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STUDIES OF SOME ITEMS OF THE LATTICE THEORY
IN RELATION TO THE HILBERT - HERMITE SPACE

OTTON MARTIN NIKODÝM *)

Introduction.

The present paper discusses some items in the theories of lattices,
measure theory and separable complete Hilbert-Hermite space. These
items seem to be useful not only as mathematical theories, but also as
mathematical tools for the general theories of Quantum Mechanics. In
this respect the paper may be considered as a continuation of the book

by the author: « Mathematical Apparatus for Quantum theories. Springer
Verlag 1966, X+952 pp. ».

The paper contains three Chapters, oc, ~3, y, and the last chapter y
is composed of three sections.

The part of the paper are:

a) Study of the Cantor-Mac Neille’s measure - extension device
for Boole’an lattices.

~3) A study in the cartesian product of abstract measured Boole’an
lattices.

y) Contains three Sections:

Section 1. A special metric topology on the lattice of all closed

subspaces in the separable and complete Hilbert-Hermite space.

Section 2. Measure - topologies on a geometrical tribe of spaces in
the Hilbert-Hermite space.

*) Indirizzo dell’A.: Utica, N. Y. 21 Higby Road - 13501 U.S.A.
This paper in composed under a grant of the U.S.A. National Science Foun-

dation.
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Section 3. Linearization of geometrical tribes of spaces in the Hil-
bert-Hermite space.

We shall continuously refer to various items in the quoted book
of the author. The references to that book are indicated by capital let-
ters accompanied (or not) by numbers eg. [B.2.13], [AI.3.01, [DI].

References to items of the present paper are indicated by a, ~3, y
and some numbers, eg. [a.2.3], [.a12.1], [y.4].

All quotation-codes have the parenthesis []. The purpose of this

way of notation is to facilitate the author in referring to his previous
papers.

CHAPTER 0152.

STUDY OF THE CANTOR-MAC NEILLE’S MEASURE-EXTENSION DEVICE
FOR BOOLEAN LATTICES

a.I. For terminology and references concerning tribes, we refer,
in general, to the chapter [A] of our book: « Mathematical apparatus
for quantum-theories, Springer-Verlag, 1966, X+pp. 952 ».

However, in this respect, we shall recall some items.
By a tribe (Boolean lattice) we understand any complementary and

distributive lattice. Its elements will be called somata, (sing.: soma).
A lattice is an ordering (  ), (partial ordering), for which the union

(join, sum), a + b, and the intersection, (meet, product), a - b of two somata
a, b are always meaningful, [A.1.3 ] .

The lattice is said to be complementary, whenever it possesses the
« smallest &#x3E;&#x3E; soma, the zero, null 0, and also the « greatest » soma, the
unit, 1, and when for every soma a there exists another one co a, the

complement of a, such that

The lattice is said distributive, whenever
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For a lattice we define the difference a - b by a. co b and the

algebraic addition by

called usually « symmetric difference ».
In discrimination we call a+b somatic sum.
The tribe is said to be trivial, when it contains only one soma 0 =1.

The « smallest », non trivial tribe is that containing only two somata
0 and 1.

a. 1.1. By a measure (finitely additive) ond the tribe ‘~ we un-
derstand any non-negative-valued function of the varisble some 1),
defined for all somata a ~ , and having the properties

We call 2) additivity (finite additivity).
The measure is said to be trivial, whenever for all a.

The measure is called effective whenever the following is true:

(1,. t. t .1. If, in a tribe C, we keep the multiplication, but change
the addition a+ b into a+ b, we reorganize the tribe into a commutative
ring with unit 1. We call this ring « Stone’s ring ».

cx.1.1.2. REMARK. Given a Stone’s ring2) (called also Boolean ring),
i.e. a ring with a.a=a, and we change its addition a -~- b into

1) To emphasize that the letter a denotes a variable q u a n t i t y , we
shall use the dot placed over the letter: a.

If M is a correspondence (relation), Q M will denote its domain and D M

its range.
The symbol =j means definition.
2) G. Birkhoff, Lattice Theory, American Math. Soc. Colloquium Publications.

Vol. XXV. Revised edition, p. 154.
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a+b=dfa+a.b+b, we get a tribe with ordering ( ~ ), defined by

a.1.2. Thus there is a 1--~ 1 correspondence between tribes and
Stone’s rings.

a.1.3. Since can be conceived as ring, we can speak of ideals
in it.

a.2. If we define the distance between the somata a, b of the
tribe ’6, by

we get a kind of a set-topology, whose « points» are somata of Z;, and
which may be complete or not.

Now, using something like Cauchy’s fundamental sequences, known
in the Cantor’s theory of irrational numbers, we can extend the tribe V
together with the measure (1.

We call it Cantor-Mac Neille-s-extension of the measured tribe 3).

a.3. In the just quoted paper the said extension in given by the
statements of main theorems, but there are no explicite proofs. The de-
finitions are given but for proofs sometimes short indications only,
though some results are far from being obvious and requiring only
straight forward reasoning.

Since the Mac Neille’s extension does not coincide with the ge-
neralized Lebesgue’s one [A1.6], it seems to be in order to supply the
theory with explicite proofs. We shall show at the end of the present
paper, that even, if we deal with simple Boolean lattices, whose somata
are proint-sets, the Mac Neille’s extension can i n t r o d u c e new

elements, (sometimes), which are no sets at all.

3) H. Mac Neille, Proceedings of the National Academy of Sciences, Vol.
24, n. 4, pp. 188-193 (1938).
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a.4. In the present paper, the results of Mac Neille’s are com-

pleted and everywhere clarity and logical precision are aimed at. Espe-
cially « identifications », commonly used of entities having different lo-
gical type, will be avoided, as logically incorrect ~).

oc.4.l. We start with recallection of auxiliaries, mainly dealing
with properties of the algebraic addition a-~- b of somata of a tribe.

a.5. We have

The algebraic addition is commutative and associative. We have the
distributive law:

We also have

a.5.t. Supposing g(a) is a non trivial measure on G, we have the
properties, stated in [a. 1.1]. We also have:

oc.5.2. For any a, b we have 

4) The content of the present paper constitutes a part of my lectures at the
Mathematical Institute of the University in Naples, in 1965.
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a.5.3. For any a, b we have

a.5.4. We also have:

a.6. DEFINITION. By the distance between the somata a, b we un-
derstand the number

a.6. I.We have

The notion a, b ,~ is invariant with respect to the equality ( _ ) of
somata of ’G. This means that if a = al , b = bi , then

We have

The above yields the following theorem:

oc.6.2. THEOREM. The following are equivalent:
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I. la, b implies a = b;
II. The measure ~,(a) is effective, which means that:

« if p.,(a)=O, then a=0 .

a.6.3. THEOREM. The notion of distance organizes the tribe ’b
into a metric space, whenever the measure p,(~) is effective.

This topology may be neither complete, nor separable, but is satisfies
the « f irst Hausdorf f condition» of countability.

oc.7. Now even in the general case of measure, a kind of topology
can be introduced in ’6; this in the following way:

The collection of all somata p, with ~,(p) = o, is and ideal J in

DiM, [ A.9 ] 5), 

a.7.1. The ideal j reorganizes ’C into a n e w o r d e r i n g o n

~, denoted by or by

and defined by the condition

On Gj we get a new equality of somata

defined by

which is equivalent to

5) On a tribe it, the ideal I is defined as any not empty subset of 6, satisfying
the condition [ A.9.1. ] :

1 ) if a, bel, then 

2) if a E J, b.-5a, then b E J.
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The ordering Gj is a finitely additive tribe with ( = J) as governing
equality in it, [ A ] .

oc.7.2. The ordering (:5 J) generates the new operations a+ b,
a ~’ b, co’ b which are invariant with respect to that equality.

We have

so the operations on Gj can be replaced by the analogous operations in
’6. This can be done in any respective formula, but only the symbols
( _ ), (:5), must be replaced by ( = J), (  J).

oc.7.3. The measure ~,(a) is invariant with respect to ( =J), i.e.

if a=J b, then ~,(a) _ ~,(b).

oc.7.4. The measure &#x3E; is e f f e c t i v e on ’bJ, i.e. if .(a) = o,
then a = 70.

Indeed, let ~c(a) = o. We have a = a -~ 0; hence hence

a.7.5. The distance a, b 1, is invariant with respect to ( = J), i.e.

if b =’ bi , then

a.7.6. Thus the equality (=~) reorganizes ’U into a metric space.
We sometimes call Gj modulo 1.

Gj has the same somata as ’6; only the ordering (~) and the go-
verning equality (=) on ’Z; are replaced by (::51) and ( _’) respectively.

a.8. Thus the presence of measure v allows to organize the tribe
G into a metric space, and the measure v, which may be not effective,
can be changed into an effective one just by a suitable change of the
governing equality on G, and whithout changing the somata.
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The presence of measure allows to perform another important chan-
ge of the tribe: it allows to amplify the tribe and extend the measure to
an effective one.

This will be performed by introducing so called 11 - fun dam e n -
tal sequences of somata of ’6.

a.8.0. HYPOTHESIS. We admit, in the sequel, that G is a finitely
additive, non trivial tribe, and that ~,(a) is a finitely additive, non trivial
measure on ’6, (which may be not effective).

dc.8.1. DEFINITION. An infinite sequence (ai) of somata of

~ will be termed ~,- f undamental sequence, whenever for every F-&#x3E;O
there exists an index N, such that if n _&#x3E; N, m _&#x3E; N, we have

a.8.2 DEFINITION. An infinite sequence } of somata of ’6
will be termed sequence, whenever

The following, rather obvious theorems, hold true:

?.8.3. THEOREM. The notion of fundamental sequence and that
of a null-sequence are both invariant with respect to the ti-equality,
(:5tt) i.e. (:51). This means that if { an is a fundamental [null] sequence
and

{ a’n I is also a (.1-fundamental [null] sequence.

a.8.4. THEOREM. A (.1-null-sequence is also a (.1-fundamental se-

quence.

a.8.5. THEOREM. The constant sequence { a, a, ..., a, ... is a &#x3E;-fun-
damental sequence.
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a.8.6. THEOREM. A subsequence { ak(n) of a p-fundamental [null]-
sequence is also a p-fundamental [null]-sequence.

a.8.7. THEOREM. If, given a (.1-fundamental [null]-sequence, we
perform on it a finite number of arbitrary changes, then the sequence
remains to be (1-fundamental [null].

a..8.8. THEOREM. If ( an ) is a v-fundamental [null] sequence, then
{ co an } is also a p-fundamental [null] sequence.

a.8.9. THEOREM. If (an), (bn) } are both v-fundamental [null] se-

quences, then

are also all v-fundamental [null] sequences.

oc.9. DEFINITION. The &#x3E;-fundamental sequences {an} } is said to be

equivalent to the p-fundamental sequence ( bK) :

whenever { an -j- bn } is a (1-null-sequence.

a.9.1. THEOREM. The equivalence (==) of fundamental sequences
is reflexive, symmetric and transitive.

It is also invariant with respect to the (=~1) equality, (it is ( = J)
equality), and with respect to ( --’ )-equality.

oc.9.2. THEOREM. Any two (1-null-sequences are ( :-)-equivalent, and
(== )-equivalent to the constant l1-null-sequence { 0, 0, ..., 0, ... }.

oc.9.3. DEFINITION. For fundamental &#x3E;-sequences we define the

,operation of the algebraic addition and multiplication as follows:

~,.9.4. THEOREM. The above operations on fundamental sequences,
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are invariant with respect to the ( -’-- )-equality of (.1-fundamental sequen-
ces. They are commutative, associative and distributive. They obey the
rules of algebra of Stone’s ring, where the zero and the unit of the ring
are defined as { D, 0, ..., 0, ...}, { 1, 1, ..., 1, ...) } and denoted { 0 } ,
{ 1 } respectively.

Thus the collection of all (.1-fundamental sequences i s o r g a -
nized into a Stone’s ring with (--’..) as governing equality.

a.9.5. THEOREM. The corresponding tribe [c~.1.2.] is given by
the ordering

or equivalently by

This tribe is finitely additive.

Its somata are p-fundamental sequences and (==) is its governing
equality. 

_

If G is the given tribe, we shall denote by ’6 the new tribe, made
of &#x3E;-fundamental sequences. 

-

The addition of somata in G is

We also have

and

The somata { 1 }, { 0 } are the same both in the ring as well as in
the tribe ‘~.

oc.9.9. The somata { a, a, ..., a, ...} } are order - and ope-
ration-isomorphic to the somata a of ’6.
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Thus the tribe t is a finitely genuine supertribe of ’-C through the
above isomorphism, [A.7].

The tribe ~ will be termed Cantor-Mac Neille’s extension o f ’b.

a.10. The tribe ~ having been introduced, we are now going to
consider measure-circumstances.

cx.10.2. THEOREM. If } is a ti-fundamental sequence then
lim v(an) exists.
n-+ 00

PROOF. Let { an } be a fundamental sequence, and There

exists no , such that for every n &#x3E;_ no and every we have [a.8.1.]:

Taking account of the inequality [ oc.5 .3 . ) :

we get

Consequently

a.tO.3 THEOREM. Iif { an }, { bn are fundamental sequences, and if

then

PROOF. Let { an }, { bn I be two equivalent fundamental sequences,
then, [cc.9.L {an+bn} } is a null-sequence. Hence, [ a.8.2 . ] ,
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It follows, [ oc.5 .3 . ] ,

The limits

exist, [a. 10.2.].
Consequently, by (1),

oc.11. DEFINITION. If t an } is a &#x3E;-fundamental sequence, then the
number

is termed measure of ( ai).

a.l 1.1. THEOREM. If } is a fundamental sequences, then

The measures is invariant with respect to the equivalence (==) of
fundamental sequences, [ a.10.3 . ] .

The measures is not trivial, because 1, ..., 1, ...}==p~)&#x3E;0.

a.11.2. THEOREM. The measure t is effective on the tribe fi,
[ a..l.t. ] .

PROOF. Suppose where (aK) is a (1-fundamental se-

quence.
We have, 

Hence (ai) } is a v-null sequence, [a.8.2.]; hence, [ a.9.2. ] , it is

equivalent to the constant sequence (0), which is the zero of the tribe
t, [ 0~.9.4. ] .
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The theorem is proved.

oc.11.3_. THEOREM. The measure {1 is an extension of the measure

~ on iM to t through the correspondence

valid for all a E a G.

PROOF. The correspondence (2) is 1 2013&#x3E; 1, [a.9.9.], and we have

a.H.4. THEOREM. For v-fundamental sequences { an }, { bn } we

have

PROOF. We have, [a.5.2.],

We also have

and

Hence, from (a), by going to limit, we get:

a. 11. 5. THEOREM. The measure li on © is finitely additive.

PROOF. Let {an}, { bn } be fundamental sequences, and suppose
that



41

We have, [a.9.3.],

hence is a null-sequence, [ oc.8.2. ] , [ oc.9.2. ] ; this gives

Now, we have for any n:

where all three terms, on the right, are disjoint.
Since 11 is additive, we get

Proceeding to the limit, we get, by (4),

hence

(1,. t t .6. THEORM. If 1. { an }, { bn } are &#x3E;-fundamental sequences,

then

PROOF. Put

We have
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Hence, [a.lL5.L

(5)

By hyp. 2 we have

hence by (5)

(6)

Now

hence

Applying [a.11.5.], we get

which implies

a.11.7. THEOREM. If {an}  {bn L which means that 
but { an }, { bn } are (---’-)-different, then

PROOF. By the preceeding theorem, we have

Put

We have
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hence, [ oc.11.5. ] ,

By hypothesis we have, [ a.9 .5 . ] ,

hence by (8) we get

(9)

We also have

hence

From (9) and (10) we get, by virtue of additivity of the measure ~,:

I say, that we cannot have p(ci )= 0.
Indeed, suppote that g( CIi} } = o. 

-

By virtue of effectiveness of the measure (1 we would get

Taking account of (9), we would get

so we would have

which is excluded by hypothesis.
Thus we have proved that
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Taking account of (11) we get

oc.11.8. We have constructed a tribe whose somata are -fun-
damental sequences and whose governing equality is the equivelence of
these sequences. The given tribe ~ is a finitely genuine, finitely additive
subtribe of t, [A.7], through the correspondence

We have also extended the measure ~, on iM into a new one, aA }
of somata of iM.

We have a, ..., a, ... } for all 
The measure J.1 has been proved to be effective and finitely additive.

a.11.9. REMARK. We may remark that, if we use the above exten-
sion of tribe and measure, starting with ’(;¡.t i.e. with ’bJ (the tribe ‘~
modulo J, [ oc.7.6. ] ), we shall get the extension ~j of the tribe Gj and
measure, which, however coincides with ~.

- 

a.12. Now we are going to prove that the tribe G and the measure
v are both denumerably additive.

The proof will be supplied by means of several lemmas.

a. 12.1. The applied method of fundamental sequences of somata
is general, so it can also be applied to the tribe G and 1-i. The only dif-
ference is that the measures is effective, while J.1 may be not.

a. 12.2. DEFINITION. Thus we put for two fundamental sequences,
A, B,

the « distance » between two somata of lu.

a.12.3. THEOREM. This notion is invariant with respect to the
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equivalence ( = ) of somata of G, [a.9.]; i.e. if A~A’, B==B’, then

a. 12.4. THEOREM. We have

a.12.5. THEOREM. The followings rules are valid:

a.12.6. THEOREM. The following are equivalent:

PROOF. Let II; i.e. A===B.
We have

because the algebraic addition is (~)-invariant.
As

we get

and then

so I follows.
Now let I, Le. II A, B))==0.
By [ a.12.2. ] we have
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Since the measure v is effective, it follows

This gives:

hence

hence

The theorem is established.

a.13. The notion of distance 11 A, B j) of two fundamental sequen-
ces organizes the tribe ~ into a metrice space, owing to the property
[a.12.6.].

a.l3.l. DEFINITION. In this thopology we can define the notion
of limit of a sequence

of somata of ’(; in the usual way:

We say that P a limit of the sequence ( 1 ), whenever for every s &#x3E; 0,
there exists and index no such that, for every we have

a.13.2 THEOREM. If a sequence (1) possesses a limit, this limit
is ( !-)-unique.

PROOF. Suppose that P’, P" are limits of the sequence Pi, P2, ..., Pn.

Choose s&#x3E; 0 and find no such that for all n &#x3E; no we have
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Also find an index mo such that, for all n &#x3E;_ mo ,

It follows that, for all n&#x3E;max (no , mo), we have valid both the

inequalities (2) and (3).
We get, [ ~c.12 .5 . ] :

This being true for it follows

. Hence, by [ oc.12.6. ] we obtain

a.t3.3. DEFINITION. The limit P of the sequence Pi , P2 , ..., Pn , ...

will be denoted

So we have

a.. 13.4. THEOREM. The finite operations on somata of ’6 are con-
tinuous in the topology on ~.

PROOF. Let

Take E &#x3E; 0 and find no such that, for all n &#x3E;_ no , we have
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It follows that, [a.5.]:

This completes the proof of the continuity of the somatic addition
in~.

a..13.4a. Let

Take s&#x3E;0 and find no such that for all n &#x3E; no:

We have in general

Hence from (4) it follows

which completes the proof of continuity of the operation of complemen-
tation.

oc.13.4b. To prove the continuity of all other finite operations, we
notice that

and apply [a,13.4.] and [a.13.4a.].

a. 13.5. THEOREM. The measure on ~ is a continuous function
of P in the t-topology.

PROOF. Let
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We have for all n:

Find no such that for all n _&#x3E; no

Now we have

Applying (1) we get

for all n &#x3E; no . Thus the continuity is established.

a. 14. DEFINITION. Let Pal , P2, ..., Pn , ... be a sequence of somata
of G. We say that the sequence satisfies the Cauchy-condition, whenever
for every £&#x3E;0 there exists an 4ndex no such that, for every n’ &#x3E;_ no and
n" &#x3E; no , we have

~a.14.1. THEOREM. If Lim Pn exists, then the sequence Pi, P2 , ...,

Pn , ... satisfies the Cauchy-condition.

PROOF. Let

Find no such that for every n &#x3E;_ no we have

Take any indices n’, 
We have
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We get

which completes the proof.

oc.14.2. DEFINITION. Infinite sequence Pn of somata of G satisfying
the Cauchy-condition may be termed fundamental sequences in t.

a.14.3. THEOREM. A constant sequence P, P, ..., P, ..., where

possesses the limit P; hence it is a fundamental sequence in ~.

OG.14.4. LEMMA. Let

be a fundamental sequence of somata of ’6.
0

We shall consider the following constant fundamental sequences:

We shall prove that

PROOF. Let e&#x3E;0; find and index no , such that for any n &#x3E;_ no
and any k &#x3E;_ no , we have

Keep n fixed and vary k. We have the sequence
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This is a fundamental sequence, because so is

and

too.

From (6) we get

[4], for all n &#x3E; no .
Now let us vary n =1, 2, .... We get

This being true for it follows

hence

because the measure It is non negative.
It follows, by [ a.11. ] , that

This says that given J&#x3E; 0, we can find an index mo , such that for
every n &#x3E; no ;
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i.e.

for all n ? no . Hence

a.14.5. THEOREM. If the sequence A1 , A2 , ..., An , ... of somata
of (t) satisfies the Cauchy-condition, then the limit

exists, and is a soma of (‘~).

PROOF. Let

By virtue of the lemma [a. 14.4.],

the sequence of constant fundamental sequences

tends to ak .
Take s&#x3E; 0. By definition of Lim there exists, for every k, an index

n(k), such that

Put
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for all k. We get

and if we define

we get

Now we have supposed that the sequence Ai, A2, ..., Ak, ... sa-

tisfies the Cauchy-condition. Therefore there exists ko such that if k’ &#x3E;_ ko
and k" ~ ko , we get

From (3) we get

and

We have

hence, by (4), (5), (6),

hence

Since Bk’ and Bk are constant fundamental sequences, it follows
that Bk,+Bk,, is also a constant fundamental sequence.
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We have

hence

and then

Hence, by (7),

hence

which implies that

is a fundamental sequence.
Now we can see that Lim An=B, so that the limit Lim An exists

n-+ 00

Indeed, we have, by the Lemma [ oc.14.4. ] :

hence

for sufficiently great index n.
We also have for suf f icientl great index, (5),

Hence
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Consequently

for sufficiently great index n.
This proves that

The theorem is established.

u.14.6. The last theorem shows that the ’b-topology is complete.

a.t4.7. One can see that if starting with the tribe ~, instead of
’b, we can apply the above method of completing, considering -fun-
damental sequences, the tribe ‘ will be not essentially extended; this
extension will be only illusionary: it will give a tribe which is iso-

morphic and isometric with t.

a. 15. Till now have proved that the tribe fi is finitely additive
and that the measure p on it is also finitely additive.

Now we are going to prove that is denumerably additive i.e. that
if A1 , A2 , An , ... are somata of t, then the lattice union exists

(in ~).

a,.15.1. THEOREM. We have already proved that if

are somata of ’6, i.e. fundamental sequences in fi, then the following
are equivalent:

I. 1 A, , A2 , ..., An , ...} } is a &#x3E;-fundamental sequence, in ~.

II. Lim An exists, and is a soma of ~.
-

III. The sequence (1) satisfies the Cauchy’s condition:

For exery s&#x3E;0, there exists no such that, if n’ &#x3E; no and n" ? no ,
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then

We shall state some properties of « Lim »:

_ 

a.15.2. THEOREM. If { An’ }, } are fundamental sequences in

G, and if for every n we have

then

0.15.3. THEOREM.

a.15.4. THEOREM.

and

a.15.5. THEOREM. If An is a constant sequence { A, A, ..., A, ...)
in 1"6, then

a. 15.6. THEOREM. If

then

OG.15.7. THEOREM. If
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then

a.16.8. THEOREM.

?.16.9. THEOREM. If

and

then A~B.

PROOF.

is equivalent to

Hence,

o

i.e.

which implies
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OG.IE.lU. LEMMA. If

are somata of 

then

Put

We have, by hypothesis,

Applying [a.16.9.], we get

hence

Applying the lemma [ a.14.4. ] , we obtain

oc.16.11. LEMMA. If
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then

i.e. it is a ’b-fundamental sequence.

PROOF. We have

That sequence is bounded, because I1(pn):5 I1( 1) for all n =1, 2, ...

and the terms v(pn) are all non-negative.
Take E &#x3E; o. There exists no such that if n&#x3E;no, n" 2: n’, we have

It follows

The somata pn--- p.,, being disjoint, it follows

i.e.

for all

Hence { pn is a ’b-fundamental sequence; hence it is a soma of ‘~.
The lemma is established.

U.16.12. LEMMA. If
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then we have, for the G-fundamental sequence, [a, 16.11.],

the inequalties Pk~P for every k =1, 2, ....

PROOF. The thesis of the theorem is equivalent to the statement:

Hence it is also equivalent to

Now we have for all n and k:

Hence

because

hence

Consequently the thesis is equivalent to:

We can prove that (2) is true.

Indeed let us f ix k and vary n.
We have for all n&#x3E;k:

by hypothesis 2.
Hence



61

which gives

so (2) is true, and then the thesis is true.

oc.lC.l3. LEMMA. If

1. ai , a2 , ..., an , ... are somata of ’Z;;

3. B is the sequence bi, I b2 , ..., bn , ...;

then

1) B is a fi-fundamental sequence, i.e. a soma of ~;

2) the somatic union Y_ Ak exists in ’6;
k=1

PROOF. Put Bk = df { bk , bk , ... }, By virtute of Lemma [ a.16.11 ]
the sequence {b1, b2 , ..., bn, ... I is a ’Z;-fundamental sequence, i.e. a

soma of Hence, [ a. 16.12. ],

Having that, suppose that for a given soma Q of t we have

Since B is a soma of t, and we have Bk~Q for k =1, 2, ... and
also we have

Hence, by [cLl6.9.L
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Thus we have the statements:

and if Bk Q for all k, then B  Q.
It follows, by virtue of defnition of lattice-union of somata, that

the denumerable somatic sum

exists in t, and that

We have

Hence

It follows, by [A], that

The theorem is established.

-a..17. REMARK. Till now we have proved that the infinite union
in ’b

exists for somata Ak of ’b, which have the form

where 
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Now we shall prove that the union exists for any somata fi.

c.17.1. Starting with and ,, we have constructed l1-fundamen-
tal sequences, getting another tribe ’6, whose somata are ’b-I1-fundamen-
tal sequences. 

-’ -

Now we can apply to t a similar construction, getting a tribe ’b,
whose somata are p-fundamental sequences of somata of ‘~,

Denoting by capitals A, B the somata of fi and by fat capitals
A, B - the somata of G, consider an infinite sequence

of somata of ’6. Let us write (1) in the form

We can prove that the somatic union

exists in ’b
Let us write (2) in the form

Now between t and G there is the one-to one isomorphic correspon-
dence, defined by a new notion Lim of the limit. We have

It follows, by (2), that the somatic union

exists in ~.

a.17.2. THEOREM. We have proved that the tribe fi is denume-

rably additive, i.e. if Ai , A2 , ... is an infinite sequence of somata of Z;,
then the somatic (lattice) union exists in 16.
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a.18. Let us go over to measure circumstances. We have the
theorem:

THEOREM. If

2. they are disyoint, i.e.

then

PROOF. We take over the notations of the preceeding proof.

Put

We get

because (.1 is continuous.
Since

we get

because the somata An are disjoint and p is finitely additive.
Thus
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a. 19. We have proved that the tribe t is d e n u e m e r ab I y
a d d i t i v e , but we can have more, by proving that it is completely
additive.

Indeed. Wecken has proved the following general theorem [AI.1.1 ] :
If

1. lll is a denumerably additive, not trivial tribe;

2. 9 admits a denumerably additive not trivial measure 0;

3. The measure ~(a) is effective i.e. if cr(a)=O, then cc = 0,

then

1 ) ~ is completely additive i.e. if M is any not empty collection
of somata of ~, then

this even is true when the collection M is non denumerable.

2) if M is any non empty collection of somata of then there

exists an infinite sequence pi , p~ , ..., pn , ... of somata of M, such that

Applying that theorem to our case G, we see that ~ is completely
additive.

a. 19.1. Let us make the following remark:
The tribe ’bJ, [A], cannot be considered as an extension of ~, be-

cause some somata of ’6 are considered as ( = J)-equal; hence the situation
in fij looks like reducing the number of somata.

Now we see that the tribes ~ and made of fundamental se-

quences, are composed of the same somata of ~, though with differently
defined equalities.

But the tribe ~ contains elements which do not exist in ’bJ; thus
t can be considered as a true extension of ’bJ .

a. 19.2. It will be interesting to apply the obtained results to a

particular case, where the somata of fi are some subsets of a given
variety 9H.
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Especially let M be the set of all points of the half open interval

hence of a set of numbers.
Let G be the collection of all finite unions

of half open subintervals of (0, 1 ), i.e.

Notice that

whenever 
Let the ordering in ’6 be the inclusion of sets: p  q.
We see that ~ is a finitely additive tribe, whose somata are some

subsets of (0, 1).
We define on i§ the following finitely additive measure 
If

with disjoint terms, we define

where f(x) is an increasing and bounded real number-valued function of
the variable point x in (0, 1 ~.

Thus if

then

«e see that the measure p 0 is effective and finitely additive.
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a.19.3. We shall consider the following example of the function
f(x):

Let

We shall prove that there does not exist any correspondence 4f
between the somata of ’6 and subsets of the interval (0, 1 ) which sa-
tisfies the following conditions:

for all in (0, 1 ),

2) If A, B are somata G i.e. fundamental sequences in ’b, with
then O(A) . O(B ) = 0.

3) If A1  A2  ...  An  ... are somata of t, with

then

with

then

with

Let us remark that sets making up the region of the correspondence
O, should be understood as sets taken modulo the ideal of null sets.



68

These entities are sets, but they are provided with a governing
equality, determined by the ideal of null-sets.

The non-existence of the correspondence 4&#x3E; implies that the Mac-
Neilles extension may differ from the generalized Lebesgue extension
[AI] within a supertribe.

Especially we shall prove that, in our example, to the fundamental
sequence

there cannot correspond any subset of (0, 1 ), but only an abstract entity,
which is not set all of the kind considered.

To prove that, suppose that the said correspondence 0, exists, and
consider the following somata of ’9:

where

- 

These somata are disjoint, and their corresponding values of the
p,-measure are respectively:

Now we have

Hence the measures (1) are respectively the limits of the sequences:

Hence these measures are 2 , 4 , 4 .
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Thus we have

As the function f(x) is continuous in (0, 2 ) and in (1, 1), it

follows that

Since the three fundamental sequences P, Q, R are disjoint, we get

i.e. the set composed of the single number 2.
It follows that

By continuity of f(x), the measure of every point in (0, -}) and
( il, 1 ~ is = 0. The only point, having a positive messure is the point -’-

But then it follows that

which is not true, because by definition

The contradiction proves that the supposed correspondence (D does
not exist.

oc.20. THEOREM. Whatever the non-trivial tribe ’6 may be, and
whatever any (finitely additive, finite, non trivial, non negative measure
on it may be, the Cantor-Mac Neille’s extension t always exists. It is

completely additive, and the extended measure is effective and denu-

merably additive. The extension does not always coincide with Le-

besgue’,s covering extension. If the somata of fi are sets, the Cantor-
Mac Neille’s extension may contain somata which are no sets at all
of the kind considered.
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CHAPTER 0.

A STUDY IN THE CARTESIAN PRODUCT OF ABSTRACT,
MEASURED BOOLE’AN LATTICES.

0.0. Though the notion of cartesian product (sometimes called
« ~cross-product » ) is an important notion and of frequent use, I did not
succeed to find in the literature a satisfactory foundation of the theory of
this notion.

In the present paper I am presenting a precise and clear setting
of the theory of that matter, owing to a suitable change of the definition
of inclusion of elements of the cross-product, and by means of using a
special notion of « grate ».

The content of the present paper has not been published, but only
presented in schetch at a meeting of the Amer. Math. Soc. some years
ago. The paper gives explicite proofs of basic theorems, but it limits
itself to the very foundations only. I believe the paper will be useful.

For terminology we refer to the preceeding chapter a. Usually the
domain of an ordering (A) is denoted by A.

fl, I. Let (T’), (T") be two non trivial tribes 6). Denote by 0’, 0";
1’, 1 " their respective zeros and units.

Their governing equalities may be ,different and so may be with the
operations. Nevertheless we shall use for both the same symbols (=),
+, ., - , co.

DEFINITION. By rectangle we denote every ordered couple
[ a’, a"], where a’eT’, a"eT".

6) This means that 0’#1’, 0"+I" with respect to the equalities governing
in (T’), (T") respectively.
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DEFINITION. Two rectangles [a,’, al" ] , [a2’, a2"] will be
said to be 0-disjoint, whenever either

(3.1.2. DEFINITION. The rectangles [a’, 0"], [0’, a"] will be

termed: rectangles null.

Especially [ 0’, o" ] is a rectangle null.

a.1.2.1. A rectangle null is $-disjoint with every rectangle; hence
also with itself.

P. 1.2.2. There exists a rectangle, which is not null, wiz. [I’, I"].

~3.1.3. DEFINITION. If [a’, a"] is a rectangle, the soma a’ will be
termed abscissa of the rectangle, and the soma a" will be termed ordi-
nate of the rectangle.

~3.1.4. DEFINITION. Every non empty finite set o f r e c t a n -

g I e s, such that any two of them are 5-disjoint, is called figure.
Thus every rectangle is a figure ~).

P. 1.4.1. DEFINITION. A figure is called null- f igure, whenever it

is a finite, not empty collection of null-rectangles.
A null-figure is a figure, because the null-rectangles are R-disjoint.

P. 1.4.2. DEFINITION. Two figures A, B are said to be 
whenever every rectangle of A is 5-disjoint wth every rectangle of B,
(according to Def. [pl.1.1.]).

We see that, for figures composed of a single rectangle, the de-
finitions and [?.1.4.2.] are giving the same, so Def [~.1.4.2.]
constitutes a good generalization of Def. [~.1.1.1.].

A null-figure is P-disjoint with any figure.

~3.1.5. DEFINITION. If A, B are figures, we say that A is 

7) It should be said: set, composed of a single rectangle only. But, dealing
with finite, non empty collections, we may - for sake of simplicity - not make
any discrimination between a set composed of a single object and the object itself.
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in B,

whenever every rectangle, which is 0-disjoint with B, is also 0-disjoint
with A.

~3 .1. 5 .1. If A is a null-figure, we have

for every figure B.

0.1.5-2. We also have for any figure A:

~3.1.5.3. We have for any figure A:

If AB, B~C, then A~C.

~i.1.5.4. THEOREM. If [a’, a"], [b’, b"] are rectangles, then the
following are equivalent:

PROOF. Suppose I. This statement, [ a’, a" ]  [ b’, b"], means by
[P.1.5.Def.] that, in general, if [p’, p"] is a rectangle 0-disjoint with
[b’, b"], [$.I .I .], then it is also 0-disjoint with [a’, a"].

Concerning the rectangles [p’, p"] which are 0-disjoint with

[ a’, a"] , there are two categories:

Denote by E the collection of all rectangles [p’, p"], where

p~’a~==0~ and denote by F the collection of all rectangles [p’, p"] for
wich p" a" = 0"
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These collections may be even empty. The union E U F is just the
set of all rectangles [p’, p" ] , which are disjoint with [a’, a" ] .

The setts E, F may be not disjoint.
The conditions p~-a~=0~ which caracterizes E, is equivalent to

p’ c co a’ and the condition, p" - a" = 0", which caracterizes F, is equi-
valent p" c co a".

Concerning rectangles [p’, p"] which are disjoint with [b’, b]",
there are two kinds of them: one, whose collection we denote by E1 , is
caracterized by the condition p’cco b’; the other F1 is caracterized by
the condition p" c co b".

Having this, the condition I can be restated by: If a rectangle
[p’, p"] belongs to E1 , then it belongs to E and if a rectangle belongs
to F 1 , then it belongs to F.

This can be restated as:

If for a rectangle [p’, p"] we have p’ c c,~o b’, then p’ c co a’, and
if for a rectangle [p’, p"] we have p" c co ", then p" c co a".

It follows that co b’c co a’, cob" c co a", hence

Now suppose II, i.e.

It follows that co b’  co a’, co b" _ co a"; hence
if p’  co b’, then p’  co a’, and
if P":5 co b", then p":5 co a".
Hence if a [p’, p"] belongs to E1 , it belongs to E and if [p’, p"] E Fi

then it belongs to F.
It follows that if a rectangle belongs to E1 U Fi , then it also belongs

to E U F, hence

The theorem is established.

~.t.6. DEFINITION. If A, B are figures, then A is said to be 
valent to B, whenever
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We shall write A==B.

~3 .1.6.1. If A, B, C are figures, then:

~i.1.6.2. Then notion of a figure being included in another one is
equivalence (== )-invariant. This means that

~3.1.6.3. If A, B are both null figures, [Def.R.1.4.1.], then A~B.

~3.1.6.4. If A is a figure, and we add to it a finite number of any
null-figures, then the new figure B will be R-equivalent to A.

~i.1.6.5. If A is a figure having some elements, which are null-

rectangles, and if we remove all or some of them, the new figure B,
if available, will be R-equivalent to A.

~3.1.6.5.1. THEOREM. It follows that, if A is a figure not null, it

is $-equivalent to a figure B, which is composed of mutually 5-disjoint
rectangles, no one of them being a null rectangle.

~3.1.6.6. REMARK. The notion of 0-inclusion of figures organizes
the collection of all figures into an ordering [A.1.1. ] with zero and unit,
and with R-equivalence [ ~3.1.6.] as governing equality [A.4.]. Any null-
figure is the zero, and any figure, Ø-equivalent to [ 1’, 1 "] , is the unit

of the ordering.
Indeed we have [ ~3.1.5.1. ] and [ ~3.1.5 .2 . ] .

~3.1.6.7. Our principal aim will be to prove that the above ordering
is a lattice [A.1.3. ] .

To do that in an easy way, we shall introduce an auxiliary notion.

Ø.2. DEFINITION., A figure A is termed total grate, whenever it

is composed of a finite number of rectangles
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where

The conditions 2), 3) say that we have to do with partitions of
l’ and 1" into disjoint somata 8) respectively.

REMARK. If n =1 or m= I, the corresponding sums are reduced
to single somata.

If A is a total grate, then the rectangles (1) are mutually
a-disjoint.

P.2.2. The figure [ 1’, 1 "] is a total grate.

P.2.3. The total grate A is P-equivalent to [ 1’, 1 "] .

P.2.4. A null figure never is a total grate.

Ø.2.4. t. DEFINITION. Let A be a non null figure and G a total

grate.
We say that A and G f it together, whenever A is fi-equivalent to

a not empty subset A° of G.

Remind that a figure is a set of rectangles; so it is a total grate.
We have A £ A°, A° c G.

Under these circumstances A° is termed grate of A generated by G.

8) Concerning a precise theory of partition in a tribe, see the paper by
O. M. Nikodým:

« On extension of a given finitely additive field-valued, non negative measure,
on a finitely additive Boolean tribe, to another more ample ». Rendiconti del Se-
minario Matematico della Universita di Padova. Vol. 26, 1958, pp. 265-267.
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(3.2.4.2. If G is a total grate and F a not empty subset of G, then
G and F fit together, and F is the grate of F, generated by G.

~3.2.4.2.1. If

1) the figure F and the total grate G fit together,

then F’ and G also fit together.

~3.2.4.3. THEOREM. If A is not a null-figure, then there exists a
total grate G which fits A.

PROOF. By [ 3.6.5 .1. ] F is 3-equivalent to a finite collection of mu-
tually disjoint non-null-rectangles.

Denote them: A1 , A2 , ..., An , (n~ 1).
Let Ai= [ai’, ai"] . We have Consider the rec-

tangles

They are 0-disjoint, and we have

It may happen that

If so, we omit in the sequence (1) the corresponding somata. We
will get

or

or else [a,’, 1"] , instead of the sequence ( 1 ).
In al these cases the remaining rectangles (1) make up a total grate,

say Gi . We see that G1 is fitting A1 . The figure G¡ is composed of four,
two or one rectangle according to the case.
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Now suppose that we have already found a total grate Gi fitting
the figure composed of the rectangles

Put

and let Gi be composed of the non-null rectangles

all disjoint, and where

The somata of (T’): ga’ co’ a i + 1 are disjoint, and so are
the somata "a" 90 if co" a" 1 of (T"). We have

We see that, if we omit those products which are null, we obtain
a total grate Gi+l which fits the figure composed of the rectangles
A1 , ..., Ai , Ai+,. The theorem follows by induction.

3.2.4.4. DEFINITION. If G1 , G2 are total grates and G2 is a sub-
partition of G1 , then G2 is termed total subgrate of G1 .

~3.2.4.5. THEOREM. If the non null figure fits the total grate G, and
G1 is a total subgrate of G, then A also fits G1 .

~3.2.4.6. THEOREM. If A1 , A2, ..., An, (n &#x3E; 2) are non-null-figures,
then there exists a total grate G fitting all these figures.

PROOF. It suffice to prove this in the case n = 2 .
Let G1 be a total grate fitting A1 , and G2 a total grate fitting A2 .

Let G1 be composed of rectangles gl’, g2’, ..., gn’ and G2 of rectangles
gi", g2 , ..., where n~ 1, m &#x3E; 1. ,
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The figure, composed of all ga’, which are not null, is a total

grate G°, which is a total subgrate of G1 , and at the same time a total
subgrate of G2. From [2.4.5.] it follows that Go is fitting Al and A2 .
The theorem can now be proved by induction.

~3.2.4.7. THEOREM. If A, B are non-null-figures, then the following
are equivalent:

I. A is 3-disjoint with B.
II. There exists a total grate G fitting both A and B, such

that, if we denote by A° the grate of A generated by G, and denote by
Bo the grate of B generated by G, then the collection A° and BO are
disjoint, i.e. all rectangles of A° are different from all rectangles of Bo.

III. For every total grate G fitting both A and B, the collection
Ao, B° have an element in common.

PROOF. Let I, and let G be a total grate fitting both A and B.
Suppose that the collections A° and B° are not disjoint, so they have at
least one element in common, say [ a’, a" ] .

Since A AO, B=B°, the Ao, Bo are 3-disjoint figures. Hence all

rectangles of A° are 0-disjoint with all rectangles of BO.
Hence [a’, a"] is 0-disjoint with itself; hence either a’~ a’ or

a" ~ a", which is absurd.
Thus we have proved that I ~ II. A similar proof will be for

I 2013&#x3E; III. The converse implications of statements are evident. Thus
we have:

It follows that

The theorem is proved.

~3.2.4.8. THEOREM. If A, B are non-null-fgures, then the following
are equivalent:

I. A~B.

II. There exists a total grate G fitting both A and B such that,



79

if we denote by A°, BO the grates of A, B, determined by G, then every
element of the collection A° is contained in the collection BO, i.e. A°c B°.

III. If G is any total grate fitting A and B, then

PROOF. Let I. Since B=B°, we have by [P.1.6.2.L

Suppose (1) be not true. Then it is not true, that every element of
A° also belongs to BO. Hence there exists an element [a’, a"] of AO
which does not belong to the collection Bo.

[a’, a"] is 5-disjoint with BO. Hence the rectangle [a’, a"] is also

a-disjoint with A°, which contradicts the fact that [a’, a"] belongs to Ao.
Thus we have proved that I - II. A similar proof will be for the

implication I - III.

The converse implications II - I, III - I are easy to prove. It
follows that I I - I - I I I -+ I - I I .

Hence I, II, III are equivalent statements.

~3.2.4.9. THEOREM. If A, B are non null figures, then the following
are equivalent:

I. A--’ B.

II. There exists a total grate G fitting both A and
B, such that, the grate Ao of A generated by G, and the grate B° of B
generated by G, are identical, A° --- B°, i.e. composed of the same rect-
angles.

III. For every total grate G which fits both A and

B, the grate A° of A generated by G, and the grate B° of B generated
by G, are identical, A° --- B°, i.e. composed of the same rectangles.

This follows from [~3.2.4.8.].

fi.2.5. DEFINITION. The total grate G1 is said to be finer than the
total grate G whenever every mesh of G1 is included in some mesh of G.

~i.2.5.1. THEOREM. If the total grate G1 is finer than the total

grate G, and if the figure A fits G, then A also fits G1 .
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If we consider the grates AG , AGl of A generated by G, G1
respectively, then every mesh of AGl is included in some mesh of AG .
We say that AG1 is finer than AG .

~3.2.5.2. THEOREM. If G, H are total grates, G is composed of
meshes A« , and H is composed of meshes B~, , then the collection of
all rectangles

after having been omitted those rectangles (1), which are null-rectangles,
is a total grate which is finer than G and finer than H.

~.3. Let A, B be two non null figures. Consider a grate G fitting
both A and B and consider the corresponding grates GA , GB of A, B
respectively, generated by G.

Then the union GA U GB of the sets GA , GB of rectangles also

fits G.
Let G’ be another total grate fitting A and B, and consider the

corresponding GA’, GB’.
Under these circumstances we have

3.3.1. DEFINITION. Every figure C which 3-equals (1) will be ter-
med unian (sum, join) o f A and B, and denoted by A+B.

So we have

PROOF. Take [Ø.9.5.2.].

First we prove the statements in the case where G’ is finer than G,
and afterwords we consider the general case.

P.3.2. THEOREM. If
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then

Thus the operation of union of two figures is invariant with respect
to the equality (-’).

P.3.3. DEFINITION. Let us denote by 0 any null-figure, and by 1
any figure ~-equivalent to [1’, 1"].

~3.3.3. l. DEFINITION. We complete the definition [~.3.1.] by
taking also care of of null-figures:

~i.3.3.2. THEOREM. The operation of addition for all figures is

3-invariant, i.e.:

If A, B, C are any figures and if

then

(3.3.3.3. THEOREM. We have for any figures

~3.3.3.4. THEOREM. The following are equivalent for any figures

This shows that the ordering (~) of all figures admits the unions.

PROOF. By considering a total grate for al figures considered.

j3.3.4. DEFINITION. We are going to define the multiplication (in-
tersection, meet) of figures.
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Let A, B be figures and G a total grate fitting them, hence inducing
grates AG , BG of A, B.

We define the product (meet, intersection), A. B, as any figure
which is P-equivalent to the intersection A fl BG , in the case where this
set is not empty.

If

we define

i.e. the null-figure.
The product A ~ B does not depend on the choice of the grate G

fitting A and B.
Concerning null-sets, we define:

~3.3.4.1. THEOREM. The operation of multiplication of figures is

P-equality-invariant.

~i.3.4.2. THEOREM. We have for any figures A, B, C:

0.3.4.3. THEOREM. The following are equivalent for any figures.

We see that the ordering (~) of figures admits meets.

~3.3.4.4. THEOREM. Under the above definitions of ~, * , +,
. , 0, 1, we have a lattice with zero and unit. The lattice is distributive
i.e. for any figures A, B, C we have

P.4. DEFINITION. We shall define the complement of a figure.
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Let A be a figure differing from 0 and 1. Take a total grate G
of A and determine the grate AG of A with respect to G. Consider the
set H of all rectangles in G, which do not belong to AG .

We have

Now we define the complement (co A) of A as any figure, which
(3-equivalent to H. The defintion of co A does not depend on the choice
of the total grate fitting the figure A.

We complete this definition by the following:

~i.4.1. THEOREM. The notion of co A is fi-equality invariant, i.e. if

then

(3.42. THEOREM. We have for all figures the relations:

(3.4.3. THEOREM. The following relations take place:

~3.4.4. THEOREM. The above discussion shows that the 0-ordering
(:$) of figures is a Boole’an finitely additive lattice. The figures are

its somata, 0 its zero and 1 its unit. The governing equality is the

$-equality ( --’ ).
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05. The notion of the cartesian product of two tribes and some
of its properties having been explained, we suppose that the tribes

T’, T" are provided with finitely additive measures ~,’, v", i.e. with
functions 11’(Å’), 11"(Å"), which are finite, non trivial, non negative and
satisfying the conditions:

whenever

whenever

3) The measures are invariant with respect to the equalities go-
verning in T’, T" respectively.

DEFINITION. We shall define the measure on T=df T’XT"
as usually in the following way:

If A E T is a null-figure, i.e. A = 0, ~ [P.3.3.L we put

If AeT is not a null figure, we define

where A=~ [ ai’, aj"] with disjoint rectangles [ ai’, aj"] finite in number.

P.5.2. THEOREM. To justify that definition one can prove that if

with disjoint [ ai’, aj"], as well as with disjoint [br’, bis"], then

The proof is based on considering grates of A.
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~.5.3. If the figure A is a rectangle [a’, a"], then

~3.5.4. If A=B and eT, then 

j3.5. 5. If A, BeT, A ~ B = 0, then

i.e. the measure 1:1 on T is finitely additive.

~3.5.6. The measure p, is effective if, and only if both the measures
1:1’ , ~," are effective.

~3.5.7. The measure ~, is not trivial, whenever both the measures
~," are not trivial.

~3.6. The tribe T can be extended, together with the measure 1:1,

by the Cantor-Mac Neille’s device, explained in Chapter [oc], and ba-
sed on consideration of l:1-fundamental sequences of somata of T,

with

where An + Am denote the algebraic addition:

The tribe T, thus obtained in this way, is completely additive with
denumerably additive, effective measure 11.

~i.7. If the somata of T’ and T" are s e t s o r s o m e e n -

t i t i e s, the construction of somata of T’XT" does need any sophist-
icated foundation, as it is needed in the case where T’ and T" are

abstract.
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In the case of sets, we also consider « rectangles » [ a’, a"] , but
we define the inclusion

as a’  b’, a"b", and this will yield a quite simple theory, based on
consideration of points in the cartesian product of subset of the domains
or, a T" of T’ and T".

The somata of T’ will be sets of couples of points.
In our case of sets, we can, of course as well use the general theory,

as the usual just mantioned method. Both resulting tribes are isomorphic
and isometric.

CHAPTER y

Section 1.

A special metric topology on the lattice £ of all closed subspaces of
the separable and complete Hilbert-Hermite space H.

y.l. We shall consider a Hilbert-Hermite abstract space H,
(H. H-space), which is not trivial, i.e. not confined to the null-vector

denotes the scalar product of two vectors ~ -; of H, where

The norm of the vector ~ will be denoted by ~ :

This norm defines the distance

betveen the vectors ~, ~, and in turn, it organizes H into metric topo-
logy (H-topology). We shall consider subspaces a of H, which are closed
sets in the H-topology. W e c a 11 t h e m simply spaces.
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The collection of all spaces, ordered by the ordinary relation of
inclusion of sets of vectors, constitutes a complete lattice, denoted by
£, [A.1.4.1. ] . This lattice will be the main object of study in this paper.
We suppose that H is separable and complete in its topology.

For terminology we refer to our book:
« Mathematical Apparatus for Quantum-Theories » (sec. [A]).

y.l.l. We shall define and study a special notion Ila, b 11 [
of distance between a and b called y-distance between a and b.

The topology generated by it, will be called y-topology.

y.l.l.a. As H is separable, there exists a denumerable sequence
of vectors

which is everywhere dense in the H-topology, and where for

n=1, 2, .... We shall keep fixed this sequence.
We put

We have

If x is a vector of H and p a space, we denote by Proj p x the projec-
tion o f x on p.

y. 1.2. DEFINITION. Choose a sequence

of positive numbers, such that the series

converges.
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Now, for every two spaces a, b we define the function b 11 by
means of the equation

We call 11 a, b 11 y-distance between the spaces a, b.
This sum (2) converges. Indeed we have

and the series of positive numbers

converges too.

y.1.3. THEOREM. We shall prove that this notion of distance orga-
nizes the collection C of spaces into a metrice space. 

" 

.

,rr .,a?:i .a, c. t .r..f .u r.. ta.,tee,.. _ ^’ ..,. x . - i--

PROOF. We have

for all spaces a, b.

We have

which follows from the relation

We have for any three spaces a, b, c,

Indeed this follows from the inequality
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y. 1.4. THEOREM. Thus we have proved that if

We must prove that the proposition (6) c a n b e i n v e r t e d .

PROOF. Suppose that

By definition of the y-distance we have

Since all terms in this sum are non negative, we get

Since Xk&#x3E;0, it follows

Since the topology H, created by the H-distance of vectors, is a

metric space, the equality (7) implies for each k separately

hence

Hence

This being established, we shall prove that for every vector 1eH
we have

To do that take an arbitrary vector ~.
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Since the collection

is dense in H with respect to the H-topology, therefore there exists a
sequence

with

where

in the H-topology.
From (9) it follows, by virtue of continuity of the operation of

projecting a vector on a space:

From (8) we have

hence, by (10),

_ 

Since (11) holds true for any vector ~, it holds also for a vector

We have from ( 11 ) :

hence
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which implies

Thus we have proved that, than neb, which implies that

In a similar way, taking a vector feb, we get

From (12) and (13) we deduce

Thus we have proved that the following are equivalent, (6), (14):

This and (3), (4), (5), (6) show that:

y.1.5. THEOREM. The topology, generated in (C) by the notion of
y-distance II a, b I I , is a metric space.

We call it y-metric space or y-topology.

y.1.6. DEFINITION. We shall introduce a special auxiliary kind of
measure of spaces which we shall call 

We choose an infinite sequence

of vectors in H, constituting an everywhere dense set. We suppose that
for all k.

We choose an infinite sequence
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of positive numbers with

We put

Now if c is a space, we define

y.1.7. THEOREM. If cl , C2, ..., cn , ... is an infinite sequence of

mutually orthogonal spaces, then

PROOF. We have, by (1):

~y.1.7.1. THEOREM. If p(c)==0, then c = 0.

PROOF. Let 0(c)==0 i.e.
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The terms of the sum being non-negative, we get

hence

hence

hence

Now, let yec. We have

hence

i.e., we get for the scalar products:

Since the set of all ~n is everywhere dense in H in the H-topology,
it follows that y=0. 

- 

Thus we have proved that in general, if yec, then y = 0. It follows
that c = 0, so the theorem is established.

We also have ~(0) = O, which is obvious.

THEOREM. Thus we have proved that (D(h) is a kind of

denumerably additive and effective measure of spaces.

^t.1.7.2. THEOREM. If

then
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where 11 11 denotes the y-distance between the spaces a, an in the

y-topology [y.1.5.].

PROOF. We have an:5a, hence ana = an . This gives

Consequently

We also have

i.e.

We have

Since an _ a, the spaces an , a are compatible [ D.5 ] , [ D.8 ] , [ D.S.1 ] , for
every n =1, 2, ....

Let us white (3) in te form

Applying the Cauchy-Schwartz inequality, we get:
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Hence

Now we are going to prove that the spaces

(where, in general, p-q=df p. co q) are mutually orthogonal.

PROOF. Notice that £ is a complementary lattice, [A].

We have

and

because

and

It follows that:

Thus the spaces (4.1 ) are mutually orthogonal. Q.E.D.
In addition to that we have

which implies, by [y.7.]:



96

Given s&#x3E; 0, there exists no such that for all n &#x3E;_ no we get:

Consequently, by (4) we obtain:

This proves that

which completes the proof of theorem [ ~.1.7.2. ] .

Y.1.7.4. THEOREM. Having that, consider the collection £’ of all
finitely dimensional, closed subspaces of H. This collection if ordered

geometrically, i.e. by the relation of inclusion of sets of vectors in H,
constitutes a lattice ~’ which is a sublattices of £. We shall prove that
the domain of the lattice £’ is-everywhere dense in ~.

PROOF. First we notice that if a is a finite dimensional space, then
we have

in the y-topology.

Let a be an arbitrary space with infinite dimensions.
Choose in a a saturated orthonormal set of vectors

Denote by as the space spanned by qp2 , 1 ..., We have

where al these spaces are finitely dimensional. We have

so we are in the conditions of the theorem [y.1.7.2.].
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It follows that

Hence an tends to a in the y-topology.
The theorem is established.

y.1.7.9. The y-topology has been defined by means of an infinite
sequence of vectors [y.1.6.]

in H, which makes up an everywhere dense set in H. Let us take that
sequence and keep it fixed.

Consider the set 3C of all finite dimensional spaces made up by finite
subcollections of (1). This collection is denumerable.

Indeed R is composed of the spaces

where a, 0, Y, ... =1, 2, 3, .... They are spanned by one, two, three
etc. vectors taken from the sequence ~i, ~2, ....

y. t.7.9. t. THEOREM. We shall prove that taken any p-dimensional
space c, we can it y-approximate with spaces taken from ~.

Let ~i .~2...., ~p be an orthogonal system of vectors, saturated in c.
Since the collection of vectors (~n 1, n =1, 2, ... is everywhere dense

in H, we can find its partial infinite sequences:

Let cn be the space spanned by the vectors
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y. 1.7.9.2. Now we can, by using the known E. Schmidt’s ortho-
gonalizing process, accompanied by some approximation, transform the
system of vectors

into an orthonormal system in an

but still conserving the convergences indicated in (2).
So we get the relations

The vectors (4) are linear combinations of the vectors (3.1).

y.1.7.9.3. Let us we call the mentioned E. Schmidt-device.
Put

and

The vectors

are orthogonal with one another, and #0.
Put
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The vectors zni , zn2 , ..., znp constitute an orthonormal system of
vectors.

We have in the H-topology:

y.1.7.9.4. Having that all, take an arbitrary vector x.
We have

Hence

There exists N’ such that if n &#x3E;_ N’, then

It follows that

That formula shows a kind of uniform convergence, because it is

valid for every x, and N’ does not depend on x.
We can write
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Thus we have proved that I cn , c I - 0 for n --~ oo, i.e. cn tends
to c in the y-topology.

The space c was any one with p dimension and Cn was the space
spanned by the vectors

which belong to the sequence ~1, ~ , ..., ~n , ....

It follows that X is everywhere dense in S, with respect to the
Y-topology.

Since Cn to spanned by a finite number of vectors ~n , it follows
that:

The y-topology in the lattice £ of all closed subspaces of H is

y-separable.

~y.1.7.10. We have proved the THEOREM: If

1. H is a non trivial Hilbert-Hermite separable and complete
space with norm denoted by 1 1.

2. ~ is the lattice of all closed subspaces of H, ordered geome-
trically i.e. by the relation of inclusion of sets of vectors.

3. The y-distance between spaces a, b is defined by

where

and %1 , ~2 , ... is a set of vectors everywhere dense in H, and Xk a con-
verging sequence of positive numbers, then this distance organizes the
lattice ~ into a metric space, which is separable.

y.1.7.10.1. Notice that there are many y-topologies on £, de-

pending of the choice of the numbers Xi , X2 , ..., Xn , ... and the set ~n of
,vectors.



101

Section 2.

Measure-topologies on a geometrical tribe of spaces in the H.H.-

space.

y.8. Now we shall study topologies on a geometri-
c a I t r i b e of spaces in H. First we shall prove an identity:

THEOREM. If (C) is a geometrical tribe of spaces in H, then for

any spaces a, b and any vector y in (il) we have.

PROOF. Remind that the spaces of (il) are compatible with one
another.

First we prove the

y8.a. LEMMA. If p, q are compatible spaces and ~ is a vector,
then (Projp ~, projqQ, (scalar product).

PROOF. We have

Since we have

Consequently

y.8.b. The lemma having been established, consider the expression
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We have

because, by virtue of the lemma:

and

Hence we obtain the equality:

Applying once more the lemma, we get

y.8.1. This being established, we can write:

and then
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because the spaces a - b, b, b - a are orthogonal to one another.

y.8.2. THEOREM. Let

1. (6) be a geometrical tribe of spaces,
2. v(£) an effective measure on 

an infinite sequence’ of somata of (iM) such that

q II I is, in general, the y-distance between two somata
of (~), [y.q.10.], then

PROOF. We shall apply an argument similar to that used in

[ y. 1. 7.2. ].

Consider the expression:

We get

Applying the formula (3) in [y.8.1.], we get
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Now we have proved in [y.1.7.] that 0(p) is a denumerably ad-
ditive measure, and by [y.1.7.1. ] we have that if @&#x3E;(p)=0, then p = 0.
So is a denumerably additive and effective measure on (’b).

Since and are both effective, denumerably additive mea-
sures, it follows that they induce equivalent topologies on (‘~) i.e.

y.8.2. 1. THEOREM. The following are equivalent for somata of (’-C):

We have supposed that v(an + a) - 0.
It follows that 4&#x3E;(an+a) - 0. Hence by (5)

y.8.3. THEOREM. Under hypothesis I, II, if

PROOF. Let II an, a 0. Take s &#x3E; 0 and find N such that if

n &#x3E; n, then

Hence, by definition of the y-distance of somata:

Since I Vk =1, we have

Consequently

Hence
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It follows that

hence

Applying the identity (4) in [~y.8.1.], we get

It follows, [ ( 1 ), Y 1.6. ] ,

It follows that

and then, by [y.8.2.1.],

y.8.3.1. THEOREM. The theorems [y.8.2.], Cy.8.2.1. ] show that
on (U) the v-topology and the y-topology restricted to (G) are equivalent.

y.8.3.1.1. We have proved that the y-topology on the lattice £
is y-separable.

Hence i.e.: there exists a denumerable collection ocl , oc2 , ocn ...

of spaces (in ~), approximating exery soma of G. But to prove that the
ll-topology is separable w emu s t p r o v e the existence of such a
collection not only in £ but also in (’b).

y.8.3.2. The vectors ~1 , ~ , 9 ..., ~n give approximations of somata
of (’b) but these spaces, generated by ~k , may not belong to (‘~). We
must find another sequence, taken from (’b).

y.8.4. Let us consider the sequence ~1 , t, ..., ~n , ... and the set

Cy.7.9.1. ] of all spaces spanned by finite numbers of these vectors.
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Take a natural number n. Denote by ~n the set of all somata b e X,
for which there exists a space with

For every bejf. choose a soma a E T such that (1) takes place.
Denote by ‘~n the set of all a obtained in this way for different

The set ~n is at most denumerable and the same holds for 
hence also for their set union 8.

Evidently 8 c G.
We shall prove that 8 is everywhere dense in (~). To do that, let

d be any space of (‘~).
The set If being everywhere dense in £, composed of all spaces,

there evists b’neX such that

Hence b’n belongs to ~n .
Let a’nE’bn be the space corresponding to b’n .
Hence we have

It follows that

This being true for all n =1, 2, ..., we have

Hence 8 is everywhere dense in G.
The two topologies considered being equivalent, it follows that 8

is a subset of G and everywhere dense in the ’b-topology, induced by
the measure 1L.

Thus we have proved the
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y.8.5. THEOREM. If

1. H is a separable and complete H.H.-space.
2. (U) a geometrical tribe of spaces.

3. li a denumerably additive effective measure on (’b), defining
the distance of two spaces

then the topology, generated by a, b 1, is separable.

REMARK. We do not know whether this topology is complete, but
we shall prove that on a measured tribe of spaces it is.

y.9. For the sake of comprehensiveness, we shall give a proof that
the (lJ,)-topology in (’ë;) is complete, i.e. if (aA) } satisfies the Cauchy
condition, then an possesses a ~,-limit in (G) 9).

Y.9.1. PROOF. We shall prove that a necessary and sufficient con-
dition for the existing of a soma, where

is a following one: For every o’&#x3E;0 there exists an index no , such that if
n’?no , then

o

i.e.

The necessity of the condition is obvious. To prove its sufficiency,

9) The theorem with proof is printed in the paper by the author: « Sur

une generalisation des int6grales de M. J. Radon », Fund. Math., Vol. 14. Howe-

ver one must know that this theorem has been found simultaneously and inde-
pendently by Aronszajn, though not published.

The following proof is taken from the above paper by the author.
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consider a sequence of positive numbers cr2 , ..., ..., such that

L on converges.
n=1

Find the natural numbers Vi, v2 , ..., vn , ..., such that

when n, m are &#x3E;_ vk , (k =1, 2, ...). Consider the soma

We have

We also have

Hence

Since the left hand side equals

we get

Consequently

As

we have
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which gives with (3):

On the other hand, as

we get

which implies:

because by (2)

It follows by (4) and (5), that

Now Choose k such that

Let n ? vk . We have, by (1),

Hence:

This proves that
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hence

The theorem is established.

y.9.2. REMARK. We have proved that the special y-topology con-
sidered in the lattice £ of all spaces is separable (under the condition
that H is separable), but we do not know whether this y-topology is

complete not, and also we do not know whether all y-topologies in a
given H.H.-space are isomorphic or not.

Section 3.

Linearisation of a geometrical tribe of spaces in the H.H.-space.

We have proved, [DI, 11 ], the following theorem:

’Y.lO. THEOREM. Let

be a finite or transfinite well ordered sequence of geometrical tribes

in H, such that if

in the sense that the ordering in (T,,,) is a strict subordering of 
Under these circumstances

is also a geometrical tribe set in H in the sense, that the ordering in (Ta)
is a strict subordering of (T).

THEOREM. Let M be any non empty set of mutually compa-
tible spaces.
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Then there exists a smallest geometrical tribe (T) of spaces such
that every space E M is a soma of (T). This tribe (T) is unique.

PROOF. Let

be a well ordering with domain M and where all spaces (1) are different.
Denote by (Ti) the smallest geometrical tribe composed of somata

0, 1, al . The elements of (T1) are:

with ordering

It may contain only the two elements 0, 1.

Suppose that we have already defined all tribes (Tp) with 
where a is fixed for a moment, and suppose that all somata of TO are
compatible with the spaces (1).

Let a20131 exist; then we define Ta as the smallest tribe containing
the tribe (T 0153-l) and a0153. Such tribe exists and is unique; its somata are

This is possible because the somata of are compatible with a0153 .

Now suppose that o~ is a limit-ordinal, then we define

The somata of Ta are just the somata of Ta , hence

they are compatible with a., .

Y. 11. 1. The above construction gives a finite on transfinite se-

quence of embedded tribes (Ta).
The tribe

contains all spaces (1). One proves easily that (T) is a smallest tribe
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containing (1), and that such a tribe is unique.

y.11.2. We may call (T) the tribe spanned by the set M of spaces.

y.12. DEFINITION. By a linearly ordered set of spaces we shall

understand any subordering (~’) of (£) such that

1) if a, then either a  b or b:5a.

Thus we can say that (£’) is finitely genuine strict subordering of
(~). The governing equality in (~’) is just the restriction to the set £,
of the equality « _ » (=), governing in (~). The domain C’ of a

linearly ordered set of spaces has at least the two somata 0, 1.

Y.12.1. If (~’) is a linearly ordered set of spaces, then all is so-

mata are compatible with one another.

y.12.2. DEFINITION. If a, we call the space b-a segment
o f The spaces 0 and 1 are segments of (£’).

The domain of the linearly ordered set of spaces possesses at least
two somata, viz. 0, 1.

We have proved, in [y.1.7.3.], the following

THEOREM. Let (~’) be a linear ordering of spaces and

a sequence of somata of (~’).

Then

2) The terms ak - ak-1 are all disjoint, and even orthogonal with
one another.

’Y.12.4. THEOREM. If

1) a- a’, b -b’ are both segmants in (£’),
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then

PROOF. By hyp. 2) we have

There are four possibilities:

The possibilities 2°, 4° differ from 1 °, 3° only by notation, so it

suffices to consider only 1° and 3°.
Take the case 1°:

and denote by

the intervals

We have

hence

Relying on theorem 2.3, we get

and

so in that case the theorem is established.
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Denote the segments

by

We have, by hypothesis,

Hence

It follows å’l = å’3 . But å’l, A’3 are disjoint.
Consequently

Hence a’ = b’ and a = b .
The theorem is established.

y.t2.5. THEOREM. The product of two segments is also a segment.
.

PROOF. Let p, q be two segments. If one is contained in the other,
the theorem holds true.

In the remaining case we have the following situation:

or another one, where a, b are replaced by b, a.

Take (1), and put
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We have

Hence

so the theorem follows.

y. 12.6. THEOREM. If p is the sum of a finite number of segmenta,
then p can be represented as the sum of a finite number of disjoint
(hence orthogonal) segments.

PROOF by induction.

y. 12.7. THEOREM. If p is the sum of a finite number of segments,
then co p is also a finite sum of segments.

Let

where pi are segments.
By de Morgan law we have

Let

We have

which we shall write in the form s; + t; .
Hence

The distributive law can be applied, because the spaces si , ti are

all compatible with one another. Hence co p will be represented as a

finite sum of finite products of segments.
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Hence, by [y.12.5.] the theorem follows. 
’

y.12.8. We shall use Lemma D [y.5.1.], stating that if S is a non
empty collection of spaces satisfying the conditions:

1 ° if a, beS, then a -I- b E S, 
,

2° if aeS, then coaeS,

3° the spaces of S are mutually compatible,

then (S) ardered as in £, is a geometrical tribe.
Now the elments of T are compatible with one another [DI.4] and

the condition:

Then to prove the theorem it suffices to show that if

This however is true.

Y.13. In [D.1]we have proved the following theorem:
Let S be a geometrical tribe, which may be finitely additive only.

We shall consider denumerably infinite somatic operations, taken from
~. We know that the spaces obtained in this way are all compatible
with one another and also compatible with the somata of S.

The collection of all spaces

make up a geometrical tribe, which is an extension of S.
The same tribe will be obtained by taking collection of all spaces

Y.13.1. We call the extended tribe (Sb), the borelian extension

of S in H.
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This is the smallest geometrical denumerably additive tribe, con-

taining (S).

y.13.2. If H is supposed to be a separable and complete H.H.-spa-
ce, then (Sb) is completely additive.

Y.14. DEFINITION. Let (T) be a denumerably additive tribe. We
say that (T) can be linearized whenever we can find a linear subordering
(CO of (T), such that (T) is the smallest borelian extension of the col-
lection of all segments of (CO.

y.15. REMARK. Starting with a linear ordering ~’ of spaces, we

have constructed a tribe, which is denumerably and even completely
additive, containing (CO. Now we shall start with a given tribe (T)
and find a kind of « linearization » of (T).

~.15.1. Let (T) be a given denumerably additive geometrical tribe.
We know that (T) admits a denumerably additive effective measure v(a).

That measure generates a topology (metric space), where the distan-
ce a, bi, between two somata a, b of (T) is defined by

We know that this topology, called v-topology, is complete.
We have also proved that the topology is separable, which means

that there exists a denumerable collection of somata rll, (x2 , ..., an , ...

of (T), which is everywhere dense in (T) with respect to the v-topology.
These facts enable us to « linearize » (T) in an important manner.

y.15.2. Let ai , a2, ..., an , ... be an infinite sequence of somata
of (T).

We are going to construct an infinite sequence of linear orderings
of spaces, whith more and more ample domains:

and such that their union contains al the spaces a; , (i=1, 2, ...).
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We define as the ordering whose domain is composed of three
spaces:

1) Suppose that n &#x3E;_ 1, and that we have already defined the
linear orderings

where each of them is a sequence of a finite number of somata.

2) consider the tribes T(£2), ..., T(~k), containing
~1, ~2 , ..., £k respectively.

Every one of them is a finitely genuine, strict supertribe of the

preceding ones.
We suppose that al , a2 , ..., ak are somata of T(~k). ’

Let the elements of (Lk) be

We shall define 
To do that, first notice, that in general, if pl _ p2 and q is arbitrary,

we have:

Indeed, we have

This implies that

This is a linear ordering. We denote it as

and call it 
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We have 1 with preservation of order.
Indeed, in (3) we have the somata

which belong to £k with preservation of order.
I say that 

Indeed, we have [A.2.6.4.],

hence

Now, we have

Since both terms on the right are somata of it follows,
that so is also

and then, by (4), 
Thus we have got, by induction, an infinite sequence of nested

linear orderings

such that Cn contain all somata ai , a2 , ..., an .

y. 15.3. Denote by (~’) the linear ordering generated by all (~i),
i=1, 2, ....

The ordering ( ~’) is defined as follows:
Let b, c be somata of

There exist indices s, t, such that ce a £t .
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By (6), b, ce£r , where r= max ~(s, t).
Now we define the correspondence

as b  c in definition does not depend on the choice of s and
t. We can say, that the ordering in (f) is taken from the orderings in
(.1) (.L2) ..., (.i), ....

The just defined ordering is a linear ordering.

y.15.4. Consider the tribes T(2i), generated by (2i).
The tribe T(2i) is composed of all finite unions of segments of ~i .
Now all the segments belonging to (~i), are also segments of 

for any k =1, 2, .... Thus the segments belonging to (2i) are also

belonging to (~’), i=1, 2, ..., and conversely every segment, of (2’)
belongs to some (2i).

Now we know that the union of all

is a finitely additive tribe (S) with domain

The thribe (S) is a finitely genuine subtribe of the given tribe (T);
we can write

The tribe (S) contains all the spaces

We have proved the following THEOREM:

Y.15.5. If

1. (T) is a finitely additive tribe,

2. ai , a2 , ..., an , ... any sequence of somata of (T) then there
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exists a smallest linear ordering (~’) such that

1) if then bET,
2) all ai , (i=1, 2, ...), belong to ~’,
3) the ordering ( ~’) is a subordering of the ordering (T).

y. 15.6. Having that, let us remind that the ~-topology on (T) is

separable. Let

be a sequence of somata of (T), everywhere dense in the &#x3E;-topology,
and let us apply the just proved theorem.

Take the linear ordering (~’) and T(~’).
Let pe(T). There exists a subsequence of (7)

such that

Now there exists a subsequence of (8)

such that

Hence

This says that p belongs to the borelian extension (Sb) of (S).

hence
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Now, as we had (S) c (T), it follows that

Finally we get (Sb) _ (Tb) _ (T).

y.15.7. If (T) is a denumerably additive geometrical tribe of

spaces, and v an effective measure on (T), then there exists a linear

subordering ~’ of (T), such that

2) (T) is the borelian extension of the tribe (S) composed of
all finite sums of segments of 

We may say that (T) can be « linearized » in the v-topology.

Manoscritto pervenuto in redazione il 9 maggio 1968.


