RENDICONTI

del
 SEMINARIO MATEMATICO della Università di Padova

D. J. SCHAEFER

On multiplicity functions and Lebesgue area

Rendiconti del Seminario Matematico della Università di Padova, tome 42 (1969), p. 201-207
http://www.numdam.org/item?id=RSMUP_1969__42__201_0
© Rendiconti del Seminario Matematico della Università di Padova, 1969, tous droits réservés.

L'accès aux archives de la revue «Rendiconti del Seminario Matematico della Università di Padova» (http://rendiconti.math.unipd.it/) implique l'accord avec les conditions générales d'utilisation (http://www.numdam.org/conditions). Toute utilisation commerciale ou impression systématique est constitutive d'une infraction pénale. Toute copie ou impression de ce fichier doit contenir la présente mention de copyright.

Numdam

Article numérisé dans le cadre du programme

ON MULTIPLICITY FUNCTIONS
 AND LEBESGUE AREA*)

by D. J. Schaefer

1. Introduction.

Let $T: Q \rightarrow E_{3}$ be a continuons transformation from the unit square Q in the uv-plane into Euclidean 3 -space E_{3}. Many writers have been concerned with the problem of finding formulas which express the Lebesgue area $A(T)$ in terms of multiplicity functions. This paper will show relationships between some of the results of Mickle [3] and Federer [2], and will present, for the case $A(T)<\infty$, a modified definition of significant maximal model continua (s.m.m.c.'s) (see Mickle [3]) which is more natural if one is interested in the tangential properties of the Frechet surface defined by T.

2. Plane transformations.

2.1. Throughout section $2, T$ will denote a plane transformation. Let $T: \Delta \rightarrow E_{2}$ be a continuous, bounded transformation from $\Delta \subset Q$ into E_{2}, where Δ is connected and open relative to Q. We write $T:(B, A) \rightarrow(D, C)$ when $A \subset B, C \subset D, T(A) \subset C$. and $T(B) \subset D$. For $y \in E_{2}$ and $r>0$, let $C(y, r)=\left\{z: z \in E_{2},|z-y|<r\right\}$. Let $C A$ denote the complement of set A. It is easily shown that if $y \in T(\Delta)$ and V is a component of $T^{-1}[C(y, r)]$, then $T:\left(C 1_{\Delta} V, \boldsymbol{B}_{\Delta} V\right) \rightarrow\left(E_{2}, \boldsymbol{C} C(y, r)\right)$, where $C 1_{\Delta} V$ denotes the closure of V relative to Δ, and $\boldsymbol{B}_{\Delta} V$ the boundary of V relative to Δ.

[^0]Then (see [1]) T induces a homomorphism h_{T} on the 2-dimensional Cech cohomology groups with integer coefficients and based on locally finite coverings:

$$
h_{T}: K^{2}\left[E_{2}, C C(y, r)\right] \rightarrow K^{2}\left[\boldsymbol{C 1}_{\Delta} V, \boldsymbol{B}_{\Delta} V\right]
$$

Definite subsets of E_{2} for $0<r<1$ as follows. $A(y, r)=\{z: \mid z-$ $-y \mid \leq 1 / r\}, B(y, r)=\{z: r \leq|z-y| \leq 1 / r\}$, and $U(y, r)=\{z: \mid z-$ $-y \mid>1 / r\}$.

By the excision theorem [1, p. 243], the following isomorphism holds.

$$
K^{2}\left[E_{2}, C C(y, r)\right] \approx K^{2}[A(y, r), B(y, r)]
$$

Suppose V is a 2 -manifold whose closure relative to Δ is compact. Then $\boldsymbol{C} 1_{\Delta} V=\boldsymbol{C 1} V$ and $\boldsymbol{B}_{\Delta} V=\boldsymbol{B} V$. If $K^{\star 3}[A(y, r), B(y, r)]$ and $K^{*}[C 1 V, B V]$ denote the cohomology groups for the indicated pairs as defined in [5], we have the following isomorphisms (see [5, pp. 63-64], [1, pp. 253-254]).

$$
\begin{aligned}
K^{2}[A(y, r), B(y, r)] & \approx K^{* 3}[A(y, r), B(y, r)] \\
K^{2}[\boldsymbol{C} 1 V, \boldsymbol{B} V] & \approx K^{* 3}[\boldsymbol{C} 1 V, \boldsymbol{B} V] .
\end{aligned}
$$

2.2. Let $F(r)$ be the family of components of $T^{-1}[C(y, r)]$. Let $V \epsilon F(r)$ have compact closure relative to Δ. Let $D(T, r, V)$ and $\mu(y$, T, V) be as defined in [2] and [5] respectively. From 2.1 it follows that $D(T, r, V)=|\mu(y, T, V)|$. Let (see [2])

$$
M(T, \Delta, y)=\lim _{r \rightarrow 0} \Sigma D(T, r, V) \quad \text { (sum over } V \in F(r) \text {), }
$$

where $F(r)$ is the collection of components of $T^{-1}[C(y, r)]$. We use e.m.m.c. as the abreviation for essential maximal model continua as defined in [4].
2.3. Lemma. $M(T, \Delta, y) \geq 1$ implies that y is the image of an e.m.m.c. under T.

Proof. From the definition of $M(T, \Delta, y)$ and the relation between D and μ, there is an r such that $0<r<1$ and a component V_{0} of
$T^{-1}[C(y, r)]$ such that $\mu\left(y, T, V_{0}\right) \neq 0$. Such a V_{0} is a domain with closure in Δ, and $T^{-1}(y) \cap V_{0}=T^{-1}(y) \cap C 1 V_{0}$. Let $0<r^{\prime}<r$ and let $\Omega_{r^{\prime}}$ be the collection of components of $T^{-1}\left[C\left(y, r^{\prime}\right)\right]$ that lie in V_{0}. Then

$$
T^{-1}(y) \cap\left[\cup V^{\prime}\right]=T^{-1}(y) \cap V_{0}=T^{-1}(y) \cap C 1 V_{0} .\left(V^{\prime} \in \Omega_{r^{\prime}}\right)
$$

Therefore the class $\Omega_{r^{\prime}}$ is $\left(y, T, V_{0}\right)$ complete, i.e.,$C 1 V_{0} \cap T^{-1}(y) \subset$ $\subset \cup V^{\prime}$, the union taken over $V^{\prime} \in \Omega_{r^{\prime}}$. By [5, p. 126 theorem 3], $\mu\left(y, T, V_{0}\right)=\Sigma \mu\left(y, T, V^{\prime}\right)$, the sum taken over $V^{\prime} \in \Omega_{r^{\prime}}$. Furthemore, $\boldsymbol{C 1} V_{0}^{\prime} \subset V_{0}$ because $\boldsymbol{C 1} V_{0}^{\prime} \subset T^{-1}\left[\boldsymbol{C 1 C}\left(y, r^{\prime}\right)\right] \subset T^{-1}[C(y, r)]$ and V_{0}^{\prime} and its closure lie in the same component of $T^{-1}(C(y, r)]$. Therefore V_{0}^{\prime} is an indicator region of T and y is the image an e.m.m.c. [5, p. 165].

3. i-fold essential and significant maximum model continua.

3.1. Let Q be the unit square in E_{2} and $T: Q \rightarrow E_{3}$ denote a continuous transformation. Let $T=l m$ be a monotone-light factorization of T and denote the middle-space by M. For a point $x \in E_{3}$ and a maximum model continuum (m.m.c.) $\gamma \subset T^{-1}(x)$, let $\Delta(\gamma, r)$ denote the component of $T^{-1}[S(x, r)]$ which contains γ, where $S(x, r)$ is the open sphere in E_{3} with center x, radius r. Let $A[T, \Delta(\gamma, r)]$ denote the Lebesgue area of $T \mid \Delta(\gamma, r)$. Let $a \in M$ be such that $a=m(\gamma)$. Then we also denote $\Delta(\gamma, r)$ by $\Delta(a, r)$. Let $L_{2}^{*}(T, a), L_{* 2}^{*}(T, a)$, and $E_{2}(T, a)$ be as defined in [2]. We define sets as follows.

$$
\begin{aligned}
& Z_{2}=\left\{z: z \in Q, L_{2}^{*}(T, m z)=L_{* 2}(T, m z)=E_{2}(T, m z)=0\right\}, \\
& Z_{1}=\left\{z: z \in Q, L_{2}^{*}(T, m z)=L_{* 2}(T, m z)=E_{2}(T, m z)=1\right\}, \\
& Z_{3}=Q-Z_{1} \cup Z_{2}
\end{aligned}
$$

Denoting the Hausdorff 2-measure in \boldsymbol{M} by H_{T}^{2}, the Hausdorff 2-measure in E_{3} by H^{2}, and number of m.m.c.'s having non-empty intersections with $T^{-1}(x) \cap Z_{1}$ by $N^{*}\left[x, T, Z_{1}\right]$, we can state of the following.
3.2. Theorem. If $A(T)<\infty$, then $A(T)=\int N^{\star}\left[x, T, Z_{1}\right] d H^{2}$.

Proof. From [2, 8.17] we have

$$
\begin{equation*}
A(T)=\int \sigma(x) d H^{2}, \tag{1}
\end{equation*}
$$

where $\sigma(x)=\Sigma L_{2}^{*}(T, a)$, the sum $a \in M$ such that $l(a)=x$. We will show that

$$
\begin{equation*}
\sigma(x)=N^{\star}\left[x, T, Z_{1}\right] \text { for } H^{2} \text { a.e. } x \in E_{3} . \tag{2}
\end{equation*}
$$

Note that Z_{1} is the union of m.m.c.'s under T and let γ be any m.m.c. in $T^{-1}(x) \cap Z_{1}$. Letting $a=m(\gamma)$, we have $l(a)=x$ and $L_{2}^{*}(T$, $a)=1$. Hence

$$
\begin{equation*}
\sigma(x) \geq N^{\star}\left[x, T, Z_{1}\right] \tag{3}
\end{equation*}
$$

Suppose inequality (3) to be strict. Then there is an $a \in M$ such that $l(a)=x, L_{2}^{*}(T, a)>0$ and $a \notin m Z_{1}$. Therefore $a \in m\left(Z_{3}\right)$ and $x \in T\left(Z_{3}\right)$. But $[2,8.16]$ gives $H_{T}^{2}\left[m\left(Z_{3}\right)\right]=0$ under our assumptions. Since $H^{2}{ }_{r}\left[m\left(Z_{3}\right)\right] \geq H^{2}\left[T\left(Z_{3}\right)\right]$, the latter value is zero. Therefore strict inequality in (3) holds only on a set of H^{2}-measure zero. (1) and (2) imply the theorem.
3.3. In [3], Mickle makes the following definitions. Γ denotes the collection of H^{2}-measurable sets of E_{3}. Let U denote the unit sphere in $E_{3} . \pi_{p}: E_{3} \rightarrow E_{2}$ is the projection of E_{3} onto the plane normal to the direction determined by $p \in U$. Let $\Gamma_{p}=\left\{E: E \in \Gamma, L_{2} \pi_{p}(E)=0\right\}$ where L_{2} is the Lebesgue exterior planar measure. For each $E \in \Gamma$ define

$$
H_{p}(E)=\inf H^{2}\left(E-E_{p}\right) \quad\left(E_{p} \in \Gamma_{p}\right)
$$

If $E \in \Gamma, p \in U$, and m and n are positive integers,

$$
G_{n m}(E, p)=\left\{x: H_{p}[E \cap S(x, r)]>\pi r^{2} / n \text { for some } r, 0<r<1 / m\right\}
$$

Define

$$
D^{*}(T, \boldsymbol{0})=\cup_{n} \cap_{m} \cup_{p} G_{n m}\left[T\left(0 \cap E_{p}\right), p\right],(n, m=1,2, \ldots ; p \in U)
$$

where \boldsymbol{O} is an open set in the $u v$-plane and \boldsymbol{E}_{p} is the union of e.m.m.c.'s under $\pi_{p} T: Q \rightarrow E_{2}$. Let Ω denote the class of sets in the $u \nu$-plane.

An m.m.c. γ under T is called a significant m.m.c. (s.m.m.c.) if and only if for every open set $\mathbf{0} \in \Omega$ such that $\gamma \subset \mathbf{O}$ we have $T(\gamma) \in D^{*}(T, 0)$. The set $\boldsymbol{S}=\mathbf{S}(T)$ is defined the union of all s.m.m.c.'s under T.
3.4. We make the following modification.

Define

$$
D^{*}(T, \boldsymbol{O})=\cup_{p} \cup_{n} \cap_{m} G_{n m}\left[T\left(\boldsymbol{O} \cap E_{p}\right), p\right] \quad(n, m=1,2, \ldots ; p \in U)
$$

Let $\boldsymbol{S}^{*}=\boldsymbol{S}^{*}(\boldsymbol{T})$ be the union of all m.m.c.'s γ under T such that for each $\boldsymbol{O} \in \Omega$ such that $\gamma \subset \boldsymbol{O}$ we have $T(\gamma) \in D^{*}(T, \boldsymbol{O})$. It is clear from the definition that $\boldsymbol{S}^{\#} \subset \boldsymbol{S}$, and that with $\boldsymbol{S}^{\#}$ we single out particular, though not unique, planes.
3.5. Lemma. Let $T: Q \rightarrow E_{3}$ be a continous transformation. Let Z_{1} and $S^{\#}$ be as defined in 3.1 and 3.3. Then $Z_{1} \subset S^{\#}$.

Proof. Let γ be an m.m.c. under T in Z_{1} and let $x=T(\gamma)$. Then there is a $p \in U$ such that

$$
\begin{equation*}
\lim _{r \rightarrow 0} L_{2}\left\{z: M\left(\pi_{p} T \mid \Delta(\gamma, r), \Delta(\gamma, r), z \geq 1\right\} / \pi r^{2}=1 .\right. \tag{1}
\end{equation*}
$$

By lemma 2.3 each z such that $M\left(\pi_{p} T \mid \Delta(\gamma, r), \Delta(\gamma, r), z\right) \geq 1$ is the image of an e.m.m.c. γ_{z} under $\pi_{p} T \mid \Delta(\gamma, z)$. γ_{z} is also an e.m.m.c. under $\pi_{p} T: Q \rightarrow E_{2}$ (see [4]), so $z \in \pi_{p} T\left(\Delta(\gamma, r) \cap E_{p}\right.$). Therefore

$$
\begin{equation*}
\left\{z: M\left(\pi_{p} T \mid \Delta(\gamma, r), \Delta(\gamma, r), z\right) \geq 1\right\} \subset \pi_{p} T\left(\Delta(y, r) \cap E_{p}\right) . \tag{2}
\end{equation*}
$$

The middle space \boldsymbol{M} is a separable metric space. Let $\left\{a_{i}\right\}$ be a countable dense set in \boldsymbol{M} and $\boldsymbol{S}(a, r)$ the open sphere in \boldsymbol{M} with center a, radius r. Define $\boldsymbol{0}_{i j}=m^{-1} \mathbf{S}\left(a_{i}, 1 / j\right)$ for $i, j=1.2, \ldots$ Suppose $\boldsymbol{\gamma} \subset \boldsymbol{0}_{i j}$. Then $m(\gamma)=a \in S\left(a_{i}, 1 / j\right)$. Let r_{1} be small enough that $\left.S\left(a, 2 r_{1}\right) \subset S a_{i}, 1 / j\right)$. Then for $0<r \leq r_{1}, m[\Delta(\gamma, r)] \subset S(a, 2 r) \subset S\left(a_{i}, 1 / j\right)$ and

$$
\begin{equation*}
\Delta(\gamma, r) \subset \boldsymbol{O}_{i j} . \tag{3}
\end{equation*}
$$

From (1) there exists an $r_{2}>0$ such that

$$
\begin{equation*}
L_{2}\left\{z: M\left(\pi_{\mathrm{p}} T \mid \Delta(\gamma, r), \Delta(\gamma, r), z\right) \geq 1\right\} / \pi r^{2} \geq \frac{1}{2} \text { for } 0<r \leq r_{2} . \tag{4}
\end{equation*}
$$

Observe that $T(\Delta(\gamma, r)) \subset S(x, r)$ so from (3) we have

$$
\begin{gather*}
\pi_{p}\left[T\left(\boldsymbol{O}_{i j} \cap \boldsymbol{E}_{p}\right) \cap S(x, r)\right] \supset \pi_{p} T\left(\Delta(\gamma, r) \cap E_{p}\right), \\
0<r \leq r_{0}=\min \left(r_{1}, r_{2}\right) . \tag{5}
\end{gather*}
$$

(5), (2), and (4) imply that if $0<r \leq r_{0}$,

$$
\begin{aligned}
H_{p}\left[T\left(\boldsymbol{O}_{i j} \cap E_{p}\right) \cap S(x, r)\right] / \pi r^{2} & \geq L_{2}\left\{\pi_{p}\left[T\left(\boldsymbol{O}_{i j} \boldsymbol{E}_{p}\right) \cap S(x, r)\right]\right\} / \pi r^{2} \\
& \geq L_{2}\left[\pi_{p} T\left(\Delta(\gamma, r) \cap \boldsymbol{E}_{p}\right)\right] / \pi r^{2} \\
\geq L_{2}\{z: & \left.M\left(\pi_{p} T \mid \Delta(\gamma, r), \Delta(\gamma, r), z\right) \geq 1\right\} / \pi r^{2} \geq \frac{1}{2} .
\end{aligned}
$$

Therefore,

$$
\lim \sup _{r-0} H_{p}\left[T\left(\boldsymbol{o}_{i j} \cap \boldsymbol{E}_{p}\right) \cap S(x, r)\right] / \pi r^{2}>0,
$$

which implies $T(\gamma) \in D_{p}\left[T\left(\boldsymbol{O}_{i j} \cap E_{p}\right)\right]$ and hence $\gamma \subset S^{*} . \gamma$ was an arbitrary m.m.c. in Z_{1}, hence $Z_{1} \subset S^{*}$.
3.6. Theorem. Let $T: Q \rightarrow E_{3}$ be a continuous transformation. Then $T\left(Z_{1}\right) \subset T\left(S^{\#}\right) \subset T(S)$ and if $A(T)<\infty$, then

$$
H^{2}\left[T\left(Z_{1}\right)\right]=H^{2}\left[T\left(\mathbf{S}^{*}\right)\right]=H^{2}[T(\mathbf{S})] .
$$

Proof. $T\left(Z_{1}\right) \subset T\left(\mathbf{S}^{*}\right)$ from lemma 3.5, and $T\left(S^{*}\right) \subset T(S)$ from the definitions of $S^{\#}$ and S in 3.3 and 3.4. Observe that $T(S)=T(S-$ $\left.-Z_{1}\right) \cup T\left(Z_{1}\right)$, so the theorem follows when it is shown that $H^{2}\left[T\left(S-Z_{1}\right)\right]=0$. Since $S-Z_{1}$ and Z_{1} are disjoint unions of m.m.c.'s,

$$
N^{*}[x, T, S]=N^{\star}\left[x, T, S-Z_{1}\right]+N^{\star}\left[x, T, Z_{1}\right], \quad x \in E_{3} .
$$

Therefore
(1) $\int N^{*}[x, T, S] d H^{2}=\int N^{*}\left[x, T, S-Z_{1}\right] d H^{2}+\int N^{*}\left[x, T, Z_{1}\right] d H^{2}$.

But $A(T)<\infty$, so theorem 3.2, [3] and (1) imply that $0=\int N^{\star}[x, T$, $S-Z] d H^{2}$. Since $x \in T\left(S-Z_{1}\right)$ implies $N^{*}\left[x, T, S-Z_{1}\right] \geq 1$, it follows that $0=H^{2}\left[T\left(S-Z_{1}\right)\right]$ and the theorem is proved.
3.7. Remark. By arguments essentially the same as those of Mickle [3] one can show that \boldsymbol{S}^{*} satisfies invariance under Frechet equivalence and that whenever $N^{*}\left[x, T, S^{\#}\right]$ is measurable, $A(T)=\int N^{*}[x, T$, $\left.\mathbf{S}^{\#}\right] d H^{2}$. In fact, when $A(T)<\infty, \boldsymbol{S}^{\#}=\boldsymbol{S}$. Measurability has not been established in case $A(T)=\infty$.
3.8. Remark. In view of theorem 3.4, one can apply the results on approximate tangential planes in [6] to the sets $T\left(\mathbf{S}^{\#}\right)$ and $T\left(Z_{1}\right)$.

BIBLIOGRAPHY

[1] Eilenberg and Steenrod.: Foundation of Algebraic Topology, Princeton, 1952.
[2] Federer H.: Measure and area, Bull. Amer. Math. Soc. vol. 58 (1952), pp. 306-378.
[3] Mikle E. J.: On the definition of significant multiplicity for continuous transformation, Trans. Amer. Math. Soc. vol. 82 (1956), pp. 440-451.
[4] Rado T.: Length and Area, Amer. Math. Soc. Colloquim Pubblications vol. 30 (1948).
[5] Rado T. and Reichelderfer P.: Continuous Transformation in Analysis, Springer-Verlag, Berlin, Gottingen, Heidelberg, 1955.
[6] Schaefer D. J.: On tangential properties of Frechet surfaces, Rend. Circ. Mat. Palermo, series II, Tomo XIV (1965), pp. 171-182.

Manoscritto pervenuto in redazione il 30 settembre 1968.

[^0]: ${ }^{*}$) Research supported in part by Aerospace Research Laboratories, WrightPatterson AFB, Ohio.

 Indirizzo dell'A.: University of Illinois, Urbana, Illinois, 61801, U.S.A.

