
RENDICONTI
del

SEMINARIO MATEMATICO
della

UNIVERSITÀ DI PADOVA

J. J. UHL JR.
Compact operators on Orlicz spaces
Rendiconti del Seminario Matematico della Università di Padova,
tome 42 (1969), p. 209-219
<http://www.numdam.org/item?id=RSMUP_1969__42__209_0>

© Rendiconti del Seminario Matematico della Università di Padova, 1969, tous
droits réservés.

L’accès aux archives de la revue « Rendiconti del Seminario Matematico
della Università di Padova » (http://rendiconti.math.unipd.it/) implique l’accord
avec les conditions générales d’utilisation (http://www.numdam.org/conditions).
Toute utilisation commerciale ou impression systématique est constitutive
d’une infraction pénale. Toute copie ou impression de ce fichier doit conte-
nir la présente mention de copyright.

Article numérisé dans le cadre du programme
Numérisation de documents anciens mathématiques

http://www.numdam.org/

http://www.numdam.org/item?id=RSMUP_1969__42__209_0
http://rendiconti.math.unipd.it/
http://www.numdam.org/conditions
http://www.numdam.org/
http://www.numdam.org/


COMPACT OPERATORS ON ORLICZ SPACES

by J. J. UHL, JR. *)

Recently there has been some effort [2, 3, 7] devoted to repre-
sentations of the general bounded linear operator in the Orlicz spaces
L~ of Banach space valued functions. On the hand, it appears that

comparatively little effort has been directed to obtaining information
about special types of bounded linear operators on the Orlicz spaces.
The purpose of this paper is to investigate some properties of compact
linear operators defined on, or with values in, an Orlicz space.

In the first section, preliminary results concerning Orlicz spaces,
whose underlying measure is possibly only finitely additive, will be given
to establish the setting of the work which follows. The second section
is concerned with the problem of characterizing the compact operators
on or into a fairly general class of Orlicz spaces and investigating some
of their properties- including their property of being limits of linear

operators with a finite dimensional range. The results obtained in this

analysis will then be applied, in section three, to existing representa-
tions of bounded linear operators on Orlicz spaces to obtain a cha-

racterization of operator valued set function which represent compact
operators.

I. Some Preliminaries.

Throughout this paper, li is a finitely additive non-negative exten-
ded real valued set function defined on a field X of subsets of a

point set !1.

*) Indirizzo dell’A.: Depart. of Math., Univ. of Illinois, Urbana, 111., 61801.
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Further it is assumed that It has the finite subset property; i.e.

if Ee£ and ~,(E) _ ~ , then there exists Eo e 1, Eo c E such that

J3 and 61f are Banach spaces with conjugate spaces
J3* and 6)j* repectively. B(J3, 6)j) is the Benach space of all bounded
linear operators from J3 to 6)j.

1&#x3E;’ is a continuous Young’s function [9] with complementary func-
tion ’1’. L(1) (!1, 2:, li, ~~)( = L~(~~)) is the linear space of all totally
(.1-measurable [4] J3 valued functions f satisfying f 0( 11 f II 

n

for some positive k, where the integration procedure here and throughout
unless noted otherwise is that of [4]. Upon the identification of functions
which differ on at most a (.1-null set, L°(J3) becomes a normed linear space
under each of the equivalent norms No and 11.11(1) defined for 
by

and

respectively. M~(3@) denotes the closure of the subspace of L°(J3)
spanned by the simple functions. If O satisfies the A2-condition ((2x) 

for all x and some finite K), then [7, 9].
A partition  _ { En } is a finite collection of disjoint £-sets, each

of finite measure. The class of partitions II directed by the partial
ordering if each member of 1tl is the union of members of x2 .

LEMMA 1. } be a partition. I f ETC is defined f or
by

(XE is the characteristic or indicator function of E), then
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and

PROOF. The proof of (a) which follows from the convexity of cup
can be constructed from [7, Thm 11.5] and [7, Thm 1.9] and will
be omitted. ( b ) is an immediate consequence of [4, 11.3.6] an the fact
that the Ex are contractions. Q.E.D.

For ease of reference, we shall now introduce a space of set func-
tions which will play a major role in the theorems which follow.

DEFINITION 2. [7] Let Xoc;2 be the ring of sets of finite ¡.1-mea-
sure. V°(J3) is the space of all finitely additive v-continuous b valued
functions F defined of 2o which satisfy

is finite.

According to [7, Thm 1.16], No furnishes a norm for VII(M) under
which becomes a Banach space. Of crucial importance in the
later work is the following theorem which is proved in [7, Section V ] .

THEOREM 3. Let VI be continuous. The conjugate space to 
(M~(~~))* is equivalent to V~(~~*). If there exists a unique

such that

where the integral is that of [ 1 ] . Conversely each defines
a member of through the above formula. Moreover, if M~(~~)
is normed I 1,D , the induced norm of I above is 

This section will be terminated with a theorem essentially due to
Vala [8]. It is given here its present form for use later and because
of its possible independent interest.
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THEOREM 4. Let (t,, -ceil } be a net of compact linear operators
(i.e. operators which map bounded sets into relatively compact sets) map-
ping ~ into 61/. I f

(i) lim t.~(x)= t(x) exists for all 

and

(ii) there exists a compact operator such that

 t.(x)  I - I for all then t is compact and lim t. -
- t = 0 in the uniform operator topology. 

PROOF. Suppose conditions (i) and (ii) are satisfied 
is given. Since s is compact, there exitst a finite covering { An } of the
unit ball U of J3 such that xi , x2 E An implies S(Xl)-S(X2) II  F-/3.
Now choose an element xn E An . By (i) and (ii), there exists for each
xn an index such that implies [[ I £/3.
Since I is directed, there exists such that for all ~n defined
above. Thus, if x E U is arbitrary and An is chosen such that xeAn,
then for r, ’t’ ~ ’to, we have

by condition (ii),

by the choice of An and To. Thus, for r, and 

It follows that lim II tT - tT’ ~ ~ =0, and that
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II. Compact operators on and into Orlicz spaces.

This section is concerned with the characterization of compact linear

operators which map an Orlicz space into a range space 611 or are

defined on 611 with range in an Orlicz space. The characterization
obtained will then be applied to the problem of approximating these
compact operators by bounded linear operators with a finite dimensional
range. The following theorem is the main result of this paper.

THEOREM 5. Let 8 be reflexive, 1&#x3E;’ be continuous. If ’I’ obeys
the A2-condition (’l’(2x)::;K’l’(x», then is compact if
and only if

(i) For each Ee2o, the operator T(E) : defined by
compact linear operator,

and

(ii) lim 11 t.E..-t 11 = 0 in the uniform operator tolology.
n

PROOF. (Sufficiency). First we shall show that condition (i) implies
t ~ E,~ is compact for each partition x. For, if } is a partition, then

by the definition of T (En). By condition (i), T(En) is compact for each
Hence T(En) takes boundes sets in J3 into conditionally compact

sets in Qj . Now, if [ 1, then
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by the Holder inequality [7, 9]. Hence ~~ f t is a boun-
ded set in 3@ for each E" , and hence En

is conditionally compact in 611. From this and (*) above, we infer imme-
diately that is compact. To complete the proof of the sufficiency,
note that by condition (ii), lim II t.E7C-t II =0. Thus t, as the operator

7C

limit of compact operators, is itself compact.
(Necessity). Suppose is compact and for 

consider Since fxu :
~ ~ ~ 1 is a bounded sent in M°(J3) and is compact, it follows that S
is conditionally compact in 611. This proves the necessity of condi-
tion (i).

To establish (ii), let y* E6lf* be arbitrary. Then and

according to theorem 3 there exists a unique G( = Gy) E v ’1’( ~*) such
that for fem°(J3),

Now, for the same consider

where
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Another application of theorem 3 and the introduction of the

adjoint operators t* and (t ~ E~)* of t and t ~ E,~ respectively yeld

But according to [7, Thm 1.9], Whence

~~ ~~ t*(y*) II. Moreover, by [7, Cor. IV.7], the hypothesis
of the theorem ensures lim Thus lim I 

Tt «

- t*(y*) I = o. Further note that since t is compact so are the t E ,
and Schauder’s theorem guarantees the compactness of t* and (t ~ E.~)*.
Hence the hypothesis of theorem 4 is satisfied by the net }
and the bounding compact operator t*. Using theorem 4, we have

Focusing our attention on the problem of approximating compact
operators by bounded linear operators with a finite dimensional range,
we have the following.

COROLLARY 6. Under the hypothesis of theorem 5 and with the
further assumption that ~~ is the scalar field, each compact member of

is the limit, in the uniform operator topology, of a net of
bounded linear operators whose range is finite dimensional.

PROOF. By theorem 5, = 0 for each compact t in
x

But, since ~ is the scalar field the range of each t. ETC
is contained in the span of { T{En) : Ene7c) which is a finite dimensional
subspace of 611. Q.E.D.

It can be shown that if b and 611 are Banach spaces, such that any
compact member of can be approximated in the uniform ope-
rator topology by bounded linear operators whise ranges are finite di-

mensional, then corollary 6 remains true for compact members of

B(M°(J3), The details are omitted here.

REMARK. The hypothesis of theorem 5 (and hence corollary 6)
can be weakened slightly. As the proof, shows, the A2-condition was
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needed for W only to permit the conclusion lim N’I’(G1C-G)=O. If we
ie

specify instead that for all GeV(3@*), then theorem

5 remains true. Thus, in addition to all the Lp() 1  p  ) spaces
where 36 its a reflexive Banach space, the conclusion of theorem 5 holds
for L1(~) when 3e is the scalar field and the underlying measure space
is finite and countably additive.

The hypothesis of theorem 5 cannot be weakened further than the
slight generalization indicated above. For, if (i) and (ii) of theorem 5

provide a necessary condition for an operator in 6).j) to be

compact, then these conditions must be necessary when ~ is the scalar
field. This implies =0 for all This and theo-

Tt

rem 3 imply lim N( G - G ) = 0 for all 
1C

Next we shall turn our attention to the case where t is a compact
operator with its range in 

THEOREM 7. Let V be continuous and ~ be the scalar field. An
operator t in B(6).j, M()) is compact if and only if lim [ B1Ct-t II I = 0
in the uniform operator topology. Consequently each compact member
of B(6).j, M~(~)) is the limit in the uniform operator topology of
bounded linear operators whose ranges are finite dimensional.

PROOF. (Sufficiency). Suppose and consider
for 

’J;

Since 3e is the scalar field the range of E1Ct is contained in the span
of Exex) } which is finite dimensional.

(Necessity). Let M~ (,-1(2)) be compact. According to lem-
ma 1,
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Thus the hypothesis of theorem 4 is satisfied by the net ( Ext, }
and the dominating compact operator t. By theorem 4, lim II [ =0.

n 

Q.E.D.

Combining theorems 5 and 7 is a result on quasitriangular operators.

DEFINITION 8. A member t of B(M, M)(=B(3)) is called quasi-
triangular if there exists an increasing net { . , - E I }(T, c .q
if ~1 ~ 1:2) of finite dimensional subspaces of --4e and projections E.~ of
3e such that [ and lim II 

«

THEOREM 9. Let 36 be the scalar be continuous and ’I’

obey the A2-Condition (or, more generally, suppose lim 
Tt

for all Then every compact member of B(MI(M)) is quasi-
triangular.

PROOF. Consider the net of projections Then

is an increasing net of finite dimensional subspaces
of M’(J3) and [ Bn II [ 1. Moreover,

=1,

= 0 by theorems 5 and 7. Q.E.D.

I II. Operator valued set f unctions which represent compact operators.

In [2, 3, and 7], representations of the general bounded linear
operator on are given. In each case, the representation of

takes the form
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where H is some B(J3, 61/)-valued additive set function and the integral
is that of Bartle [ 1 ] . The purpose of this section is to characterize those
B(J3, valued finitely additive set functions which qualify to repre-
sent compact members of B(M°(J3), 

To be more precise, let W’(B(3, be the space of all -con-
tinuous finitely additive set functions H defined on
lo (the ring of sets of finite v-measure) which satisfy

and

Then, according to [7. Cor V. 9 ] , if 4b is continuous B(M~(~~), 6)J)
with having the representation

fdH for all and some 6)J». The same
n

result says that t ~ ~ [ where [ t ~ ~ [ is the operator norm
induced on t on M°(J3). The following result characterizes

those membres of WI(3~, 61f )) which represent compact operators on
the M’(J3) spaces under consideration.

THEOREM 10. Let (D be continuous, ~Y obey the 02-condition, and
~~ be reflexive. If is represented by 
(i.e. fdH) then t is compact of and only if

.0

(i) is compact for each E E Eo
and

(it) lim = 0, where for each partition
7C

PROOF. Let t( f ) _ ~ fdH for By setting f = xxE for
n

some and Eclo I it is not difficult to see that H(E)[x] 
In addition,
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Thus H1t represents tE.~ . Hence, by theorem 5, t is compact if and
only if T (E)( = H(E)) is compact and lim t-tE1t II = 0 which, in turn,

7r

is true if and only if H(E) is compact and lim II =0. Q.E.D.
7r

Finally we note that all of the considerations of this paper (with
certain straightforward modifications) remain true for the spaces of set
fuctions V°(J3) studied in [7]. is replaced by S’(J3) and
E~(G) = G~ . Precise statements of these results in the S’(J3) context
are omitted here.
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