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PROJECTIVITIES OF FREE PRODUCTS

by CHARLES S. HOLMES *)

RESUME. A projectivity of a group G onto a group H is an isomorphic mapping
of the subgroup lattice L(G) of G onto the subgroup lattice L(H) of H.
Considerable attention has been devoted to the following questions: under

what conditions on G is any projectivity of G induced by some isomorphism
of G, and when must G be determined by its lattice of subgroups in the sense
that any group H with L(H) isomorphic to L(G) must itself be isomorphic
to G? Theorems 4 and 6 of this paper are partial answers to these questions
for the class of groups which have a non-trivial decomposition as a free

product with amalgamated subgroup.
Let G = (A, B # C) be a free product of its subgroups A and B

with amalgamated subgroup C = A tl B. Suppose [A : C] &#x3E; 2 or [B : C] &#x3E; 2.
Theorem 4. If C is normal in G, then G is determined by its lattice of sub-

groups. Theorem 6. If C is the center of G, then every projectivity of G

is induced by a unique group isomorphism. Corollary. Any projectivity of
a free product A*B (A, B ~ 1) is induced by a unique isomorphism. The
proofs depend upon the fact that A’~B(A, contains a non-cyclic free

group unless A and B are both of order two. The methods used are primarily
extensions and refinements of those used by E. L. Sadovskii (Mat. Sbomik
21 (63) (1947), 63-82).

Introduction.

The collection of all subgroups of a group G forms a lattice L(G);
here the lattice meet, H n K, of two subgroups H and K is their inter-
section H n K, while the lattice join, H v K, is the subgroup generated
by the union H U K. Following Suzuki [4] we define a projectivity

*) Indirizzo dell’A.: Depart of Math., Miami University, Oxford, Ohio 45056,
U.S.A.
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from a group G onto a group H to be an isomorphic mapping of the
subgroup lattice L(G) onto the subgroup lattice L(H). For the definitions
of concepts discussed informally in the introduction the reader is refer-
red to the section, Definitions and Notations, of this paper.

Every isomorphism from a group G onto a group H clearly induces
a projectivity from G onto H. Thus if G and H are isomorphic, L(G)
and L(H) are isomorphic. Considerable attention has been devoted to
the converse questions: under what conditions on G is any projectivity
of G induced by some isomorphism of G, and when must G and H be
isomorphic if L(G) and L(H) are isomorphic?

It is easy to see that non-isomorphic groups may have isomorphic
lattices of subgroups; hence a group need not be determined by its
lattice of subgroups and a projectivity need not be induced by an iso-
morphism. The simplest examples are the groups of prime order, all of
which have the two element lattice as subgroup lattice. There are less
trivial examples of groups which are not determined by their subgroup
lattices. On the other hand several classes of groups have been shown
to consist of groups which are determined by their lattices.

Sadovsky, for instance, has shown the following. If G=A*B is

a free product, without amalgamation, of non-trivial groups A and B,
then G is determined by its lattice of subgroups L(G). He also specu-
lated that any projectivity p of such a free product G=A*B is induced
by an isomorphism, but left the question open. He made several con-
tributions to the solution of this problem, two of which are useful here.
First he showed that if an inducing isomorphism exists for a projecti-
vity of a free product, then it must be unique. Sadovsky also showed
that any projectivity of a free product G=A*B where A and B are both
of order two is induced by an isomorphism. It is an immediate conse-

quence of Theorem 6 in this paper that any projectivity of a free product
G = A*B where A or B is of order greater than two is induced by an
isomorphism of G; again A and B are non-trivial. Combining these
results we have the following result. Any projectivity of a free product
G=A*B with non-trivial factors A and B is induced by a unique iso-

morphism.
In this paper we partially answer the same questions for the more

general class of free products G = A~ B with amalgamated subgroup
C=AnB, where C is a proper subgroup of both A and B. For the
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definition and elementary properties of free products and free groups
we refer the reader to the Theory of Groups [2] by Kurosh. In Theorem
4 it is shown that any group G=A]B is determined by its lattice of

subgroups L(G), if C is a proper normal subgroup of A and B, and the
index of C in A, [ A : C], or the index of C in B, [B : C], is strictly
greater than two. If in addition C is the center of G, every projectivity
p of G is induced by a unique isomorphism of G (Theorem 6).

These results are certainly not the best possible. It is not difficult

to see that the arguments given below permit us to draw the same con-
clusions with the conditions on C weakened in various significant ways.
However, we have not stated any such extensions of our main result,
partly because we have not been able to prove any that does not involve
rather complicated and artificial conditions, and partly because we have
no evidence that the conclusions do not hold quite generally with the
conditions on C (except for C proper in A and B) simply dropped. It

seems evident that our methods could not yield such a result without
considerable revision and extension.

The methods used here are based upon the following two facts.
The first fact is that any projectivity p from a group G onto a group
H is fully determined by its action on the cyclic subgroups [g] gene-
rated by the elements g of G, since every subgroup K of G is the join
of the cyclic subgroups contained in K. The second fact (due to Baer
L 1 ] ) is that the image of a cyclic subgroup must be cyclic. That is, for
every element g of G there is an element h (not necessarily unique)
such that p [ g ] _ [ h ~ . Combining the two results we see that the

image of the subgroup [gi] v under the projectivity p must

be p([gil v [g2] ) # Ehil v [h2] where p[gi] = [hi] and p[g2] = [h2] . In

this connection it is simple to observe that

hence that

where p[gig2] = [h]. This use of the join preserving property of the
projectivity is one of the rare instances in which lattice theory enters
into our arguments.
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For the moment let G = A*B be a free product, without amalgama-
tion, of non-trivial subgroups A and B, and let p be a projectivity from
some group G’ onto G. Let A’ and B’ be the subgroups of G’ such
that pA’ = A and pB’=B. Sadovsky found that he could pick elements
v’ in G’ and v in G with p [ v’ ] _ [ v ] in such a way that the relation

was an isomorphism from A’ onto A. This isomorphism in turn induced
the restriction of p on A’. In a similar way isomorphisms were determined
from B’ onto B which also induced the projectivity on B’. Sadovsky
then showed that G’ was a free product of A’ and B’, hence that G
and G’ were isomorphic. He left open the problem of extending the
isomorphisms on the components to an isomorphism on G’ inducing p.

Now let p be a projectivity of G’ onto where C is a proper
normal subgroup of A and B, and [A : C] or [B : C] is strictly greater
than two. Again let A’ and B’ be the subgroups of G’ such that pA’=A,
and pB’=B. In Theorem 3 of this paper it is shown that for any element
g’ in G’ there is an isomorphism from [g’] v C’ onto p[g’] v C. Shortly
thereafter it is shown that there are isomorphisms f 1 and f 2 which map
A’ onto A and B’ onto B, respectively, such that f 1 and f 2 agree on C’.
We define f to be the map pieced together from the isomorphisms bet-
ween [g’] v C2 and p[g’] v C. In Theorem 4 it is shown that G’ is

isomorphic to G by showing that f is the natural extension of 11 1 and
f 2 to all of G’.

1. Def initions and Notation.

If gi , ..., gn are elements of the group G, we shall write [gi , ..., gn]
for the subgroup of G generated by gli , ..., gn . We shall also write

[g, , ..., gn , ..., Um ] for the subgroup generated by the elements gi
together with the subsets U; of G. Thus if G1 and G2 are two subgroups
of G, then [ G1 , G2] = G1 v G2 . Throughout the paper we let 1 stand
for the identity subgroup or the first natural number, as appropriate.
If H is a subgroup of the group G, we write H  G. If X and Y are

subsets of a set S, we write X-Y for the complement of Y in X.
We record here the fundamental definitions of this subject and

presume that the introduction provides ample discussion of these topics.
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DEFINITION. Let G and H be groups, and let L(G) and L(H) be
the lattices of subgroups of G and H, respectively. A mapping p from
L(G) into L(H) is a projectivity of G onto H if and only if p is a one

to one mapping of L(G) onto L(H) and for any two subgroups G1 and
G2 in G, p(G1 n G2)=pGi fl pG2 and p[ G1 , G2] _ [ pGl , pG2]. Two
subgroup lattices L(G) and L(H) are said to be isomorphic if and only
if there is a projectivity from G onto H.

DEFINITION. A group G is determined by L(G), its lattice of sub-
groups, if and only if any group H with L(H) isomorphic to L(G) must
itself be isomorphic to G. A projectivity p from a group G onto a group
H is said to be induced by an isomorphism, if there is an isomorphism
o from G onto H such that for any subgroup K in G, kEK }.

We shall use the notation G = A~ B to mean that G is the free

product of its subgroups A and B with amalgamated subgroup C = AnB.
When C is the identity subgroup we shall write simply G=A*B and
call G the free product of A and B, without amalgamation. In fact we
shall never use this notation except under the assumption that C is

properly contained in both A and B; that is, we assume that A - C and
B-C are non-empty.

DEFINITION. Let G = A~ B. Then any expression gi ... gn with

gi alternately in A - C and B - C and with n a positive integer is said
to be a word in G.

In a free product G = A* c B any word gl ... gn considered as a

product in G is an element of the complement of C in G, G - C. Con-
versely every element in G - C can be expressed as a word in G. For
an element w in G - C this representation ... gn as a word in
G is not in general unique, but vv does determine uniquely the length
n and the double cosets Cg1C, ..., CgnC.

In order to see this let gi ... gm and hi ... hn be two words
which represent the same element in G - C, that is gl ... gm=h1 ... hn .
Then his 1 ... ... gm =1, where 1 stands for the identity element
in G. Now hi 1 gi must be in C, for otherwise the expression on the left
is a word or can be written as one. That is if hl and gl are from the
same group and h1181 is not in C, then and gi are all from
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the same set A - C or B - C and

is a word as written. In a similary way if hi and gi are from different
groups then the expression

is a word as written. A simple induction shows that ... gi
is in C, where i is less than or equal to m and n. Hence that m = n and
that hi and gi are both in the same set A - C or B - C. Moreover the
double cosets ChiC and CgiC are equal for each i =1, ..., m, or simply

when C is normal. When C is the identity subgroup of G or
in other words when G = A*B is a free product without amalgamation,
every non-identity element in G has a unique representation as a word
in G.

DEFINITION. Let G = A~ B. Suppose that g is an element of the

complement of C in G and that g==g] ... gn is any representation for
g as a word in G. If gl is in A - C or B - C, we say that g begins with
an element of A or B, respectively. If gn is in A - C or B - C, we say
that g ends with an element of A or B, respectively. We also say that
the length I g I of g is n, and take the length of any element in C to
be zero.

The following results are simple consequences of these definitions.
Let g and h be any two elements in the complement of C in G=A*B.
Then

2) and only if g-I and b both begin with
elements from the same group A or B.

3) If I g I and gh is not an element of C, then gh and g
begin with elements of the same group while gh and h end with elements
from the same group.

Now let A : A designate the set of elements in G-C beginning
and ending with elements of A, and A : B the set of elements beginning
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with elements of A and ending with elements of B. Also let B : A
and B : B be defined similarly. It is easy to see that the set G is the

disjoint union of C, A : A, A : B, B : A, and B : B.

2. Elementary Propositions.

In this section we isolate some rather technical propositions which
are useful in the following section. Throughout the paper we shall reserve
the word proposition for facts from group theory and the word lemma
and theorem for the results about projectivities of groups.

PROPOSITION 1. Let G be a group, N a normal subgroup and V
a non-trivial cyclic subgroup of G. Let U and W be cyclic subgroups
of G. Suppose

Then for any generator w of W there is a unique u in N and there is

a unique v in V such that

Moreover [ v ] = V and [ u, V].

PROOF. Suppose w is some generator of W. From W  [ N, V]
with N normal in G it follows that there are elements u in N and v
in V such that w = uv. If also w = uivi with ul in N and vi in V, then

and VIV-1 are equal and therefore equal to the identity element
in G since V f1 N== 1. Hence u and v are unique in N and V respectively.

From [ U, W] = [U, V] and U:5 N it follows that

Hence

for otherwise
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Thus [ v] = V. But then

and the proposition is proved.

COROLLARY. If in Proposition 1 the subgroup N is in the center
of G, then [ u ] = U.

PROOF. Since N is in the center of G the subgroup [ U, V] is the

direct product of U and V. Hence u is an element of U. Then from

[ u, V ] _ [ U, V ] the conclusion follows.

It is easy to see that in Proposition 1 we could have concluded

that there are unique elements u in U and v in V such that vv = vu.

PROPOSITION. 2. Let G be any group and U, V and W non-trivial

cyclic subgroups of G. Suppose that

Then there is a unique u in U and there is a unique v in V such that

Moreover [ u ] = U and [ v ] = V.

PROOF. We assume that W is not in U or V, for otherwise
U*V = U or U*V = V. Let w be a generator of W. Suppose that U.

Then

and all the elements of [V, W] which begin and end with elements
of U have length three or more. That is, U and imply
the contradiction

Thus U. Similarly w 0 V : V.
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Now w e U : V or w E V : U, and w-1 is in the other. We may
suppose that we U : V. Let

If 1 C n, then U but and we again have the contradiction

Thus

Since U*V is a free product, without amalgamation, there are no other
elements u2 E U, v2 E V such that Furthermore W is infinite

cyclic and its only other generator is U. So ui and

vi are the only two elements of G such that 
We write simply w=uv. The fact that [ u ] = U and [ v ] = V fol-

lows immediately from the relations

Again it is easy to see that in Proposition 2 we could have con-
cluded that there exist unique elements u in U and v in V such that
W= [vu].

PROPOSITION 3. Let G= [t]*[v]*[x, y, z] where t and v are not
of order two. Suppose that

where j, k, I, m, n = ± 1. If or m, n =1, then

PROOF. Let T = [ t ] , V = [ v ] and X = [ x, y, z]. Let w be the
element given by the equated expressions. The expression on the right
shows that 1 ends with an element of V. Hence ;==1 and
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Suppose first that m, n=1. Then k= -1 implies that begins with
x -1 or t-I rather than t as it must. Hence k =1. Similarly 1= 1.

Suppose now that y is non-trivial. Since w ends with an element

of V, l =1 and Thus

Let u be the element given by these expressions. Then either u does
or does not end with an element of X. If u does end with an element
of X, then m =1 and we are done. If u does not end with an element
of X, then k =1 and x is the inverse of y. Now m =1, for otherwise
t is its own inverse.

3. Functions Induced by a Projectivity.

Let p be a projectivity from a group G’ onto a group G. Let v’
be an element of G’ and v an element of G such that p [ v’ ] _ [ v ] . Let
U’ be a subgroup of G’ and U the image of U’ under p.

DEFINITION. Suppose that for every u’ in U’ there is a unique
u in U such that p[u’v’] = [uv] (or p [ v’u’ ] _ [ vu ] ) . Then the function
f defined by f (u’) = u for all elements u’ in U’ is said to be the function
on U’ induced by the projectivity p and the pair (v’, v) with v’ and v
on the right (left).

For a given f unction f from U’ into U we write f = f { .; v’, v)
( f = f (v’, v; .)) if and only if f is the function induced by the projec-
tivity p and the pair (v’, v) with (v’, v) on the right (left). Thus for
any element u’ in U’,

We also say that a function f from U’ into U is induced by the projec-
tivity p if and only if there is a pair of elements v’ in G’ and v in
G such that f = f (.; v’, v) or f = f (v’, v; .). Because there is usually only
one projectivity p under discussion, we sometimes simply say that the
pair (v’, v) induces the functions f(v’, v; .) and f(.; v’, v).

In this section we shall show that functions f = f(.; v’, v) do exist
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for certain subgroups U’ and U and pairs v’ and v. In fact if U’ and
U are the identity subgroups of G’ and G, respectively, and if f is

the function which maps U’ onto U in the only possible way then
f=f(.; v’, v) = f (v’, v; .). In the more general situation in which U’
and U are not trivial groups there may be non-trivial elements u in U

such that p [ v’ ] _ [ uv ] . For example suppose that v has order twelve
in G and that If v’ is any element of G such that

p[v’] = [ v ] , then p [ v’ ] = [ ( v4)v ] . That is the element v4 also corresponds
to the identity of G’. Thus in the following work we shall almost always
assume that [ v ] meets U in the identity subgroup.

For the remainder of this section let p be a projectivity of some
group G’ onto a group G. If H is any subgroup of G we write H’ for
the subgroup of G’ such that pH’ = H.

LEMMA 1. Let N be a normal subgroup of G and V an infinite
cyclic subgroup of G such that V fl N=1. Suppose v’ and v are gene-
rators of V’ and V, respectively. Then for each u’ in N’, there is a unique
u in N such that p[u’v’] = [uv].

PROOF. Let u’ be an element in N’ and U the cyclic subgroup
of N such that p[u’] = U. Also let W be the cyclic subgroup of G such
that p [ u’v’ ] = W. Since

we have [ U, W] = [U, V ] _ [W, V] in G. Thus Proposition 1 is ap-

plicable to the situation at hand.

By Proposition 1 the canonical homomorphism cp from G onto

G/N maps W and V onto the same subgroup V of G/N. 
the restriction of cp to V is an isomorphism of V onto V. However it
is also true thatwnn = 1, since V is an infinite cyclic group. Hence
the restriction of cp to W is an isomorphism of W onto V. Therefore
for any generator v of V there is a unique generator w of W such that

Now if v is the generator of V given in the lemma and w is the
generator of W such that then w=uv where u is unique
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in U since N fl V =1. Combining the uniqueness of w and the unique-
ness of u we have that there is a unique u in N such that p[u’v’] = [uv].

COROLLARY. If in Lemma 1 the subgroup N is in the center of

G, then [ u ] = U.

PROOF. This follows immediately from the corollary to Proposi-
tion 1.

There is of course a « dual » result to Lemma 1 which asserts that
under the conditions of Lemma 1 there is a unique element u in N
such that p[v’u’] = [vu]. The proof uses the « dual » to Proposition 1

which was mentioned after the proof of that Proposition. It is easy to

see that Lemma 1 and its dual show that for all u’ in N’, the conditions

and

define functions on N’. The corollary shows that if N is in the center
of G these functions induce the projectivity which is the restriction of

p to N’.
We return once more to the general situation where G’ and G

satisfy no special conditions. Let U be a subgroup of G. Suppose that
p and (t’, X G induce the function f(.; t’, t) from U’ into U and
that p and (v’, X G induce the function f(.; v’, v) from U’ into
U. It may happen (and frequently does) that f(.; t’, t) = f (.; v’, v).

DEFINITION. Let 0 be a subset of G’ X G. Suppose that every
pair (t’, (together with p) induces a function f(.; t’, t) (f(t’, t; .))
from U’ into U and that all of the maps f(.; t’, t) (f(t’, t; .)) with
(t’, are the same function f from U’ into U. Then f is said to be
the function from U’ into U induced by the projectivity p and the set
0 with 0 on the right (left).

We write f = f (.; 0) (or f=f(8; .)) if and only if f is induced by
p and the set O with (8) on the right (left).
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4. An Extension of a Projectively Induced Function.

Throughout this section let p be a projectivity from some group
G’ onto a group G, let G be the quotient of G with respect to a normal
subgroup N, and let o be the canonical homomorphism from G onto
G = G/N. In studying subgroups of the three groups G’, G, and G, we
shall use the notation, H’, H, and H for subgroups of G’, G, and G,
respectively, which are related by pH’ = H and cpH = H.

LEMMA 2. Let N be a normal subgroup of G, V a non-trivial

cyclic subgroup of G such that V fl N=1, and U a non-trivial cyclic
subgroup of G such that [ U, V I = U*V in G. Let u’ and v’ be genera-
tors of U’ and V’, respectively. Then there is a unique element u in
[ U, N] and a unique element v in V such that p [ u’v’ ] = [ uv ] . Moreover

PROOF. Let p [ u’v’ ] = W. Then from the equations

which hold in G’, it follows that

and

By Proposition 2 there are unique elements u, v, "iV, in G such that

U= [u], V=[i;], W=[-Wl, and w=uv. Since V fl N=1, cp maps V

isomorphically onto V. It is also true that cp maps W isomorphically
onto W, since W is an infinite cyclic group. Now take elements w E W
and so that cp(w)=w and 

Let Then cp(u)=wv-1=u, and u is an element of [ U, N] .
Obviously w = uv and W = [ uv ] . It is also easy to see that there are no

elements uoe[U, N] and such that For otherwise

[ U, V] is not a free product without amalgamation. Thus w is the only
generator of W which can be written as a product of an element in
[ U, N] and an element in V. From V n [U, N ] =1 it follows that u
and v are the only elements in [ U, N] and V, respectively, such that
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w = uv. Theref ore u and v are the unique elements of [ U, N] and V,
respectively, such that p [ u’v’ ] _ [ uv ] . 

_

Since cp maps V isomorphically onto V and since v=cp(v) gene-
rates V, it is easy to see that v generates V. That is [ v ] = V. Thus
[ U, V ] _ [ W, V ] _ [ uv, v] = [u, v ] . Now let uo be a generator of U
and let be the corresponding generator of U. Since u is also
a generator of U, there is an integer k such that

Thus there is an element n in N such that Uo = ukn.
Hence

As we have already seen u is an element of [ U, N] so that

Thus

COROLLARY. If in Lemma 2 it is also assumed that N is in the

center of G, then also [ u ] = U.

PROOF. Let uo be a generator of U. From Lemma 2 we have that

Thus

where k is some integer and n is an element of [ u, v ] n N. Since N
is in the center of G,

Therefore

In a similar way it can be shown that Hence [ u ] = U.
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As in the case of Lemma 1 there is a dual result to Lemma 2 which

asserts that under the conditions of Lemma 2 there are unique u and
v (not necessarily the same elements as in Lemma 2) in [U, N] and
V, respectively, such that

As in Lemma 2 these elements u and v also satisfy the condition [v] = V,
[u, v] = [U, V], and [u, N] = [U, N].

If in Lemma 2 we had also assumed that V had infinite order,
then the pair (v’, v) determined in the Lemma and the projectivity p
would induce a function f(.; v’, v) from N’ into N. We would like to
extend this function from N’ to all of [ U’, N’]. More specifically we
would like to have our extended function be the relation f defined by
f(u’)=u if and only if p[u’v’] = [uv] for all u’ in [ U’, N’]. However,
there may be a u’ in U’ - N’ such that

for some u in [ U, N]. In that case we have by Lemma 2 that there
is no u in [ U, N ] such that p [ u’v’ ] _ [ uv ] , and the relation f is not
a function from [ U’, N’] into [U, N] . In the remainder of this section
we show how to pick v’ and v so that this difficulty can be avoided.

LEMMA 3. (Sadovsky).

a) If u’ and v’ are non-trivial elements of G’ such that p[u’, v’ ]
=p[u’]*p[v’], then there is a unique element u in p[u’] and a

unique element v in p [ v’ ] such that p[u’v’] = [uv]. The elements u
and v generate p[u’] and p[v’], respectively.

b) If in part a) it is also assumed that p[u’] and p[v’] are infinite
cyclic or equivalently that p[u’, v’] is a non-cyclic free group, then

p[(u’)m(v’)n] = [umvn] for all m, n= ± 1.

PROOF.

a) In Lemma 2, let N =1. Given u’ and v’, take U = p [ u’ ] and
V=p[v’]. Then the hypotheses of the lemma are fulfilled, and the
conclusion follows.
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Hence W = [ uv -1 ] . The other cases, i.e. m = -1, n=+l and m,
n = -1, can be verified in a similar way.

In Lemma 4 we use two facts from group theory without proof.
First if G = [ ui , u2 ] * [ t ] * [ v ] where ui , u2 , t, v are non-trivial elements
of G with ul , u2 not necessarily distinct, then H = [ uit, U2V] is a non-

cyclic free subgroup of G. Second let G = [ a, b] and let G = [ a, ~ ] be
the image of G under some homomorphism cp where a=cp(a) and

If G is a non-cyclic free group then G is also a non-cyclic
free group.

LEMMA 4. Let N be a normal subgroup of G, V a non-trivial

subgroup of G such that V f 1 N =1, and U a non-trivial subgroup of G
such that [ U, V ] = U*V. Let t’ and v’ be two elements of G’ such that
p[t’, v’] is a non-cyclic free subgroup of V. Let u’ be an element of
[ U’, N’ ] . Then there are unique u in [ U, N ] , unique t in p[t’], and
unique v in p [ v’ ] such that

PROOF. First let u’ be an element of the complement of N’ in
[ U’, N’ ] . By Lemma 2 we know there are unique ui in [p[u’], N]
and t in p[t’] such that Similarly there are unique u2
in [p[u’], N], and v in p[v’] such that p [ u’v’ ] _ [ u2v ] . We shall

show that and that p[t’v’] = [tv].
The group [t, v] is a free subgroup of V since p[t’, v’] _ [ t, v].

Because V fl N=1 the canonical homomorphism cp from G onto G maps
[t, v ] isomorphically onto [1, v ] , where = cpt, T=gpv. Hence [ t, v ]
is a free subgroup of V. From this fact and from the fact that

[U, V ] = U*V in G it follows that is a free subgroup of G,
where and u2 = cpu2 . Bu t [ ult, is the image of [ ult, 
under the canonical homomorphism cp. Therefore is a free

subgroup of G.
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We are now able to apply Lemma 3 b to the cyclic group generated
by ( u’~’) - lu’v’ _ ( t’) - lv’. Thus there are integers k, l = ± 1 such that

and integers m, n = ± 1 such that

But then (t-1uï1 1)’(u2v)l and (t-1),Vn must both generate the same infinite
cyclic group in G. Therefore there is an integer /=±1 such that

Mapping both sides of this equation by cp into G we have

By Proposition 3

Therefore in G, and consequently in G. Also
since m, n= -E-1, p[(t’)-Iv’l = and by Lemma 3 b p[t’v’] = [tv].

Now let u’ be an element of N’. By Lemma 3 b pick elements t

and v in G so that p[t’] _ [t], p[v’] _ [v], and p[t’v’]=[tv]. By
Lemma 1 there are unique ul and u2 in N such that

We shall show that ul = u2 .

Again [ t, v ] and [ t, v ] are non-cyclic subgroups of V and V,
respectively. Since and we have that [ult, u2v]
is a non-cyclic free subgroup of G. As in the previous case we apply
Lemma 3 b to the cyclic subgroup generated by 
Thus there are integers k, l = ± 1 such that

Since t and v were already selected so that p[t’v’] _ [tv], we have
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by Lemma 3 b that

Thus there is an integer /=±1 such that

in G. Mapping both sides of this equation by cp into G we have

Since 1 and v are a system of free generators for a free group, we
have that

Hence and ui = u2 .

In addition to being unique in [p[u’], N] the element u is unique
in all of [ U, N]. That is, there is no element ui in [U, N] such that

N] and For if there were the elements

u = cp(u) and v = cp(v) would have to satisfy the conditions
and [U-V]=[-ui-vl in U*V. But this is clearly impossible in a free

product without amalgamation.

Thus we see that for each element u’ in [ U’, N’] there is a unique
element u in [ U, N ] such that p[u’v’] = [uv]. Therefore, for all u’
in [ U’, N’], the condition

defines a function f(.; v’, v) from [U’, N’] into [U, N]. In a similar
way it can be shown that there exist analogous functions f(.; t’, t),
f ( v’, v; .) and f(t’, t; .) from [ U’, N’] into [ U, N]. From Lemma 4 and
its « dual » it follows that

and that
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In the next section we show that all four functions are equal. It is

also shown there that the function induced by the projectively p and
the pairs (t’, t) and (v’, v) is an isomorphism from [ U’, N’] onto [ U, N].

5. Isomorphisms Induced by a Projectivity.

Throughout this section let p be a projectivity from some group
G’ onto a group G, N a normal subgroup of G, and cp the canonical

homomorphism from G onto G = G/N. As in Section 4 if H is a sub-

group of G we write H_’ for the subgroup of G’ such that pH’ = H and
H for the subgroup of G such that cpH = H.

LEMMA 5. Suppose there is a non-cyclic free subgroup V of G
such that V f 1 N =1. Then N’ is a normal subgroup of [ N’, V’].

PROOF. Let u’ and v’ be elements of N’ and V’, respectively. We
wish to show that v’-lu’v’ is an element of N’. Let t’ be one of the
numerous elements of V’ such that p[t’, v’ ] is a non-cyclic free sub-
group of V. For such t’, u’, and v’ we shall show that the subgroup
H’ _ [ t’u’v’, t’v’] meets [ v’, N’] in N’, that is

But (v’)-lu’v’=(t’v’)-1(t’u’v’) is an element of the intersection on the

left, and consequently an element of N’.
By Lemma 3 there are unique elements t and v in G such that

p[t’]=[t], p[v’] _ [v] and p[t’v’] _ [tv]. By Lemma 1 there is a

unique u in N such that p [ t’u’ ] _ [ tu ] . We let H=pH’, H=cpH,
t = cpt, and We first show that H n or H n must be the

identity subgroup of G. Then we show that H=[Fvl and that

From this we conclude that both N’ ] and JFff1[Y, N’] are

contained in N’. 
_

Since [ tu, v] and [ t, v ] have the same image under cp in G, it

follows that [ tu, v ] is a non-cyclic free subgroup of V. By Lemma 3
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there are integers k, t = ± 1 such that Thus

tv] and The four possibilities f or H are

It is easy to see that

Hence H f 1 = 1 or H f 1 [ v ] =1. Consequently N] or H f 1 [ v, N]
is contained in N. But this means that N’] or H’ n [v’, N’] is

contained in N’.

Up to this point we have shown that I 
or (v’) -’u’v’ is an

element of N’. It remains to be shown that both elements are in N’.
We suppose without loss of generality that in N’. Then

t’u’v’=u’it’v’. By Lemma 1 there is a unique element u, in N such that

Hence and

But this means that both H’ n [t’, N’ ] and H’ n [v’, N’ ] are in N’.
Hence (v’)-lu’v’ must be an element of N’, for all v’ in V’.

COROLLARY. With the same notation as in the proof of Lemma
5 we have that for each element u’ in N’ there is a unique element u
in N such that p[t’u’] .- [tu], p[u’v’] _ [uv], and p[t’u’v’l = [tuv].

PROOF. Let u’ be some element of N’. We have already seen that
there are unique elements u, and u2 in N such that and

p[x/T/]=[M2~]. By Lemmas 5 and 1 there is a unique element u3 in

N such that
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In this corollary we show that 
We show first that Because [ tui , v ] is a non-cyclic free

subgroup of G, there are by Lemma 3 two integers k, l = ± 1 such

that

Hence there is an integer ;=±1 such that

If and T=O(v) in G this equation implies that

By the uniqueness of representation of elements in a free group

j, k, I= -E-1. Therefore ui = u3 .
A similar argument shows that u2 = u3 .

We are now able to prove our first major result.

THEOREM 1. Let p be a projectivity from a group G’ onto a group
G. Let N be a normal subgroup of the group G and N’ the subgroup
of G’ such that pN’ = N. Suppose there is a non-cyclic free subgroup V
of G such that V f 1 N =1. Then N’ is isomorphic to N.

PROOF. Let t’ and v’ be in V’ such that p[t’, v’] is a non-cyclic
free group and let t and v be elements of V such that p[t’] = [t],
p[v’]=[v], and p [ t’v’ ] _ [ tv ] . We shall show that the function

f = f {t’, t; .) from N’ into N induced by p and the pair (t’, t) with (t’, t)
on the left is an isomorphism from N’ onto N.

Accordingly let u’1 , u 2 be two elements in N’ and let u’= u’iu’2
If u=f(u’), and u2=f(u’2), we have by Lemma 1, that

and by the Corollary to Lemma 5 that p [ u’2v’ ] _ [ u2v ] ,
and p[t’u’v’] = [tuv]. Let t = cp_(t) and v = cp(v). As before the fact that
[1, v ] is a free subgroup of G implies that is a free sub-

group of V. Thus by Lemma 3 there are integers k, 1= ± 1 such that
p [ t’u’m2v’ ] = From this fact it follows that there is an

integer i such that in G
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Consequently in G

Again by uniqueness of representation in a free group it follows that

j, k, l = -I-1 and u = ulu2 . Thus f is a homomorphism because

To show that the mapping f is one to one and onto, we show that
it has an inverse. Since N’ is normal in [N’, V’] and N’ fl V’ is the

identity subgroup of G’, we have by Lemma 1 that for each element u

in N there is a unique element u’ in N’ such that p-1 [ tu ] _ [ t’u’ ] . It

is easy to see that the function g defined by g(u)=u’ for each element
u in N is the inverse of f.

COROLLARY 1. Here the notation is the same as in Theorem 1

and its proof; in particular f = f (t’, t; .) is the function which was just
shown to be an isomorphism from N’ onto N. Let

Then

That is, f is the function induced by p and the set 0 with O on the
left or with O on the right.

PROOF. By Lemma 1 the projectivity p and any pair (x’, 
induce the functions f(x’, x; ,) and f(.; x’, x) from N’ into N. By the
remarks following Lemma 4 we have that

However by the Corollary to Lemma 5

Hence (t’, t) and (v’, v) induce the function f from N’ into N on the
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left and on the right. The fact that ( t’ -1, t -1 ) and ( v’ -1, v -1 ) induce
the f unction f follows from the fact that for all

m, n=±1.

COROLLARY 2. Here again the notation is the same as in Theorem
1 and its proof. Suppose now, however, that N is in the center of G.

Then the isomorphism f = f (t’,t; .) induces p from N’ onto N. That is,
for every subgroup K’  N’

PROOF. By the Corollary to Lemma 1.

We are now ready to fulfill the promises made at the end of Sec-
tion 4.

THEOREM 2. Let p be a projectivity from G’ onto G. Let N be
a normal subgroup of G and U a subgroup of G. Suppose that there is

a non-cyclic free subgroup V of G such that V fl N =1 and [ U, V ] = U*V
in G = G/N. Then [V’, N’] is isomorphic to [ U, N].

PROOF. Let t’ and v’ be two elements in G’ such that p[t’, v’ ]
is a non-cyclic free subgroup of V. Pick t and v in G so that p[t’] = [t],
p[v’]=[v], and p[t’v’]=[tv]. Let f(t’, t; .) be the function from

[ U’, N’] into [ U, N] induced by p and ( t’, t) with ( t’, t) on the left,
and let f(.; v’, v) be the function from [U’, N’] into [U, N] induced
by p and (v’, v) with (v’, v) on the right. We first show that

by showing that for each u’ in [ U’, N’] there is a unique u in N such
that p[t’u’] = [tu], p[u’v’] _ [uv], and p[t’u’v’] = [tuv]. By the Co-
rollary to Lemma 5 this result is true for all u’ in N’.

Thus let u’ be an element of the complement of N’ in [ U’, N’],
and let ui and u2 be the unique elements of [ U, N ] such that p [ t’u’ ] _

and p [ u’v’ ] _ [ u2v ] . Then by Lemma 3 b there are unique
integers k, l, m, n = ± 1 such that
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since [ t, U2V] and [ tul , v ] are non-cyclic free subgroups of G. But then
there is an integer /=±1 such that

Mapping into G by cp and applying Proposition 3 we have that

Letting we have the preliminary result.
We can now show that the function f = f (t’, t; .) = f (.; v’, v) is a

homomorphism. Let U’1 and u’2 be arbitrary elements in U’. If u’l and
u’2 are both elements of N’, then f (u’lu 2) = f (u’1) f (u 2) by Theorem 1.
Thus we may suppose that U’1 or u’2 is not in N’. Let u’ = u’lu’2 and
u = f(u’iu’2). Then as we have just seen

By Lemma 3 b there are integers k, l = ± 1 such that

By mapping into G and applying Proposition 3 again we have that

The homomorphism f is also one to one and onto. By Lemma 2 if
u’ is in the complement of N’ in [ U’, N’] , then [ p[ u’], v] = [f(u’), v] .
Since [ p [ u’] , v ] ~ [ v ] , f (u’) cannot be the identity element in G. Since
the restriction of f to N’ is an isomorphism, the kernel of f must be
the identity subgroup of G’. Hence f must be one to one. To show
that f maps [ U’, N’] onto [ U, N] it suffices to show that for any

N ] - N there is a preimage for u under f . Let u’ be an element
of [ U’, N’] such that p [ u’ ] _ [ u ] , and let f ( u’) = uo . By Lemma 2

Hence there is an integer k and an element n in N such that u = Uok n.
By Theorem 1 there is an n’ in N’ such that f (n’) = n. Thus (u’)kn’ is

the preimage of u under f .



365

COROLLARY 1. Here the notation is the same as in Theorem 2 and

its proof; in particular f = f (t’, t; .) is the function which was just
shown to be an isomorphism from [ U’, N’ ] onto [ U, N]. Let

Then

PROOF. In Theorem 2 it was shown that

From the remarks following Lemma 4 we have that

Since = [ tmvn] for all m, n = ± 1, the pairs (t’-l, t-1) and

~( v’ -1, also induce the isomorphism f from [ U’, N’] onto [ U, N].

COROLLARY 2. Here again the notation is the same as in Theorem
2 and its proof. Suppose, however, that N is in the center of G. Then
the isomorphism f=f(t’, t; .) induces p from [ U’, N’ ] onto [ U, N].
That is, for every subgroup K’  [ U’, N’]

PROOF. By the Corollary to Lemma 2.

6. Free Subgroups of G = A~B

Throughout this section let G=A~B be a free product of its sub-

groups A and B with amalgamated subgroup normal in G.

Let cp be the canonical homomorphism from G onto the quotient group
G/C = G. For any subgroup H of G we write H for the image of H
under cp, i.e. It is easy to see that G is a f ree product, without
amalgamation, of its subgroups A and B. That is G=A*B. It is also

true that any expression



366

for an element g as a word in G will be mapped by cp to

which is the expression for peg) as a word in G. Hence the length
of an element g in G is the length of cp(g) in G. Also if g E A : A (B : B)
in G, then A (B : B) in G.

Now let U be a subgroup of G which except for elements of C is
contained in A : A. Also let V be a subgroup of G which except for
elements of C is contained in B : B. Then the non-trivial elements of
U and V are contained in A : : A and _8 : B, respectively. It is an ele-

mentary consequence of the fact that G is a free product, without amal-
gamation, of its subgroups A and B and of the definition of free pro-
duct, without amalgamation, that [ U, V] is also a free product, without
amalgamation, of U and V. That is, [ U, V ] = U*V.

We use the following definition to show similar results.

DEFINITION. Let I and r be elements of G. We write I r for the
set of all elements u in G which have a factorization u = lxr in G such

In addition we say that a set U is a factor
set if and only if there are elements I and r in G such that r.

Factor sets, of course, are infinite sets. For example, if the ele-

ments I and r begin and end with elements of A, then I B)r.
Here the set on the right is the set of all products lur with u E B : B.

In a similar way other choices of I and r yield other sets X such that
If S is a set of elements in G, we write S - I for the set

consisting of the inverses of all elements in S. It is easy to show that

(II r)-I=r-lI1-1. .
Consider for a moment the following basic example. Let I and r

be two elements of G such that I I _ ~ I r I and rl is not an element of

C. It is obvious that I and r are not elements of C. As we saw in

Section 1, rl and r begin with elements from the same group A or B
while rl and I end with elements from the same group A or B. If v is

an element of the set I r and h is the element of G such that v = lhr,
then
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since the length function is additive over the factorization of v2 given
by the parentheses. In a similar way it can be shown that for any

positive integer k,

Hence any element v in has infinite order and 
The next proposition is a simple, but important, extension of the

idea in the above example. We remind the reader that if H is a sub-

group of G, then H = cpH.

PROPOSITION 4. r, k and s be elements of G. Let L==ll r
and Let U and V be subgroups of G which are contained in
L U L-1 U C and K U K-1 U C, respectively. If

1) and

2) rk, sl, rs-1, and l-lk are not elements of C, then

PROOF. We need only show that any product

with the elements gi alternately in U - C and V - C has length strictly
greater than one in G. From the fact that U - C and V - C are contained
in L U L-1 and K U Kri, respectively, it follows that for any i

where li is one of the elements I, k, r-1, s-1; ri is one of the elements

r, s, I-’, k-1; and 1=lli 1+lhil+1 
Therefore

Since the elements gi and gi+i are alternately in U - C and V - C and
since conditions 1) and 2) hold, it follows that (rdi+l) and ri begin with
elements from the same group A or B while (rili) and li end with ele-
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ments from the same group A or B. Therefore the length function is
additive over the factorization of g given by the parentheses. Hence
the length of g must be greater than 1 in G.

Another way of saying that the product gh of two elements g and
h in G is not in C is to say that the cossets g-iC and hC are distinct.
Because of this fact the following notation can more economically ex-
press lengthy conditions similar to 1) and 2) in Proposition 4.

DEFINITION. Let gi , ..., gn be n elements in G. We write

A(gi , ..., gn } if and only if 1) all the gi have the same length and 2)
all the cosets giC are distinct.

Our next proposition provides us with a tool for constructing free
groups in G = A~B.

PROPOSITION 5. Let li , ..., In and rl , ..., rn be elements of G such
that

Then any set vi , ..., vn with is a system of free generators
of a free group V such that V f 1 C =1.

PROOF. As we saw earlier each vi has infinite order, since by the
given condition _ ~ I and is not an element of C. We now
show that V is the free product, without amalgamation, of the cyclic
subgroups generated by the elements vi , ..., vn . Let

be any product such that g; is a non-trivial element of one of the sub-

groups [v;] and no two adjacent elements g; and gi+i are from the same
group. It suffices to show that g has length greater than one in G.

Now if then gj= kjhjsj where 41 is one of the elements l i or

ri 1, si one of the elements ri or and We
have that

From the fact that no two adjacent elements gi and g¡+1 are from the
same group and the condition n{ li , ..., it follows that
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and that We now have that siki, 1 and s; begin
with elements from the same group, and that and k;+1 end with
elements from the same group. Therefore the length function is additive
over the factorization of g given by the parentheses. Consequently the
length of g must be greater than one in G, as was to be shown.

Again let G=A3B with C normal in G and let A and B be the

images of A and B under the canonical homomorphism (p from G onto

G/C. When C has index two in A and B, then there is only one non-trivial
element in A and B and there are exactly two words of any given length
in G. Apart from this case, i.e. when [ A : C ] &#x3E; 2 or [B : C ] &#x3E; 2, there
are least two words of length two in A : B and hence at least 2n of length
2n. Thus for any positive integer n there are n-distinct elements in G
which have the same length and which begin with elements of A. Of
course there is a similar set of n elements beginning with elements
of B. Hence there are n elements gi , ..., gn in G beginning with elements
of A (or B) such that A(gi, ..., gn }. Proposition 6 is a simple consequence
of this fact.

PROPOSITION 6. Suppose [A : C] &#x3E; 2 or [B : C] &#x3E; 2. Then the

following are true.

a) There are non-cyclic free subgroups S and T of G such that

b) For any cyclic subgroup U of G which is not contained in

C, there is a non-cyclic free subgroup V of G such that V f l C =1 and

PROOF.

a) Let b be any element of B-C. Let I, r-1, k, and s-’ be any
set of elements in G beginning with elements of A such that A(l, r-1,
k, s~~). As we have seen such sets do exist in G, when [A : C] &#x3E; 2
or [B : C] &#x3E;2. The crucial fact here is that A(bl, b-1r-1, bk, 
Then by Proposition 5 any subgroup S = [ t, v] where tebl’ rb and

is a non-cyclic free subgroup of G which meets C in the

identity subgroup. That is, S n C == 1. It is easy to see that S is con-

tained in (B : B) U C. Hence [A, 
The proof of the existence of the subgroup T mentioned in the
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statement of the proposition is the dual of the result just shown.

b) The cyclic subgroup U must be contained in one and only one
of the following sets

according to which sets A : A, B : B or A : B contain a generator for
U. If U is in (A : A) U C, then the subgroup S constructed in part a)
does the job because it is also true that [U, S] =U*S. Similarly if U is
contained in (B : B) U C, then the subgroup T from a) is satisfactory.

It remains to show the result for the case in which U has a gene-
rator u in A : B. Suppose that

is some representation for u as a word in G. By hypothesis [A : C] &#x3E; 2
or [B : C] &#x3E; 2. Suppose without loss of generality that [B : C] &#x3E; 2.
Then there are two elements b and d in B - C such that bnb and 
are not elements of C. Since dal and are also not in C and since

al , bn , b and d all have length one, it is possible to apply Proposition
4 to the sets bl and K = bid and to the group U which is con-
tained in L U L-1 U C. That is, if V is any subgroup contained in

then [ U, V ] = U*V. If l, r, k, and s are as in
part a) and if tebll rd and then V = [ t, v ] is a non-cyclic
free subgroup of G (contained in (b such that
V fl C=1 and [U, V] = [U*V].

It is not hard to see that we have proved much more than we
started to prove. The following corollary sums up what has been shown.
Again suppose [A : C] &#x3E; 2 or [B : C] &#x3E; 2.

COROLLARY. Let U be a subgroup of G such that either a) U is
contained in (A : A) U C or (B : B) U C, or b) U is a cyclic subgroup
of G with a generator in A : B. Then there are sets L = l r and 
with s-1), which have the following property. Any sub-
group V=[t, v] generated by t E L U L-1 and satisfies the
condition [ U, V ] = U*V .
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Our next proposition and its corollary embody the basic idea under-
lying our main theorem.

PROPOSITION 7. Suppose [A : C] &#x3E; 2 or [B : C] &#x3E; 2. Let gi , ..., gn
be any n elements (not necessarily distinct) in the complement of C in
G. Then there are n elements hl , ..., hn such that

PROOF. First suppose that all of the gi begin with elements of A.
Take ki , ..., kn so that all of the numbers _ ~ I are equal.
Then either all of the elements giki end with elements of A or all of
the elements giki end with elements of B. Suppose without loss of ge-
nerality that all of the end with elements of B. Let ri , ..., rn be a
set of n elements in G such that

a) all of the ri begin with elements of A, and

We saw that such sets do exist in the remarks preceding Proposition
6. Now take Since ki ends with an element of B and ri begins
with an element of A,

Consequently

Since the factors cp(ri) of the elements 9(gikiri) are all distinct in G, the
elements are themselves all distinct in G. Hence

Or

The proof is the very same if all of the elements gi begin with
elements of B. In the general case suppose that the first m of the gt

begin with elements of A and the rest of the gi begin with elements
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of B. First take ki , ..., km and km+1, ..., kn so that

and

for all i. Now pick ri so that all of the numbers
are equal. Let hi=kiri. Then

and

However, since all of the elements have the same length and since
gihl , ..., begin with elements of A while gnhn begin
with elements of B, we have

COROLLARY. Suppose [A : C] &#x3E; 2 or [B : 
be n factor sets (not necessarily distinct). Then there are elements

k1 , ..., kn and si , ..., sn such that

PROOF. Consider the collection gi = 1, , g2 = Y1 1, g3 = l2 , ..., gzn-1=
= ln , By Proposition 7 there are elements hl , ..., h2n such that
I 1=1 1+1 and A { gihl , ..., g2nh2n }· Take k¡=hi where

j = (i -I-1 )/2 when i is odd and take s; = hi where j = i/2 when i is even.

Then

and
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From

and

it follows that

7. Projectivities onto a Free Product G = 

In this section let p be a projectivity from a group G’ onto the
group We assume that C is a proper normal subgroup of A
and B and that [A : C] &#x3E; 2 or [B : C] &#x3E; 2. We write A’, B’ and C’ for
the subgroups of G’ such that pA’ = A, pB’=B, and pC’ = C. Applying
our previous results to this situation we have the following theorem.

THEOREM 3.

a) A’, B’, and C’ are isomorphic to A, B, and C, respectively.

b) If U is any cyclic subgroup of G and U’ the subgroup of G’
such that pU’ = U, then [U’, C’] is isomorphic to [U, C].

PROOF. By Proposition 6 there are non-cyclic free subgroups S,
T, and V such that

and

By Theorem 1 the existence of any one of these subgroups S, T, or
V guarantees that C’ is isomorphic to C. From the fact that

and from Theorem 2 it follows that A’, B’ and [ U’, C’ ] are isomorphic
to A, B, and [ I~, C ] , respectively.
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Even though Theorem 3 has some interest of its own, it lacks
sufficient detail to be useful in the proof of the main theorem. At the
same time Theorem 3 only uses part of what we have shown. For

example, by the Corollary to Proposition 6 there are very many non-
cyclic free subgroups V = [ t, v] in G such that [ U, where
U is a cyclic subgroup of G. Hence by the Corollary to Theorem 2 there
are many different pairs (t’, t) inducing isomorphisms from [U’, C’] onto
[U, C ] . In Lemmas A, B, C, and D we shall show that most of these
pairs (t’, t) induce the same isomorphism.

Again let p, G’, and G satisfy the conditions given in the intro-
duction. Throughout this section if H is a subgroup of G we write H’
for the subgroup of G’ such that pH’=H and we write H for the sub-
group of G = G/C which is the image of H under the canonical homo-
morphism from G onto G. As one might expect the range of a set 0
of ordered pairs in G’ X G will be taken to be the set of all t E G such
that there is a t’eG’ with (t’, 

DEFINITION. We say that two subsets 0 and (D of G’ X G are

compatible if and only if the ranges of e and (D are factor sets and
for any (t’, and (v’, the following hold:

a) v ] is a non-cyclic free group such that V f 1 C =1, and

We shall say that a subset 0 of G’ &#x3E;C G is stable if there is a sub-
set 40 of G’ X G such that 0 and (D are compatible. It is easy to see

that 0 and o are compatible if and only if C and 0 are compatible.
If we define

it is also easy to see that 0 - 
I and o are compatible when 0 and 0

are compatible. Further if Oo and 410 are subsets of compatible sets 0
and 1&#x3E;, respectively, and if Oo and (Do have ranges which are factor sets,
then Oo and (Do are compatible.

Now let 0 and o be compatible sets with respective ranges I r
and k , s. Let I~ be a subgroup of G such that [ U, V ] = U*V for any
subgroup V=[t, v] with r and s. If (t’, and (v’, 
then by the Corollary to Theorem 2 the pair (t’, t) induces the isomor-
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phism f ( t’, t; .) and f(.; t’, t) from [ U’, C’] onto [ U, C] while the pair
(v’, v) induces the isomorphism f(v’, v; .) and f(.; v’, v) from [U’, C’]
onto [ U, C ] . By the same corollary all of these isomorphisms are the
same. Moreover if (t’i , ti) and (t’2 , t2) are any elements of O then the
isomorphism f(t’l, ti; .) and f (t’2 , t2; .) are equal since for any (v’, v)e(D

and

Thus all of the pairs (t’, induce the same isomorphism from

[ U’, C’] onto [ U, C]. Similarly all of the pairs (v’, induce the
same isomorphism from [ U’, C’] onto [ U, C]. Thus we have shown
that 0 and (D induce the isomorphism

from [ U’, C’ ] onto [ U, C ] . In a similar way its can be shown that if

0 and o are compatible sets, then 0 and o induce the isomorphism

from C’ onto C. Because the isomorphisms induced by 0 and o are the
same on the left and the right we speak simply of the isomorphism
determined by 0 and C.

DEFINITION. We say that two subsets 0 and 0 of G’ X G de-
termine an isomorphism f from [ U’, C’] onto [U, C] if and only if

1)0 and o are compatible sets with respective ranges I r
and k ~ s,

2) [U, V ] = U*V for any subgroup V=[t, v] with 
s or

2’) U is a subgroup of C, and

3) f is the isomorphism from [U’, C’] onto [U, C] induced by
p and 0 with 0 on the left or right.
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The following lemma gives non-trivial examples of functions deter-
mined by sets of pairs.

LEMMA A. Let U be a subgroup of G not contained in C. Sup-
pose that either a) U is cyclic or b) is contained in (A : A) U C or
(B : B) U C. Then there is an isomorphism f from [U’, C’] onto [U, C]
which is determined by compatible sets 0 and (D in G’ X G.

PROOF. Let U be a subgroup of G satisfying the hypothesis. By
the remarks preceding the definition of an isomorphism determined by
two sets 0 and 4&#x3E; in G’ X G it suffices to show that there exist two

compatible sets O and (D with respective ranges l ! r and k ~ s such that
[U, V ] = U*V f or any subgroup V=[t, v] with and By
the Corollary to Proposition 6 there are factor sets II, and in G

such that A { l, r-1, k, and [ U, V ] = U*V for any subgroup V = [ t, v]
with and s. By Proposition 5 any such subgroup V = [ t, v]
must be a non-cyclic free group meeting C in the identity subgroup.

It is fairly easy to see that I ) r and k I s would serve admirably
as the ranges of appropriate compatible sets O and C. Thus we set out
to construct compatible sets with these ranges. We first pick toel r
and It is a simple consequence of Lemma 3 b that there are
unique generators t’o and v’o of p-’[tol and respectively, such
that

We now define

and

There is a problem. It is conceivable that or

p[t’v’o] = for some r and some generator t’ of p-’[t].
However, this is impossible. If u’ an element of U’ - C’, there is by
Lemma 4 an element u in [p[u’], C] such that p[u’t’o] = [ uto] and

p[u’v’o] = [ uvo] . By Lemma 2 we have that u and vo are the only elements
of [p[u’], C] and respectively such that p [ u’v’o ] _ [ uvo] . But
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either equation

would imply (by Lemma 4 again) that there is an element u, in

[ p [ u’ ] , C] such that A plain contradiction. By
Lemma 3 b we have that for any r and s there are unique
generators t’ and v’ of and respectively, such that

p[t’v’o]=[tvo] and p[t’ov’] = [tov]. Applying Lemma 4 twice we have
first that

and then that

for every (t’, and (v’, Thus the sets 0 and o satisfy all
of the conditions for compatible sets.

Our next lemma plays an important role in the proof of the main
theorem. Again we assume that p is a projectivity from some group G’
onto G=A§B as in the introduction to this section. Let x’ and y’ be
elements of G’. Also let f be an isomorphism from [x’, C’] onto

[p[x’], C] which is determined by compatible sets 2 and 0 in G’ X G.
Similarly let h be an isomorphism from [ y’, C’ ] onto [ p [ y’ ] , C] which
is determined by compatible sets II and (D in G’ X G. If x = f (x’) and
y=h(y’), then we know that x and y are the only elements of [p[x’], C]
and [ p [ y’ ] , C], respectively, such that

and

We also have

LEMMA B. There are stable subsets 81 and contained in 0

and 1&#x3E;, respectively, such that
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for every

PROOF. In Theorem 2 we saw that

for arbitrary pairs (t’, and (s’, s) E ~. Similarly

for any pair (u’, and any pair (v’, Now if some set tx, yv,
s, u is a system of free generators of the subgroup [ tx, yv, s, u ] , then
by Lemmas 3 and 4 we must have

Thus we are led to construct stable subsets 1:1, 01, IIi , and y of ~,
0, II, and ~, respectively, such that the subgroup [ tx, yv, s, u ] is a

free group of rank 4 for any t, v, s, u in the respective ranges of 81 ,
Ci. 1:1 , III .

Let the set e, CP, ~, and II have respective ranges I m n,
and o q. We may suppose that rx and r begin with an element from
the same group A or B, because there is always a factor set I 
such that rox and ro begin with an element from the same group A or
B. Similarly we suppose that yk and k end with an element from the
same group A or B. Consider the array

By the Corollary to Proposition 7 there are elements lo , ro , ko , so ,

mo , no , oo , qo in G such that

and
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and

Since rx and r begin with an element from the same group

For similar reasons

Now take li = llo , ki = kko , mi = mmo , nl = non , oi = o00

and qi = qoq. Let 81 , 2i, and III be the stable subsets of ©, V, £,
and III, respectively, with respective ranges 11 I ’1, ki si , mi ~ ni and
ol qi . Since

we have by Proposition 5 that the subgroup [ tx, yv, s, u ] is a free

group of rank 4 for any t, v, s, u in Ilirl, and 01 I ql ,
respectively.

The following statement of this result though more technical is

frequently useful. The proof has already been given.
COROLLARY. The set 0 contains a stable subset 81 with range

11 ri and the set ~ contains a stable subset with range k1 sl such
that

and that

for every (t’, and (v’, 
In particular this corollary is used in the proof of Lemma C.

LEMMA C. Let U be a subgroup of G. Let f and h be isomor-
phisms from [ U’, C’ ] onto [ U, C] which are determined by pairs of
compatible sets in G’ X G. Then
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PROOF. Let e be one of a pair of compatible sets which determine
f and let C be one of a pair of compatible sets which determine h.
Let u’ be an element of [U’, C’] and let ui= f(u’), u2=h(u’). It suffices
to show that

We know that

and

By the Corollary to Lemma B we know that there are stable subsets

81 of 0 and cI&#x3E;1 of (D, with respective ranges 11 and ki si such that

and that

for all (t’, t) E O1 and (v’, In this application of Lemma B the
elments u’, and ui correspond to the elements x’ and x, respectively,
while the identity elements of G’ and G correspond to the elements y’
and y, respectively.

Now 81 is still one of a pair of compatible sets which determine
f . Similarly is still one of a pair of compatible sets determining h.
Applying the Corollary to Lemma B once more to 81 and we have
that there are stable subsets 02 of 81 and 4h of ~1 with respective
ranges 12172 and s2 such that

and that

for every (t’, and (v’, Since 02 is a subset of 0, and
is a subset of ~1 we still have

for all ( t’, and ( v’, 
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Now let t be an element of l2 ~ r2 and v an element of k2 ~ s2 . Since
A {~2, rz 1,u2k2 , S 2 1 }, it follows that [ t, is a non-cyclic free group.
Thus the group generated by either tuiv or tu2v must be an infinite

cyclic subgroup of G. Hence there is an integer ;=±1, such that

However from the conditions placed on ki , rl and k2 , r2 we have that
both tulv and tu2v are elements of 12 I S2. Since 1 and l2 ~ s2 are
disjoint, it is impossible for i to be minus one. Therefore

and consequently

as was to be shown.

We can now speak of the isomorphism from A’ onto A (B’ onto B)
which is determined by a pair of compatible sets. We also have the

following important definition.

DEFINITION. Let g’ be an element of G’. Let h be the isomor-

phism from [ g’, C’ ] onto [p[g’], C] which is determined by a pair
of compatible sets. We define f to be the mapping from G’ onto G such
that f (g’) = h(g’) for each g’ in G’.

We write f i for the restriction of f to A’ and f 2 for the restriction
of f to B’. It is easy to see that f 1 ( f 2) is the isomorphism from A’ onto
A (B’ onto B) determined by a pair of compatible sets. More generally
if U is any conjugate of A or B in G, then the restriction of f to U’
is the isomorphism from U’ onto U determined by a pair of compatible
subsets.

In the next lemma a pair of compatible sets are constructed which
determine both f 1 and f 2 .

LEMMA D. Let U be any cyclic subgroup of G. Let h be the

isomorphism from [ U’, C’ ] onto [ U, C] which is determined by a pair
of sets in G’ X G. Then there is a pair of compatible sets which de-

termine the isomorphism h, fi and f 2 .

PROOF. In Lemma A we saw that there were two compatible
sets 0 and (D contained in either G’ X (A : A) or G’ X (B : B) which
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determined the isomorphism h from [ U’, C’] onto [ U, C] . Suppose for
instance that O and o are in G’ X (A : A). Then 0 and (D, also deter-

mine the isomorphism f 2 from B’ onto B. We shall now show that com-
patible subsets O1 and (Dl of O and (D, respectively, can be selected so
that O1 and determine the isomorphism f i from A’ onto A. Since
f 2 and h are induced by each pair in O in 0, the sets 01 and will
still determine h and f z .

Let ai , a2 , a3 , a4 be four elements in A - C such that 0 is con-

tained in G’ X a2) and (D is contained in G’ X (a3 a4). As we saw
in the Corollary to Proposition 7, there are elements r, k, and s in
G such that A { l, r-’, k, s-1 ~ and that ra2 and a2k sa4 are contained
in the ranges of O and (D, respectively. We see that I j r and k ~ s are
contained in B : B. Thus any subgroup V = [ t, v_] with and

is a non-cyclic free subgroup of G and [A, V] = A*V. For
this reason the subgroup T = [alta2 , a3va4] satisfies the condition

[A, But this shows that all subgroups vi] with
and satisfy the condition [A, T] =A*T. Now let

O1 be the subset of (8) with range all and let CP1 be the subset of
C with range a3k Certainly O1 and are compatible. Hence 0,
and 4&#x3E;i must determine the isomorphism from A’ onto A. Thus the

compatible sets 01 and determine f i , f 2 , and h.

8. Main Theorems.

Throughout this section we let G be a free product of its subgroups
A and B with amalgamated subgroup C =A n B properly contained in
A and B. We also suppose that [A : C] &#x3E; 2 or [B : C] &#x3E; 2. That is,
the index of C in A is greater than two or the index of C in B is greater
than two. We now have the following fundamental theorem.

THEOREM 4. If C is a normal subgroup of G, then G is deter-
mined by its lattice of subgroups.

PROOF. Let p be a projectivity from some group G’ onto G. As
we saw in the previous section there is one and only one isomorphism
f 1 from A’= p-lA onto A which is determined by a pair of compatible
sets in G’X G. Similarly there is one and only one isomorphism f 2 from
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onto B which is determined .by a pair of compatible sets in

G’X G. By Lemma C, f i and f 2 must agree on C’ = A’ f 1 B’; by Theorem
1, f 1 and f 2 must map C’ onto C. We also take f to be the map defined
in Section 7. It should be recalled that f I and f 2 are the restrictions of
f to A’ and B’, respectively.

We show that G’ is isomorphic to G by showing that G’ is the
free product of A’ and B’ with amalgamated subgroup C’. Specifically
we show that

where

is any product of n factors w’i with the w’i alternately in A’ - C’ and
B’ - C’. The desired conclusion is an easy consequence of this result,
as we see now. Since vv’i is in A’ or B’, is the image of vv’i
under the appropriate map f i or f 2 . Hence f(w’) is a word of length
n in G and thereby a non-trivial element of G. From the fact that f
restricted to [w’, C’] is an isomorphism, it follows that w’ cannot be
the identity element of G’. By definition G’ must be a free product of
its subgroups A’ and B’ with amalgamated subgroup 

The proof proceeds by induction on n, the number of factors in

the product

If n =1, then vv’ = vv’1 and f (vv’) = f (w’1). Assuming the result for
all products with k -1 factors, we then show that

for some product

with k factors w’i alternately in A’ - C’ and B’ - C’. First consider the
factorization
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where and y’=w’2 ..., If h is the isomorphism from
[ w’, C’ ] into G determined by a pair of sets in G’ X G, then by Lemma
D we can take 0 to be one of a pair of compatible sets which deter-
mine fl , f 2 , and h. We now have that for all (t’, 

where and x= f (w’1). Also let (D be one of a pair of compatible
sets which determine the isomorphism from [y’, C’] into G. Thus for

where y = f ( w’2) ... by the induction assumption.
In Lemma B we saw that there were stable subsets 81 and ~1 of

0 and 1&#x3E;’, respectively, with respective ranges ri and k1 sl such that

Now 8t is one of a pair of compatible sets which determine f i , f 2 ,
and h. Similarly Ci is also one of a pair of compatible sets which deter-
mine the isomorphism from [y’, C’] into G. So let e2 and P2 be stable
subsets of O1 and respectively, with respective ranges /2) r2 and
k2 ~ s2 such that

ii) p[t’w’v’] = [ twv ] for all (t’, t)ee2 and (v’, 

As in the proof of Lemma C the conditions a) and i) guarantee
that

Hence

as was to be shown.

Since G’ is a free product of its subgroups A’ and B’, we know
that there is one and only one homomorphism from G’ into G which
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extends f i and f 2 . From the fact that

for any product w’ = W’t ... w’n with the n-factors w’i alternately in
A’ - C’ and B’ - C’ it follows that f is the homomorphism which extends
f 1 and f2. From the same fact it also follows that f maps G’ onto G,
that the kernel of f is trivial, and consequently that f is an isomorphism
from G’ onto G.

In our last theorem we shall show that f induces p when C is in
the center of G. For the moment we content ourselves with pointing
out the following fact.

THEOREM 5. With the same notation as in Theorem 4 and its

proof, we have that the isomorphism f induces the projectivity p on
all subgroups H’ of G’ which have trivial intersection with C’ i.e.

pK’= fK’ for all subgroups K’ of H’. Moreover f is the only isomorphism
of G’ mapping A’ onto A and B’ onto B for which this is true.

PROOF. To see this let U’ be a cyclic subgroup of _G’ which has
trivial intersection with C’. As usual let U = pU’ and let U be the image
of U under the canonical homomorphism from G onto G/C. Let O and 4D
be compatible sets which determine an isomorphism h from [U’, C’]
onto [ U, C]. Of course h is just the restriction of f to [ U’, C’ ] . Also
let V = [t, v] with t and v in the respective ranges of O and 4&#x3E;. Because
© and 4&#x3E; are compatible sets which determine h, we have that V is a
non-cyclic free group, that V f ? C =1, and that [ U, V]=Ü*V. -
_ 

From the fact that U f 1 C =1 and V f l C =1 it follows that U and
V are isomorphic to U and V, respectively. Thus the subgroup [ U, V]
has a homomorphic image [U, V ] which is isomorphic to the free

product, without amalgamation, of the groups U and V. This means
that [ U, V] must itself be the free product of its subgroups U and V,
i.e. [ U, V ] = U*V. By Theorem 2 and its Corollaries the restriction

of f to U induces the projectivity p from U’ onto U. Thus pU’= f U’
for every cyclic subgroup U’ of G’ with U’ fl C’ =1’. If H’ is a sub-

group of G’ which has trivial intersection with C’, then p is induced

by f on every cyclic subgroup of H’. Consequently p is induced by
f on H’.
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Suppose h is some other isomorphism having this property and
that hA’ = A and hB’ = B. Then for all a’ in A’ - C’ and b’ in B’-C’

For fixed a’, b’ there is a c in C such that

since f(a’)f(b’) = h(a’)h(b’). Letting a’ and then b’ vary separately over
the elements of A’ - C’ and B’ - C’, respectively, we see that

and

Now either [A’ : C’] &#x3E; 2 or [B’ : C’] &#x3E; 2. Suppose without loss
of generality that [A’ : C’] &#x3E; 2 and that a’i , a’2 are two elements of
A’ - C’ such that is in A’ - C’. Then

and

It is easy to see that c must be the identity in G and that f and
h must be the same isomorphism.

From Theorem 5 it follows that it there is an isomorphism which
induces the projectivity p, it must be f . The following theorem shows
that under certain conditions f does induce p. We remind the reader
that throughout this section G has been assumed to be a free product
of its subgroups A and B with amalgamated subgroup where

THEOREM 6. If C is the center G, then every projectivity of G
is induced by a unique isomorphism.
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PROOF. Let p be a projectivity from some group G’ onto G.

From the Corollaries to Lemma 1 and 2 it follows that f induces p on
all of the cyclic subgroups of G’. That is pU’= f U’ for any cyclic sub-
group U’ of G’. Hence pH’ = f H’ for any subgroup H’ of G’. By defi-
nition p is induced by f .
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