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ON THE INTERIOR REGULARITY OF WEAK SOLUTIONS

OF NON-STATIONARY NAVIER-STOKES EQUATIONS

ON A RIEMANNIAN MANIFOLD

di MILAN D. ÐURI0107 *)

Introduction.

To the mathematical investigation concerning the existence, unique-
ness and regularity of solutions of non-stationary Navier-Stokes equations
in the case of an n-dimensional Eucliedan space En , where n is, in the
main, either 2 or 3, has been devoted a large number of works by
various authors. We mention some of main results. So, J. Leray [10]
established the existence of a classical solution which is local in time

by means of non-stationary potentials. E. Hopf [3] proved the existence
of a weak solution which is global in time. A. Kiselev and 0. Lady-
zhenskaia [5] showed the local existence and uniqueness of a weak
solution of a various type. The paper of T. Kato and H. Fujita [4]
represents an attempt to deduce an existence and uniqueness theorem
in its classical form by means of Hilbert space theory. Next, we mention
papers by J. Lions [ 11 ] , G. Prodi [13], P. Sobolevskii [15], O. Lady-
zhenskaia [8] and so on. For details and a more complete literature

we refer to the book [9] and to publications of Steclov Mathematical
Institute of Soviet Academy of Sciences.

There is a need for consideration of the above mentioned questions
in the case of non-Euclidean space. The present paper just represents
such an approach. Namely, in this paper we deal with the existence and
regularity of a weak solution of non-stationary Navier-Stokes equations
on a Riemannian manifold. We first establish the existence of a weak
solution and then show that it is a regular solution in the interior of

*) Indirizzo dell’A.: Institute of Math. Belgrade, Jugoslavia.
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the domain where the external force satisfies the H61der condition with

respect to (x, t).
Some another questions will not be treated for the present. They

will be the object of a subsequent publication.

CHAPTER I.

PRELIMINARIES AND DEFINITION OF GENERALIZED SOLUTION

1. Some basic notions and notations.

We devote this section to some notations and some basic notions

concerning Riemannian manifold and to well-known results by G. de
Rham and W. V. D. Hodge [2] and K. Kodaira [7]. Also, we introduce
other notations needed for the later work.

Let R be an n-dimensional orientable C°° Riemannian manifold.
We denote by (x) _ (xi , ..., xn) a system of local coordinates with positive
orientation. The local coordinates of a point q on R will be denoted by
xi(q), j=1, 2, ..., n. ~ will denote a family of coordinate systems whose
domains U(k) cover R . With V we shall denote covariant derivatives
with respect to the Riemannian connection whose components in a

system of local coordinates are Cristoffel symbols The square of
the geodesic distance between two closed points x and ~ according to
the metric will be denoted by r = r(x, ;). Tensor fields
of rank p on R we shall denote by The fields cpP are

said to be continuous and to have continuous derivatives if their com-

ponents in a local system of coordinates (x), are continuous

and have continuous derivatives.

If qp is an antisymmetric p-field we define two operators, the exte-
rior derivative operator and its dual operator 6, see [2]. The operator d,
which a p-field sets in correspondence with a (p+ I)-field, is defined
as follows

where
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is the Kronecker symbol, which for Dual

operator 8, which a p-field sets in correspondence with a (p -1 )-f ield, is

The above operators can also have the following forms

respectively

where A means which index is to be omitted, g= det (gii), and in repea-
ted indeces, as usually, one makes summation.

According to K. Kodaira [7] one defines an operator ~, which to
a p-field cp sets in correspondence a p-field Atp, as follows

Furthermore, we always have that and 66=0. Thus, an
antisymmetric tensor field of rank p corresponds to a p-dimensional
complex.

The operators d and 8 are generalized curl and generalized diver-
gence operators, A is the generalized Laplacian. In that manner we
can give the following definitions: A field cp is non-vortical (solenoi-
dal) if

A field where D is an open subset of R, is said to be harmonic
in D if
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For the work in sequel we need the Green-Stokes’ theorem. There-
fore, let 81 be a differentiable simplex of the manifold R obtained as
a topological image of a euclidian p-simple SP. Then, the differentiable
p-chain CP of the manifold R is given by a linear combination

and is a p-dimensional algebraic complex, ki are real coefficients. The
boundary of the chain CP is (p -1 )-chain

For each simplex 81 we have an identity

Let a, be a (p -1 )-form defined on a domain containing p-chain CP.
Then the boundary operator a and exterior derivative operator d are
connected by a fundamental theorem of calculus, namely Green-Stokes’
theorem

Let (u) _ (ui, ..., uP) be a system of coordinates on the simplex Sp. Then
points q are described as q = q(u), and the local coordinates 
of q are continuous functions of u and are of the class C2 in each point of
the simplex 81. Hence the integral of the field 0152 over the p-chain CP is
given by the expression

where
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Thus, the Green-Stokes’ theorem has the form

with in a certain neighborhood of Cl.
According to K. Kodaira [7] for the Green-Stokes’ formula (1.12)

an another expression can be obtained

where we assumed that cp is of the class C’ in a certain neighborhood
of CP. By means of X we described the following form

where dual coordinates of the surface element 

given as follows

and sgn "’’ t means the sign of the permutation "’’ t )" 

i~, ..., m 
" ~ 

ir, ..., m
if i, j, ..., m coincide with p, q, ..., t in a certain order, otherwise it

means 0.

Let D be an open domain of the manifold R. Let us consider a
class of all fields from Ck with a compact carrier.
In such a class we introduce the scalar product setting

Next we give the Green’s formula. For the open domain D with
the regular boundary aD, according to Kodaira the Green’s formula has
the form
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where ( p, is a bilinear form of variables p and 4;, and 
are dual coordinates of the surface element dxi1’ ...,ip given by ( 1.15 ).

For the operators d and 6 one proves [2] that they are adjoint,
namely that

respectively

where a and 0 are fields with compact carriers, and A is self-adjoint

Moreover, the operator A is permutable with operators d and 8, namely

For the field cp is to be said that it is homologous (cohomologous)
to zero if there exists a filed + such that

From (1.19) setting we get, because of (1.7), that for a har-
monic field it is necessary and 6«=o. Thus, every harmonic
field is closed and coclosed. Every field cohomologous to zero is coclosed
as 66 =o. From (1.18) follows that every closed p-field oc is orthogonal
to every p-field cohomologous to zero. Contrary, if the field a is ortho-
gonal to every field cohomologous to zero then it is orthogonal to Sda,
provided that (a, da) it is closed. Also, in order that a p-field
is closed it is necessary and sufficient that it is orthogonal to every

p-field homologous to zero. Thus, in order that a p-field is harmonic it

is necessary and sufficient that it is orthogonal to every p-field homo-
logous to zero and every p-field cohomologous to zero. In that manner
we can state the well-known theorem by Hodge and de Rham: Every
field on the manifold R can uniquelly be represented as the sum of
three fields-the field homologous to zero, the field cohomologous to

zero and a harmonic field. That means, that for a determined p-field a
on the manifold R exist fields X and p, of rank (p - 1) and (p+1) res-
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pectively and a harmonic field Ha, such that

If the field oc is closed, then (gli, hence 
Thus

From here it is obvious that every closed field oc is homologous to a unique
harmonic field Ha.

Let us still introduce some notations and notions necessary for the
further work. So, with £p we denote a class of fields cpp such that the

components are measurable functions of the coordinates

Xi(q), i =1, 2, ..., p. The notations C’(D) and Cok(D), are

customary and already known. With (D) = Cok(D) n Côl(D) we denote
a class of all solenoidal fields from Cok(D).

Next, lb9 means the linear space consisting of all fields of the

class £P such that

Thus, bp costitues a real Hilbert space having ( 1.16) as inner product.
Then the norm in ty is

Furthermore, we denote by bleD) the subspace of consisting
of all fields belonging to the class C’"(D), and put

Let lp be the set of regular p-fields with compact carrier. Then the no-
tation 1 is obvious. Following Kodaira IIJP can be decom-

posed into three mutually orthogonal subspaces

where {Øp consists of all regular harmonic fields and
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Moreover, for every v =1, 2, ..., and *%vP consist respectively of all
fields satisfying conditions Scp = 0 and ~vp and *%vP are decom-
posed as follows

where

Next, we consider measurable fields from the class C" of a fixed
rank p defined in an open subset D of R. Then, we introduce the
absolute value

of tensor cp in a point x, and define by its means the where
as follows:

If I 19 lip and II Ilq , where by q is denoted the real number associated
with p by the relation 1/p-f-1/q=1, are finite, the integral

converges absolutely and satisfies the inequality

- 

We denote the Hilbert space with the above norm by Lp(D). With
¡Cok(D) we denote the Hilbert space obtained by completion of the set



275

of fields of the class Col(D) with the norm

As a set it is identical with the completion of Co’(D) with the norm

if D is bounded. For the case k = 0 the space Xo°(D) is simply the space
Lp(D) with possible decomposition according to the general formula
(1.25). In that manner we obtain the subspace Jtg, s(D) respectively

s(D) with the norm (1.31). If k= 00 we introduce the notation

respectively s(D). 
_

By the identification mapping we can consider ftok (D) as a linear
subset of Lp(D). A field possesses generalized derivatives up
to the order k in Lp(D), while cp E beside that satisfies the condition

ôcp = o. 
_

Moreover, we have the notations K-~D if K c Int (D). The point
set ~(2Y)==(jj(2Y, D) _ { x ~ I x c D, dist (x, aD) C 2~ }, where y is a positi-
ve constant, is the boundary strip of D with the width 2y. Then the nota-
tion D(2 y) = D - c~(2y) is usual. The space consisting of the fields belong-
ing to Lp(K) for any compact subset will be L~°~_(D)_. For a fixed
constant T we have notations (0, T) and f!=D X [0, T].
Another needed notations will occur in the course of the work.

2. Setting the problem.

Let D be a connected domain with regular boundary aD of the
manifold R. In the domain D, covered by domains of the family ~, is
defined non-stationary flow of fluids by the following system of partial
equations given in a system of local coordinates (x) as
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with initial

and boundary condition

where: u = u(x, t) is the velocity field on D, f = f (x, t) is the external
force field, both of rank 1; p = p(x, t) is the pressure field of rank 0;
p is the constant density, and v is the kinematic viscosity.

For solving the above stated problem we take some assumptions.
Namely, we shall consider that D is a bounded domain of the manifold
R, that the initial field a(x) belongs to and that the
field f(x, t) and its time derivative belong Lp(D).

In this section we give an indispensable lemma for the work in
sequel. On its proof we shall not stay considering it simple and well-
known. We assume the existence of a f ield u of rank 1, such that

converges absolutely. Then, from the Green-Stokes’ formula given by
( 1.13 ), considering that n-chain Cn is an open domain D with the regular
boundary aD, we obtain au X D = - u &#x3E;C aD, respectively

Hence we have the following

LEMMA 1. A field fl CO(i5) of rank 1 satisfies the
condition

But, if the field of the same rank satisfies the above condition,
then h is the boundary value of a field ueCô3(D) n C°(D).
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According to the above lemma the field b satisfies the condition

At the end of this section we still mention some assumptions con-
cerning the field a(x). Namely, we assume

These assumptions are naturally assumed.

3. Lemmas.

In this section we first give lemmas which are commonly a co-
rollary of well-known results given in Section 1 and Lemma 1. Next,
we establish the existence of a coclosed (solenoidal) field u* of rank

p =1 which will be used for a reduction of equations (2.1 ) and conditions
(2.2)-(2.3) to the form suitable for further considerations. Then, we give
still two lemmas for the convenience of a later reference.

LEMMA 2. If a field rivE 1b11 is coclosed then it is cohomologous
to an unique harmonic field cp, namely

belongs to ~il.

LEMMA 3. If there exists a scalar such that

then + must satisfy the equation

As it is already mentioned, the results of these lemmas are contained
in Section 1.

LEMMA 4. A field n COCÕ) belongs to ‘,~ if and only if
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PROOF. The first part of lemma is contained in Lemma 2 and the
second in Lemma 1.

According to Lemmas 3 and 4 the scalar field + is to be determined
as the solution of the second boundary value problem

Such a solution exists and is unique up to additive constant. Namely,
we can say that there exists a unique field ~eLr(D) such that ~ has in
D continuous derivatives of any order and satisfies (3.5). Let us consider
a symmetric tensor field KP(x, ~) of rank P = 2. Let KP(x, ~) be the kernel
field of the second boundary value problem (3.5), which can be determined
by means of the fundamental solution of Laplace equation in D given
in [ 1 ] . Then, not staying on deails, as it is not our main goal, we only
emphasize that, taking into account the condition (2.6), there exists a

t)eC1(D) determined as follows:

where are dual coordinates of surface element given in (1.15), and
such that

for any t &#x3E; o, where bn = bini .
Now, we set, without any proof, a lemma which is concerned

with the H61der continuity of the field ~. We have

LEMMA 5. If the field ~(x, t) is such that [[ + [[ for any
then d~ is Holder continuous in the interior of f2.
Other lemmas concerning the questions of regularity and H61der

continuity of the field ~ can also be stated.
Let us assume now the existence of an antisymmetric field ÀP of

rank p=2 in the following form

where fields ~, _ ~,(x, t)eCO(!2) fl C°°(D) are assumed
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as known. Namely, we assume that the fields ~ and ’ijP both of rank

p= I are such that; the field ~,( ~ , t) E C2(D) n C°°(D) and satisfies

while the field 11 is determined to satisfy

where n’ is the normal unit vector. Thus, we consider the field XP

completely determined. For a cohomologous to zero field P=5X of rank
p =1 we state the following.

LEMMA 6. Under an assumption that there exists a scalar field
such that on the boundary aD are satisfied conditions

~==0 and (d~)Zni =1, then the field

where is determined as follows

satisfies the condition

PROOF. Developing the expression (3.11 ) taking into account (3.12).
(3.9) and (3.10) one easily gets (3.13).

We have reached a stage to state the principal lemma in this section.
We have

LEMMA 7. Let n be a bounded domain. Then there exists a field

t) E COCO) n Z of rank p =1 with the following properties:

~(0, T ) and their Lr norms are bounded in t;
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iv) u. and Vu, are H61der continuous in the interior of !1.

PROOF. A field u* (x, t) determined according to (3.1 ) namely in
the form

where ~3~ is given by (3.11) and (3.12) and cp by (3.2) and (3.6)-(3.7),
will satisfy the condition ule% and according to Lemma 4 conditions

and u’l aD=b.
Let there exists a T] ) such that

then the field

satisfies also the condition u~(x, o) = o. Thus all properties i) hold for
a field u ~ determined according to (3.16).

ii)-iv) From the properties of fields ~3~ and cp follow all properties
of the field u~ . We assume that j3~ and qp and their derivatives quoted
in the lemma belong to Lr(D) for each and find that u. also

belongs to Lr(D). The boundeness and Holder continuity of u,~ also

follow from the boundeness and Holder continuity of and cp. The

formality of these proofs essentially correspond to those carried out

later in the case of the field v.

As we have done all preparations we can reduce Navier-Stokes
equations to the new form. Setting

into (2.1 ) we obtain
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with initial

and boundary condition

In the equation (3 .18 ), ~ represents a nonlinear mapping defined by

and

For the necessity of a later reference we still give here two lemmas,
which appear essentially known.

LEMMA 8. Let D be a domain of the manifold R. Let oc be any
field in gol(D) and set «*())= «(%)/sxg where sxg is the smallest distance
between the points x and ~ for an arbitrary but fixed x. Then we have

where k is a constant.

PROOF. It suffices to consider the case of a scalar field. Therefore,
we assume such a field We can extend this field over the

whole space R setting a==0 outside D. Let D be the annular domain
D*(r) - D*(~), where r and F- are any positive constants such that 
and D*(e)=D*(x, e). The Green’s formula (1.17) for the case of a

scalar field cp and a field cp of rank p= I over the domain D* with the

boundary 8D* has the form

Let c be a homologous to zero field, namely a field of the form c= d+
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where ~ is a scalar field, then the above formula gets

We consider, at first, the case n = 2 and assume that fields 9 and +
have forms cp = 0~2 and ~ = log s, then we obtain

where

Allowing and e - 0 in (3.23) we obtain (3.22) on account of
Schwarz’ inequality, with k = 2.

For the case n ? 2 we assume that fields cp and ~ are of the forms

X = n - 2. By the same procedure we arriveP S, Y p

at (3.22) with k = ’ + 2 respectively Thus, the lemma is( ) 1 p Y ( )

proved for all n ? 2.
From (3.22) for any bounded subdomain K c D with diameter less

than a we have immediately

for any The inequality (3.23) implies that the strong conver-
gence in ensures the strong convergence in Lp(K).

LEMMA 9. Let D be a domain of the manifold R. Then there

exists a constant C such that

for any
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PROOF. As in the proof of Lemma 8 also here it is suffices to deal
with the scalar field a.(x)eCo1(D). We extend this field over the whole
space R, so that «-0 outside D. Let be given a field ~) such
that the field defined as follows:

where k is a constant. Then because of (1.5) and (1.18) we have

Let be given as for the case n &#x3E; 2. Then we have

where Multiplying both sides of the above equation by
oc’~+ 1{x) and integrating over R with respect to the point x, after the

interchange of the integration order, we obtain

Next, after an application of Lemma 8 we arrive at (3.25) setting
.C=mc’~+2~-1, 1 where m=l(~,-I-1)-1(~,-I-2).

For the case n = 2, applying (3.26) to by the same pro-
cedure as in the case n &#x3E; 2, we obtain (3.25) with C= (6k)~/~= (3 /2x)~/~.

Lemma 9 can be extended. So, if K is a bounded subdomain of D,
then for any we have

with the constant Ck depending on K.
The above inequality is obtained from (3.25) by means of Holder
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inequality as

If I) is a bounded domain, then from (3.27) setting K=D we have

with a constant C*. Hence strong convergence in Xo1(D) implies strong
convergence in Lp , where ~==~+2), when D is bounded. The ine-

quality (3.27) shows that strong convergence in ensure locally
strong convergence in Lp(D). Next if a.e Xol(D) and K is a bounded
subdomain of D, then we have oc E Lp(K), daeL2(K), hence 

where q = 
4( , -- 2 ) 

by means of H61der inequality.2(À+2)+3’ by 
means of Holder inequality.

From the properties of u~ (x, t) given in Lemma 7, 
we for any t &#x3E; o, and 3.(x, t) is H61der continuous

in n if f(x, t) is H61der continuous in the same domain.

4. Definition of Generalized solution.

Suppose that fields u and p of rank 1 and 0 respectively are suf-
ficiently smooth and obey the system of equations (2.1) in a domain D
of R. Furthermore, let x be a sufficiently smooth, solenoidal field with
the compact carrier. Multiplying the first of (2.1) scalary by x according
to (1.16) and then integrating over the interval [0, T], we obtain

If the above equation is valid for any then there exists
a scalar field p which satisfies (2.1 ) in D together with u. Hence one
says that a field u satisfies (2.1) weakly in n or satiesfies the weak

equation (4.1 ) of the equation (2.1) in n, if u and (u ~ 0 )u are locally
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integrable in n, and (4.1 ) holds for any XeC5,ô (fl). The field x in

~(4.1 ) is a test field of the weak equation.
Thus, we can state the definition of the generalized solution of the

Navier-Stokes equations in a domain n as follows.

DEFINITION. Let D be a bounded domain of the manifold R and
let T be a positive constant. Then a vector field Men is called the ge-
neralized solution u(t) = u(x, t) of the Navier-Stokes equations if the

following conditions i)-iv) are all satisfied:

i) u-u, belongs to for each T) and some u, such
that

ii) u satisfies (4.1 ) weakly in SZ;

iii) u and its derivatives atu and ar 0 u belong to Lr(n);

iv) u(t), 0 u(t), atu(t) and u(t) belong to Lr(D) for each tE (0, T)
and their Lr norms are bounded in t. ,

The existence of such a solution we shall establish in the next

chapter.

CHAPTER II.

EXISTENCE AND REGULARITY THEOREMS

The purpose of this chapter is to prove the theorems concerned
with existence and regularity of the generalized solution of the Navier-
Stokes equations in a bounded domain n.

5. Fundamental solution of the parabolic equation.

Under the fundamental solution of a parabolic type equation
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where with coefficients depending on x is an elliptic
operator which is the Laplace operator in our case, we understand a
symmetric tensor field r) defined for each (x, 
(~, ’t’)eil and t &#x3E; ~ and which satisfies the following conditions;

i) for fixed (~, it satisfies, as a function of (x, t), where x E D
and the equation (5.1);

ii) when t ~ ’t’ and the square of geodesic distance r 2013~ 0 the field
Pp allows the principal singularity given by the representation

where t; ~, r) is a regular field in n and of the class C°°.
A fundamental solution of the parabolic equation with time de-

pendent coefficients was given by K. Yosida [17]. Here, we shall give
a slightly different construction. We first apply the operator A to the
product of a scalar field h(h, t, r) and a tensor field XP(x, t, ç, r) of
rank p = 2 and get

where X is the matrix of the tensor Xii.
Now we quote the well-known identities which can be found in

[ 16 ] , [ 17 ] and so on. If x and ~ are two close points on the manifold
R and s=s(x, ~) the geodesic distance between them we have

where Moreover, we have
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Let us define a new operator as

with

Then, on account of the above quoted identities and the definition of the
new operator (5.5), the equation (5.3) is reduced to the form

Furthermore, as we have

Let a positive integer k be &#x3E; 2 + n/2 and let X be formally given in the
form of a power series

then by the substitution of (5.8) into (5.7) we obtain

From here, for t &#x3E; T, we determine succesively U,(x, ~) so that
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starting from Uo(x, ~) =1. Hence we have

Thus, we can set the following.

PROPOSITION 1. A symmetric tensor field of rank p=2 determined
as follows

where k is an integer &#x3E; 2 -~- n/2 and UwP is given by (5.9) represents a
fundamental solution of the parabolic equation (5.1 ) in fl.

The proof that this fundamental solution is also the fundamental
solution of the adjoint equation to the equation (5.1 ) can be found
in [17].

If h(x, t) is a field in n we define the operator P with the kernel

P(x, t; , ) by
*

Then, we consider a field

Let us study some properties of this field. To show its existence we give
a limitation of the field PP by separated singularities. It is easy to show
that
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where CP is a constant field and s.,t is the geodesic distance between x
and ~. Choosing the positive constant lie arbitrarily in the given interval
we see that the field PP allows the weak singularity as t - 1; and x --~ ~.
A singularity, however, is integrable. Thus we conclude the existence of
the integral (5.11) for xeD and 0  t _ T, which is absolutely and
uniformly convergent for an integrable h(~, -c), where (~, 

Moreover, one shows that Va.PP(x, t; ~, 1;) satisfies the inequality

and that there exists the field e(x, t) = 0 a f (x, t) given by

where 
Now we give two lemmas concerning the fields f (x, t) and e(x, t).

LEMMA 10. Let h(x, t) be locally bounded in Q. Then f (x, t) is

Holder continuous with respect to T), and e(x, t) is H61der con-

tinous in a subdomain [1* with respect to (x, t).

LEMMA 11. Let h(x, t) be locally H61der continuous in 92 with
respect to (x, t). Then f (x, t) is twice differentiable with respect to x
and once differentiable with respect to t in a subdomain S2*, and these
derivatives are continuous in (x, t).

The proofs of these lemmas are clear and straightforward but

cumbersome. Therefore, we shall only, on account of an illustration,
give brief features of the proof of Lemma 10. Let us write
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For the first integral according to (5.13) and boundedness of h we have
the inequality

Now we circumscribe a geodesic spheres with center at the point x
and with the radius ro , then divide the integral j2 into the sum of inte-
grals over the set S’ laying in the interior of S and over the comple-
mentary part DBS’. According to (5.13) we have

Taking into account the estimation

we have the following inequality

Setting then choosing the positive constant v so that

1 - 2( 1 -v)v = 2&#x3E;v we obtain v =1 /2, and thus the inequality

where 8 is a positive number less than unity.
To prove the second assertion of the lemma we consider two close

points and xi whose smallest distance is rxg and write

Divide the integral into the sum of integrals over the domain 0’ be-
longing to the interior of a geodesic sphere 0 and over the comple-
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mentary part DBO’. According to (5.14) we obtain

For the second integral because of

we have the same estimation. Thus

where 0 is a positive constant less than unity. By the similar procedure
as before we get the H61der continuity with respect to t in the form

On the base of estimations (5.17) and (5.18) we obtain the inequality

with 8 and 0’ positive constants less than unity.

6. Parametrix of the parabolic x elliptic equation.

As for establishing the existence of the generalized solution we shall
use the parametrix of a parabolic x elleptic equation, namely an equation
of the form

where Ltx = (8t + vàx)àx and NP is a tensor field of rank p on the domain
n, then we shall give it here. Let us fix a truncating function

6(x, t; ~, ~) = s(s, t - ~c), where s = s(x, ~) is the smallest distance between
points x and ~, such that 6(x, t) is an even Co°° function with properties
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where y is a positive constant. Then the tensor field

is defined everywhere. Namely, Ps vanishes identically for and

1&#x3E;2y and coincides with P for and t The behaviour of

Ps and may be freely determined.
Now, we intend to establish the existence of the parametrix of the

equation (6.1), namely a field FP(x, t; ~, r) with the following properties:

i) F belongs to C°° and is defined everywhere;

ii) the form 46x, t; ~, T) belongs to C°° and is

bounded everywhere;

iii) if a field X(x, t) c Co- then

and we have

If HP(x, ~) is the fundamental solution of the Laplace equation given
in [ 1 ] we have the following

PROPOSITION 2. A tensor field F of rank p determined as follows

is the parametrix of the equation (6.1 ).

PROOF. All properties of the parametrix F are obvious. We only
give a formal proof of (6.5). If we apply the operator A to (6.4) we
.obtain

because of àH=0. Now, an application of the parabolic operator to
the obtained result gives (6.5).
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7. Existence of a solution of Navier-Stokes equations.

In this section we establish the existence of a generalized solution
of Navier-Stokes equations by using the parametrix given in the previous
section. Namely, we only derive integral representation of it, then study
properties of integral operators. We have

THEOREM 1. Let n be bounded. Then there exists a generalized
solution u(t) = u(x, t) of Navier-Stokes equations.

PROOF. It suffices to show the existence of a coclosed field

vP(t) = vP(x, t) of rank p =1 satisfying the equation (3.18) and conditions
(3.19) and (3.20). Thus, the weak equation (4.1) is reduced to

Assume where the Then (7.1), because of (1.18)
and cocloseness of the field vP, gets

Let K be an arbitrary bounded subdomain of D such that K -3 D
and y a positive constant as in the previous section. Take a field

where S~K means n with K instead of D, and consider
a field of the form (6.4), namely

where P is the parametrix of the equation ( 6.1 ), as a test field of the

equation (7.2). From (7.3) on account of (6.5) we have

Furthermore, we denote by means of S’P a symmetric tensor field of rank
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p = 2 and of the form Then we have

where S and T are operators with kernels S’ and TP respectively, namely
Co°° functions vanishing identically near x = ~, t=’t. Substituting (7.4)
and (7.5) into (7.2) we obtain

By virtue of the integrability of the field 9 and we may

change the order of integration. Thus, we derive

where V, S* and T* are operators with kernels obtained from 
and TP by means of interchange of (x, t) and (~, -~). The fact that (7.7)
is valid for every implies

Now, if instead of the general element cp we take an element 
then by the same procedure we obtain

where given operators have respective kernels obtained from 
by means of interchange of (x, t) and (~, T) belonging to Coco and

vanishing near x = ~, t = ~. In that manner we have obtained the « local »
integral representations for the generalized solution. Thus, we can state
the following

LEMMA 12. Let v(x, t) be a generalized solution of Navier-Stokes
equations, and let K be an arbitrary bounded subdomain K -3 D and y
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any positive constant, Then for almost every (x, we have

integral representations (7.8) and (7.9).
Setting f(x, t) and e(x, t) = S**~(x, t) we see that these

fields correspond to the fields (5.12) and (5.15) respectively. Some
properties of these fields we have already studied. For the further work
we still need a Sobolev type lemma [14], namely

LEMMA 13. Let be given a field w(x, t) in the form

If h(t)=h(x, t) belongs to Lp(D) for each t E (o, T) with its Lp norm
bounded and if ~, &#x3E; n( 1-1 / p) then for each tE(O, T) and for any fixed
q such that w(t)=w(x, t) belongs to Lq(D*) and
its Lq norm is bounded in t.

For each t from considered interval the above lemma is, in fact, the
Sobolev lemma which proof can be found in [14].

8. Regularity of the generalized solution.

As we have already obtained the integral representations of the

generalized solution and have studied some properties of the integral
operators then we can state the main theorem, which says that this

solution is regular, namely it is twice continuosly differentiable with

respect to x and once to t. We have

THEOREM 2. The generalized solution v(t) = v(x, t) is regular in
any subdomain fl* of il in which the external force field is H61der
continuous with respect to (x, t).

PROOF. Let ~* be an arbitrary subdomain of n. Then on account
of (7.8) we notice that the regularity of v in fl* is implied by that of
terms in (7.8) of the form (K* o 9)(x, t), namely
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According to the property iv) of the solution v( t) and the assumption
on the force field f (x, t) we have ) ::;A, II (v ~ and also

I f(x, t)  A. By virtue of Lemma 9 we have [ vet) 2(+2)  
2(À+2) .

and where q = , 3 . . Thus, we arrive at the con-- 

X+3 
*

clusion that 3eLq(K) with the norm bounded in t.
Now, we achieve the wanted regularity by successive applications of

Lemmas 13, 10 and 11. As conditions for application of Lemma 13 hold,

then we apply it to (7.8) and find that -f- 1
2(X+2) 

r n q
and q =  3 , , where and pe(0, 1). From here we see

that (v. 0 )v E LS(K*), where l/s= l/r+ 1/2, hence 9 c L,(K*). Next we
choose instead of K* a suitable subset of K, for instance K(2y) and
conclude that v is bounded in K(2y) and its bound is bounded in t.

Thus, v is bounded in K(2~·). The obtained result ensures that

(v ~ and its Ls norm is bounded for each t E (2y, T-2y).
Further, we apply Lemma 13 to (7.9) and obtain B7veLk(K(4y») with

1 &#x3E; 1 and its norm is bounded in te(4y, T-4y). Thus,k n s 
( Y Y)

we arrive at the conclusion that the f ield v and its derivative are

bounded in nk( 4y ).
The results so far obtained enable us to apply Lemma 10 to (7.8)

and (7.9) and to conclude that v is Holder continuous with respect to

te(2y, T - 2~) and that 0 v is H61der continuous in nk(6y) with respect
to (x, t). Finally we can apply Lemma 11 to (7.8) and see that the field
v is twice continuously differentiable in x and once in t in the domain
nk(8y).Thus the theorem is proved.
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