi*Z* is the orthogonal of aZ.
Theorem 3.3 and Lemma 1.3 imply a theorem of characterization of the
well posed boundary value operators proved by J. L. Lions and E.

Magenes.

COROLLARY 3.4. Let 9-(To, yo) be a well posed boundary value
operator. The boundary value operators &#x26;(’1’0, y) where

(3.32) is an operator from G into ’1’0

and coo is the right inverse of yo mapping To onto Z are well posed.
Conversely, every well posed boundary value operator is equivalent to
a boundary value operator 5(~0 , y) where y is defined by (3.32) for a
convenient operator k mapping 0 into Wo .

PROOF. Let ~(’I’o, Yo) be a well posed boundary value operator.
By Theorem 3.3, it is equivalent to nofi) where 1to is a projector
onto If ao is the inverese of yo mapping To onto Z; 00=Bc0 is

the isomorphism from To onto 5Z such that
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Then, if y is defined by (3.32),

where is an operator mapping 0 into By Lemma 1.3,
~ = l -E- ( 1- l )~o is a projector onto ~3Z and (3.34) implies that g(To , y)
is equivalent to 9,(OZ, 1t), which is well posed by Theorem 3.3.

Conversely, let 9 be a well posed boundary value operator. It is

equivalent to for a convenient projector 1t onto which
is equal to where I maps 4D into Let us set 

Then:

where maps (D into This implies that 9 is equivalent to
I ’Y).

NOTE 3.2 We deduce from Corollary 3.4 that a domain D is

a topological complement of Z (a well posed domain in the termi-

nology of J. L. Lions - E. Magenes) iff D is the space of elements u of
U such that

for a suitable operator k mapping (D, into 

NOTE 3.3. If we assume in Definition 3.1 that yo posses a conti-

nuous right inverese (or that D possesses a topological complement),
we may assume that the spaces are Banach spaces in Theorem 3.2,
Corollaries 3.2 and 3.3 and are locally convex in the other results of
this section.

4. Example: Elliptic Differential Boundary Value Operators.

4.I. The Framework (Example).

Let n be a « regular » bounded open set of R , with boundary r.
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Let us choose:

where L2(f!) denotes the space of square integrale functions on n and
denotes the Sobolev space of u of such that the weak

derivatives Dpu of order ... belong to 

We shall choose

where D(fl) is the space of indefinitely differentiable functions with

compact support in n. Our main assumption (1.2) is then fulfilled.
Let us set:

(See for instance J. L. Lions - E. Magenes [2], Chapter 1, for the

precise definitions).
Let us recall that HÕm(n) is the kernel of the operator B = y0 X

X Y1 X ... X where y; is the operator which associates with u
the restriction to n of its normal derivatives of order j. We now
introduce the following differential operator:

where the coefficients apq(x) are 2m times continuously differentiable
onn.

4.2. The Ad joint Framework and’ Green’s Formula.

Since is the closure of D(n), we deduce that the adjoint
operator A* is equal to
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Then:

such that A* u belongs to

and we notice that

We then deduce from Theorem 1.1 that there exists adjoint bound-
ary operators yj* into ’(H’~m-~-1~~(r))~=H’+1/2-~m~r1 such that the fol-

lowing Green’s formula holds:

where we denote the duality pairing on

4.3. Examples of Boundary Value Operators.

We have seen (Definition 3.1 and Theorem 2.1) that a boundary
value operator is associated with a projector of the space 0,. We will
choose a simple example.

Let ki be m different integers between 0 and 2m-1
and 1; be the integers between 0 and 2m -1 such that
the set ko , ..., lo , ..., is the set 0, ..., 2m-1 of the 2m

first integers.
We will choose the projector 1t associated with the following direct

sum decomposition where
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Then the operators po. and defined by (2.5) are:

The following boundary value operators

are associated with the unbounded operator (D, A) and its adjoint
(D*, A*) where:

4.4. Examples of equivalent Boundary Value Operators.

Let 8Z’ be operators mapping H~m- ; -1~2(r) into ¡pm-k¡ -lf2(r) such
that the matrix of operators is an automorphism of

1&#x3E;. Then the operator

where

is equivalent to S . In particular, a « normal system » of boundary
operators, i.e., differential boundary operators Sk;

satisfying:
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is equivalent to the system Yk , ..., yk . (See J. L. Lions - E. Magenes
[ 2 ] , Chapter 2, § 2).

4.5. Ranges of 9 and 9*.

Let 9 and S * be two boundary value operators (equivalent to the
ones) defined by (4.11). Let us apply Theorem 2.2.

Let us assume that the range of 9 is closed. The kernels N and N*
of 9 and S * are:

(4.17) such that A u=0 and Yk,U= ... }

(4-18) such that A* u = 0 and ... 

We deduce that:

and that:

Under what conditions may we apply Corollary 3.3. We already
know that the injection from Hlm(f2) into is compact. We need

4.6. Examples of Closed Unbounded Operators: Elliptic Operators.

In order to apply Corollary 3.3, we have assume that the in-

equality (3.22) holds, i.e., that (D, A) is closed by Proposition 2.2.

Such an a priori estimate holds when # is an « elliptic » boundary



30

value operator. (See for instance J. L. Lions - E. Magenes [2],
Chapter 2, § 5).

Let us associate A defined by (4.4) the polynomial

and let us consider boundary operators 6k; defined by (4.15).
We will say that = A X Sko X ... X is « ellip~tic » iff the

following conditions hold:

i) ~0 for all ~0

ii) for all pairs (~’, ~), the polynomial Ao (%+i%’) has m
roots ij+ such that &#x3E; 0

i i i) for all xer and for all tangent vector ~ to r at x, the
polynomial £ ~M(~+T~(0~/~~-1)
are linearly independeent modulo the polynomial

L where are the roots defined in Condition ii).

If the coefficients apq(x), and the manifold r are indefi-

nitely differentiable, a famous Theorem (Agmon-Douglis-Nirenberg) imply
that 8 is closed:

where we have set II u 1 U and 1 cp 
NOTE 4.1. Let us notice that, by Theorem 2.2, we do not need

the « dual a priori estimates » in order to obtain the conclusion of

Corollary 3.3.

4.7. Other Choice of the Spaces E and K.

We started with the simplest choice E==K==L2(f1). But « smaller &#x3E;&#x3E;

will be the spaces E and K, «larger » will be the spaces K’ and E’,
and thus, «larger » will be the space t7*. This will permit us to solve
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boundary value problem P* for « irregular data ». (See J. L. Lions -

E. Magenes, Chapter 2, § 6). Let us replace by

and U = H(f2) by

We will choose

where fi maps u onto o defined by

The problem is now to find a normal space of distributions K

(i.e., in which D(n) si dense) containing U. Such spaces exist: Let

p(x) be a positive function on [2, equal to 0 on r, such that

where d(x, r) is the distance from x to the boundary r, assumed
sufficiently smooth.

Let us set

equipped with the norm

Thus (See J. L. Lions - E. Magenes, Chapter 2, § 6) is a Hilbert

space in which is dense, satisfying:
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If we choose K= ---2m+r(~), our main assumption (1,2) will be
satisfied.

The domain U* :

is a Hilbert space. By Theorem 1.1, we may construct adjoint boundary
operators ~y;* mapping U* into H-2m-r+;+1/~(r) such that Green’s for-

mula holds again:

where u belongs to U* and V to The adjoint operator
maps U* into

NOTE 4.2. The adjoint boundary operators y;* are extensions to

U* of the operators Yi* introduced in Section 4.2. (See Note 1.8).

NOTE 4.3. There exists other choices of spaces E; for instance,
since Hr(f2) is not a normal space of distributions, it may be convenient

to choose and such that A We
then have to verify that B=y0 X ... X maps this new space U
onto the space cpt defined by (4.27).

Theorem 3.2 implies: If the range $(H2m+r(!l» is close into

then the adjoint operator ~* defines an isomorphism

We thus get a theorem of existence of a boundary value problem
when the « data » belongs to « large &#x3E;&#x3E; spaces of distributions on n
and r.
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NOTE 4.4. Let 9 be « elliptic ». The estimate (4.23) holds when
we replace by for any integer This implies
that the kernels N and N* are contained in D(n) (and are finite dimen-
sional spaces). Therefore, the ranges of 9 are closed for any r (we
apply Corollary 3.3 with K = ~ m + r-1(S~) for instance) and the above
conclusion holds. (See Note 3.1 ).
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